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Abstract: Mudolkar and Hutson (1998) extended L-moments to new moment like entitles called LQ-
moments (LQMOM). The LQMOM are constructed by using functional defining the quick estimators, 
where the parameters of quick estimator take the values ��� == αp  for the median, 

������� == αp  for the trimean and ������� == αp  for the Gastwirth, in places of 
expectations in L-moments (LMOM). The objective of this paper is to develop improved LQMOM 
that do not impose restrictions on the value of p  and α  such as the median, trimean or the Gastwirth 
but we explore an extended class of LQMOM with consideration combinations of p  and α  values in 
the range 0 and 0.5. The popular quantile estimator namely the weighted kernel quantile (WKQ) 
estimator will be proposed to estimate the quantile function. Monte Carlo simulations are conducted to 
illustrate the performance of the proposed estimators of the log-normal 3 (LN3) distribution were 
compared with the estimators based on conventional LMOM and MOM (method of moments) for 
various sample sizes and return periods. 
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INTRODUCTION 
 
 The problem of estimating the parameter of a 
probability distribution from a sample is crucial to 
many fields of science and engineering, particularly for 
predicting future behavior of phenomenon from 
previously observed behavior. A wide variety of 
methods have been developed to perform parameter 
estimation. Despite the efforts of many researchers, 
there is on-going need to create a method that is easily 
used, has the flexibility to accommodate many different 
distributions and can procedure accurate and robust 
parameter estimates from sets of data. 
 The oldest and most widely method for fitting 
frequency distributions to observed data is known as the 
method of moments (MOM)[1]. In this method the 
parameters of a probability distribution are estimated by 
equating the sample moments to those of the theoretical 
moments of the distribution. The MOM has been one of 
the simplest and conventional parameter estimation 
techniques used in statistical hydrology[2] . 
 The L-moments (LMOM) are linear combinations 
of order statistics[3]. Analogously to the conventional 
moments, the LMOM of order one to four characterize 
location, scale, skewness and kurtosis, respectively. The 
main advantages of using the method of LMOM are 
that the parameter estimates are more reliable (i.e., 
smaller mean-squared error of estimation) and are more 
robust against outliers than MOM and are usually 
computationally more tractable than ML (maximum 
likelihood) method[4]. The LMOM have found wide 

applications in such fields of applied research as civil 
engineering, meteorology and hydrology. The method 
of LMOM has become a standard procedure in 
hydrology for estimating the parameters of certain 
statistical distributions. The LMOM are defined as 
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 Mudolkar and Hutson[5] extended LMOM to new 
moment like entitles called LQ moments (LQMOM). 
They found the LQMOM always exists, are often easier 
to compute than LMOM and in general behave 
similarly to the LMOM. The method of LQMOM was 
originally introduced as an extension of the LMOM 
method for parameter estimation. The LQMOM are 
defined as 
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where ���������� ≤≤≤≤ pα  and 
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is the linear combination and defined as a quick 
measures of the location of the sampling distribution of 
the order statistic rkrX 
−  and �	uQX  is the quantile 
function. Mudholkar and Hutson[5] discussed a robust 
modification in which the mean of the distribution of 
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rkrX 
−  in (1) is replaced by the common quick 

estimators ( )rkrp X 
�
� −ατ  using the median 

( ��� == αp ), the trimean ( ������� == αp ) and 

Gastwirth ( ������� == αp ) for some symmetric and 

asymmetric distributions. 
 The objective of this paper is to develop improved 
LQMOM that does not impose restrictions on the value 
of the quick estimators parameters p  and α  such as 


���� == αp  for the median, ������� == αp  for 
the trimean and ������� == αp  for the Gastwirth 
but we explore an extended class of LQMOM with 
consideration combinations of p  and α  values in the 
range 0 and 0.5. Rather, we seek to determine optimal 
combination of p  and α  values of LQMOM, 
assuming that the underlying distribution is correctly 
specified. More specifically, we develop the method of 
LQMOM for the three-parameter lognormal (LN3) 
distribution, which is often employed in statistical 
analyses of hydrological data. The popular quantile 
estimator namely the weighted kernel quantile (WKQ) 
estimator will be proposed to estimate the quantile 
function. The performance of the proposed estimators 
of the LN3 distribution was compared with the 
estimators based on conventional LMOM and MOM 
(method of moments) for various sample sizes and 
return periods. One goal of LQMOM method was to 
enhance the accuracy of the LMOM method by more 
fully utilizing the mathematical properties of the 
underlying probability distribution. 
 
The three-parameter log-normal distribution: The 
three-parameter lognormal distribution (LN3) may be 
one of the most versatile distributions. It has been seen 
to have applications in many fields, such as agriculture, 
entomology, economics, geology, industry, quality 
control and hydrology[6]. The LN3 has the probability 
density function (pdf)  
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where x  has a LN3 distribution so that ����	 ς−= xy  

has a normal distribution with mean yµ  and standard 

deviation yσ  and ξ  is a location parameter. The 

cumulative distribution function of LN3 is 
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where ���Φ  is cumulative distribution function of the 
standard normal distribution. Quantiles function of LN3 
distribution is given by 
 

�	����	�	 � uQuQ yµς +=  (6) 

where ��	�����	 �
� uuQ y

−Φ= σ  and 	���−Φ  has a 

standard normal distribution with mean zero and unit 
variance. 
 
