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Abstract: In this study, we give an improvement to the Backward Differentiation Formula (BDF). We 
use a formula for the differences that permits us to determine the new coefficients iα̂  and iγ̂  in 

function of the classical coefficients iα  and iγ  of this method. Our proposed approach decreases the 
error and the cost of computation. Numerical results for concrete problems are given to support the 
theory. 
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INTRODUCTION 

 
 We are interested in initial value problems for the 
Differential-Algebraic Equation (DAE) of the form: 

0),',( =txxF  
 Where F, x and x� are s-dimensional vectors, F is 
assumed to be differentiable. We investigate some of 
the practical difficulties involved with implementing 
the BDF, for the DAE of the form, 

),,(0),,,',(0 21 tyxFtyxxF ==  (1) 
and the implicit differential equation of the form: 

0),',( =txxF  (2) 

Where the initial values of x and y are given, 
'x

F
∂
∂

 is 

non-singular. The function F is assumed to be 
sufficiently smooth. The Jacobian matrix may be 

singular. As a special case, if 
'x

F
∂
∂

 is non-singular, 

equation (2) is locally a system of ODE's. However, if 
the Jacobian is singular, equation (2) is in fact a system 
of DAE's. In such a system, there are algebraic 
constraints on the variables. Systems of this form arise 
frequently in the modelling of engineering problems, 
for example the simulation of electrical networks, the 
solution of certain equations in fluid dynamics and the 
simulation of mechanical systems[1-3]. Other areas of 
application are: control theory[2], power systems[3] and 
heat flow[2]. 
 For the stiff problems[4,5] and differential-algebraic 
equations, our approach are based on BDF's[5,6]: 
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Where nn tth −= +1 and the coefficients iα  and iγ  
depend on the stepsize h and the order k. 
 This type of methods was studied in[1,7]. The 
contribution that we bring here to the BDF's permits the 
decrease of the global error as well as the explicit 
dependence of the coefficients iα  and iγ  on the 
stepsize h and the order k[5,6]. 
 The basic idea of using BDF's for solving DAE 
systems was introduced by Gear[2] and consists of 
replacing x� in (1) by a difference approximation and 
then solving the resulting equations for approximations 
to x and y. The simplest example of numerical ODE 
method for (1) is the backward Euler method. Using 
this approach, the derivative )(' 1+ntx  at time 1+nt  is 

approximated by a backward difference of )(tx  and the 

resulting system of nonlinear equations for 1+nx  and 

1+ny  is, 
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 The above system has a unique solution[2] if the 
inverse of scaled Jacobian matrix: 
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 In an earlier paper[3,7], it is showed that for the 
systems under considerations, assumptions must be 
placed on (1). These assumptions are satisfied in many 
applications. The k-step constant stepsize BDF 

converges to order of accuracy )( khO , where the 
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initial values are consistent and the functions are 
sufficiently smooth. Here we are concerned with the 
practical difficulties such as varying the stepsize and 
dealing with-ill conditioned matrices which arise in 
implementing BDF methods for the solution of (1). An 
important characteristic for understanding both the 
properties of solutions to DAE's systems and the 
behaviour of numerical methods for solving these 
systems is the index of the system, for which a precise 
definition is given later in the next section. In order to 
better understand the index and its role in the structure 
and solution of DAE's systems, we write: 
 
Assumption (1.1): 
1. The index is less than or equal to one, or 
2. The index is less than or equal to two 

and 02 ≡
∂

∂
y

F
, or 

3. The index is less than or equal to three and the 
system has the form (1). 

 It is well known that the index of DAE's is a 
measure of the degree of singularity of the system and 
also widely regarded as an indication of certain 
difficulties for numerical methods. Thus DAE's can be 
difficult to solve when they have a higher index, i.e. an 
index greater than one[1,2]. In this case an alternative 
treatment is the use of index reduction methods[3,7]. 
 
Index and mathematical structure for DAE's: Since 
a DAE involves a mixture of differentiations and 
integrations, one may hope that applying analytical 
differentiations to a given system and eliminating as 
needed, repeatedly if necessary, will yield an explicit 
ODE system for all the unknowns. This section presents 
definitions of DAE's in various forms and introduces 
the notion of the index. 
  
Definition 2.1: A system of initial value differential-
algebraic equation can be written in its general 
nonlinear implicit or fully implicit form as in (6a), 
subject to initial conditions (6b), 

0)),('),(( =ttxtxF  (6a) 

0000 ')(',)( xtxxtx ==  (6b) 

Where IRtandIRxIRF nn ∈∈∈ , , 
xF

x
F =

∂
∂  is non-

singular and 
'' xF

x
F =

∂
∂  is singular for 

all tandtxtx )('),( . 
 The existence of algebraic constraints on the 
variables is expressed by the singularity of the Jacobian 

'x
F

∂
∂  matrix. The initial conditions for x and x� defined in 

(6b) must be consistent in order for (6a) to admit 
solution. It is this last property that separates DAE's 
from implicit ODE's. It means that there are algebraic 
constraints on x(t) in addition to the usual differential 

equations, in the other words, the components of x (t) 
are not all independent. 
 As in the case with both analytical and numerical 
solutions of ODE's, it is important to classify DAE's 
(and especially nonlinear DAE's) into forms with 
known properties and /or methods of solution. In 
particular, not all DAE's can be solved numerically by 
classical methods such as BDF[2,3] or implicit Runge 
Kutta schemes[3]. Thus it is desirable to have structural 
forms which predict when a DAE will be solvable. 
 
Definition 2.2: For general DAE systems (6), the index 
along a solution x(t) is the minimum number of 
differentiation of the system which would be required 
to solve for x� uniquely in terms of x and t. (i.e. to 
define an ODE for x). Thus, the index is defined in 
terms of the over determined system: 
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to be the smallest integer p such that x� in (7) can be 
solved in terms of x and t.  
 
Special DAE forms: The general DAE system (6) can 
include problems which are not well defined in 
mathematical sense, as well as problems which result in 
failure by any direct discretisation method (i.e. a 
method based on discretisation of x and x� without first 
reformulating the equations). Fortunately, most of the 
higher- index problems encountered in practice can be 
expressed as a combination of more restrictive 
structures of ODEs coupled with constraints. In such 
systems, the algebraic and the differential variables are 
explicitly identified for higher-index DAE's as well and 
the algebraic variables may all be eliminated (in 
principle) using the same number of differentiations. 
These are called Hessenberg forms of the DAE and are 
given below. 
 
Hessenberg index-1 
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 Here, the Jacobian matrix xg  is assumed to be 
non-singular for all t. This is also often referred to as a 
semi-explicit index-1 system. 
 
Hessenberg index-2 
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=
=  

Here, the product of Jacobians gxfz is non-singular for 
all t. This is a pure index-2 DAE. 
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Hessenberg index-3  
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 Here the product of three matrix functions 

zxy fgh  is non-singular for all t. 

 The index has proven to be a useful concept for 
classifying DAEs in order to construct and identify 
appropriate numerical methods. 
 
BDF methods: Numerical approache for the solution of 
differential-algebraic equations can be divided roughly 
into two classes: 
i.   Direct discretisations of the given system and (ii) 

methods which involve a reformulation (e.g. index 
reduction), combined with discretisation. The 
desire for as direct a discretisation as possible 
arises because a reformulation may be costly. It 
may require more input from the user and it may 
involve more user intervention. The reason for the 
popularity of reformulation approach is that, as it 
turn out, direct discretisations are essentially 
limited in their utility to index-1 and semi-explicit 
index-2 DAE systems. 

 Some numerical methods have been developed, 
using both BDF[2,7] and implicit Runge kutta methods[3]. 
These methods are only directly suitable for low index 
problems and often require that the problem has a 
special structure. Although many important applications 
can be solved by these methods, there is a need for 
more general approach as proposed in[2,3]. 
 In this paper, our approach is based on the methods 
of backward differentiation formulas (BDFs):  
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 This type of methods has been studied by[1,7] ; the 
contribution that we bring to the BDF's, permits the 
decrease of the global error as well as the explicit 
dependence of the coefficients iα  and iγ  on the step h 
and the order k[5,6]. 
 
Computation of the coefficients iα  and iγ  : The 

coefficients iα  depend on the values 

knnn ttt −+− 11 ...,,,  and are determined so that the 
formula (1) gives an exact result 
for

i
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[4,6]. 

 While substituting the polynomials )(tpi  in (8) 
and (9), one gets the following linear system: 

 21 eV =α  and 12 eV =γ  (10) 

With ( )Te 0...,,0,11 = , ( )Te 0...,,1,02 = , 

( )T
kαααα ...,,, 10= and ( )T

k 111 ...,,, += γγγγ .  

The matrices 1V  and 2V  are of Vendermonde type: 
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 While taking into account the specific pace of these 
systems, we can find the coefficients with a reduced 
computation cost[5,6]. 
 
Proposition 3.1[6]: The coefficients iγ  and iα  are 
given by, 
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 The formulas (11) and (12) can be used for the 
computation of the coefficients for different steps and 
an order 61 ≤≤ k [5]. 
 
Passage to the differences: To decrease the values of 
rounded errors when using the formulas (8) and (9), we 
replace the values inx −+1  in (8) and (9) by the 

differences: ininin xxx −−+− −=∆ 1 . In this case the 
formulas (8) and (9) take the following form: 
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Computation of the coefficients iα̂  and iγ̂  

Proposition 3.2: The coefficients iα̂  and iγ̂  are 

determined from the coefficients iα  and iγ  as follows:  
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Proof: According to formulas (8) and (13), we get: 
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By identification, we get: 
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And the general formula of the coefficients iα̂  is: 
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Modification of the value of the step and the order: 
We are going to show the algorithm of the choice of the 
step and the order for the backward differentiation 
method. 
 Let us designate by maxE  the error of tolerance on 
one interval of integration of length L and by 

)( 1+nhe the error of discretisation for the step 1+nh . 
Then 

L
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 One supposes that the derivative of order k, 
)1( +kx remain unaltered for two successive steps, the 

truncation error for the step 1+nh  is: 
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 The new step and the order k are chosen such that h 
is maximal and verifying: LEhk // max≤ε [2,3]. The 

peak value of the step 1+nh  can be found from the 

relation: )()( 11 ++ = nnk hehε , where 
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 In practice kη  is computed for the order k�=k-1, k 
and k+1 and in continuation, one chooses the method 
that permits to make the maximal step 1+nh : 

nn hh η=+1  with ),,max( 11 +−= kkk ηηηη . 
 The formula (18) makes forecast of the value of the 
error of discretisation only for the step 1+nh . Actually, it 
is a lot bigger than the local truncation error; it is the 
reason for which the proposed algorithm plans the 
dismissal of steps. 
 

RESULTS 
 
 There exist convergence results, In particular; the 
k-step BDF method of fixed step size h for k<7; 

converges to )( khO  if all initial values are correct to 

)( khO  and if the Newton iteration on each step is 

solved to accuracy )( 1+khO [1]. This convergence 
result has also been extended to variable step size BDF 
methods, provided that they are implemented in such a 
way that the method is stable for standard Odes. This 
convergence result extends to semi-explicit index-2 
DAEs[7]. 
 In this section we carry some numerical tests on 
simple, but interesting problems. In example 4.1, we 

use " xEmax  ", to denote the maximum over all 

components of the error in x and " yEmax " denotes the 

maximum of the error in y. This example is solved, 
directly using BDF with the formulas (11), (12) and 
using the BDF with the formulas (15), (16). 
 
Example 4.1 (Differential-algebraic equation): 
Consider for 0 �t �1, the system: 
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Table 1: Errors in x and y for example 4.1 using BDF with a difference.  
BDF   BDF with difference  

xEmax
  yEmax

  xEmax   yEmax
 

5.0000 E-07 7.1000 E-07 4.8990 E-08 7.0000 E-07 
3.9000 E-11 4.2000 E-11 3.8700 E-12 4.1100 E-12 
1.8000 E-15 1.8000 E-16 1.8200 E-16 1.8200 E-16 
4.6100 E-15 6.4000 E-17 4.5900 E-17 6.3700 E-17 
 
 
Table 2:  Convergence of the BDF scheme with a difference for Stiff problem.  
Tolerance    �=10�3   
Method  BDF5   BDF6  
Values/Errors E1 E2 E1 E2 

t=2.0 7.5951 E-03 2.0934 E-03 5.3060 E-03 2.4746 E-05 
t=3.0 6.4092 E-03 7.1329 E-04 4.2336 E-03 7.8208 E-04 
t=6.0 6.6100 E-03 2.7391 E-04 5.0564 E-03 2.1270 E-03 
Tolerance   �=10�4   
Method  BDF5   BDF6  
Values/Errors     
t=2.0 1.4042 E-03 3.5832 E-04 3.5691 E-04 2.0970 E-04 
t=3.0 1.1559 E-03 3.1592 E-04 1.7552 E-04 6.7362 E-04 
t=6.0 3.4594 E-03 1.5085 E-05 2.9635 E-03 2.8997 E-04 
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The exact solution is: texx == 21

, )2/( tey t −−=  ; the 
numerical results with �=1000 is given in Table 1. 
 The comparison between the general results given 
in table 1 and the published results in[7] and[6] shows the 
advantage of using the proposed methods of this paper, 
for this example. 
  
Example 4.2 (Stiff problem): 
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 In Table 2, we give the maximum over all 
components of the errors )( 1E  and the troncature error 

)( 2E  evaluated at t=2.0, t=3.0 and t=6.0. This example 
is solved, using BDF with the formulas (15) and (16). 
 For a tolerance 310−≤ε , BDF5 and BDF6 
converge, but BDF6 has a faster convergence rate than 
BDF5. The comparison between the general results 
mentioned in Table 2 and the published results in[6] 
shows the advantage of using the proposed methods of 
this paper, for this example. 
 

CONCLUSION 
 
 The implementation of the numerical methods 
analyzed in this article shows that the results found by 
our approach of BDF's, as using the formula to the 
differences, is better than those of[4] and[6]; and can be 
improved more in maintaining the same order for the 
following steps and while using a good approximation 

of the Jacobian matrix[7]. This improvement can 
overcome the problem of instability that can be met for 
small tolerances. 
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