The quantile estimators: Let nnnn XXX 

�
� ��� ≤≤≤  
be the corresponding order statistics. The population 
quantiles estimators of a distribution is defined as 

( ) { } ����	
����	� <<≥== − uuxFxuFuQ  (7) 

where �	xF  is the distribution function[7] . The popular 
class of L quantile estimators is called kernel quantile 
estimators has been widely applied[8]. The L quantile 
estimators is given by 
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where K is a density function symmetric about 0 and  
��	���	�	 hKhK h •=•  

 In our study, the approximation of the L quantile 
estimator is called as the weighted kernel quantile 
estimator (WKQ) is used[9]. The WKQ is given by  
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and the data point weights are 
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where ������	��	�	 ���� ttK −= −π  is the Gaussian 

Kernel, ������ nvuh =  and uv −= �  is an optimal 
bandwith[8]. 
 
Definition of L-moments: Let nXXX ������ ��  be a 
random sample from a continuous distribution function 

��	F  with quantile function �	�	 � uFuQ −=  and let 

nnnn XXX 

�
� ��� ≤≤≤  denote the corresponding 

order statistics. Then the ��r  L-moments rλ  is given 
by[6] 
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 The L in ‘L-moments’ emphasizes that rλ  is a 
linear function of the expected order statistic. The 
expectation of an order statistic may be written as 
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The first four L moments of the random variable X are 
defined as 

�	� XE=λ  (13) 
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The LQ-skewness and LQ-kurtosis of the random 
variable X, respectively are defined as 
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Estimation of L-moments: Given a ranked sample, 

�	��	��	 ��� nxxx ≤≤≤ , then the first four sample L 

moments are given by[10]  
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Definition of LQ-moments estimators: Let 

nXXX ������ ��  be a random sample from a continuous 
distribution function ��	F  with quantile function 

�	�	 � uFuQ −=  and let nnnn XXX 

�
� ��� ≤≤≤  

denote the corresponding order statistics. Then the ��r  
LQ-moments rξ  is given by[6] 
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where ���������� ≤≤≤≤ pα   
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is the quick estimator of location and �	�

 α−

− rkrB  is the 
quantile of a beta random variable with parameter 

kr −  and �+k  and 	��Q  denotes the quantile 
estimator. The first four LQ-moments of the random 
variable X are defined as 

�	�� Xp ατξ = ,  (25) 

��	�	� �
���
���
�

� XX pp αα ττξ −= ,  (26) 

��	�	��	� �
���
���
���
�

� XXX ppp ααα τττξ +−= (27) 

��	�	��	��	� �
���
���
���
���
�

� XXXX pppp αααα ττττξ −+−= (28) 

The LQ-skewness and LQ-kurtosis, respectively are 
defined as 
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Estimation of LQ-moments: For samples of size n, the 
rth sample LQ-moment is given by 
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is the quick estimator of location and �	�

 α−

− rkrB  is the 
quantile of a beta random variable with parameter 

kr −  and �+k  and 	���Q  denotes the weighted kernel 
quantile estimator (WKQ) given by Eq. (9). 
The first four sample LQ-moments of the random 
variable X are defined as 
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The sample LQ-skewness and LQ-kurtosis, respectively 
are defined as 
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Methods of parameter estimation 
Method of LQ-moments: The LQ-moments estimators 
for the LN3 distribution behave similarly to the 
LMOM. From equations (25)-(27) and (29) and 
equation (9) for quantile function, �	uQ of LN3, the 
expressions for the LQ-moments of the LN3 
distribution are given as follow 
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� uuQ y
−Φ= σ . 

 The LQ moments estimators yµ� , yσ� and ς� of the 

parameters are the solutions of (25)-(27) for the yµ , 

yσ and ς , when rξ  are replaced by their estimators rξ� .  

 The relationship between �η  and yσ  from Eq. 

(39) (for example p = 0.2 and ����=α ) is shown in 
Fig. 1.  
 
 
 
 
 
 
 
 
      �y 
 
 
 
 
 
    �3 
 
 
Fig. 1: Relationship between �η and yσ  for the LN3 

distribution 
 
 The following approximation relationships 
between the value of yσ  and �η obtained through 

regression analysis may be used to estimate yσ  for 

����� � ≤η and ������ ≤k   
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Once the value of yσ�  is obtained yµ�  and ς� can be 

estimated successively from Eq. (38) and (37) as 
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Others methods of parameter estimation: Several 
methods can be used to estimate the parameters of the 
LN3 distribution. The methods of L-moments 
(LMOM), ordinary product moments (MOM) and 
maximum likelihood (ML) are commonly used to 
estimate the parameters of the LN3 distribution.  
 Hoshi et al.[11] compared the ML, MOM and two 
quantiles-lower bound estimators in combination with 
two moments in real or in log space. Monte Carlo 

simulations are conducted to illustrate the performance 
of using the method of ML and MOM with the other 
methods. The result shows the method of maximum 
likelihood and Stedinger’s quantile-lower bound 
method provide more accurate estimators of the lower 
return period of the distributions. No method was found 
is the best for estimating the large return period. In 
addition the maximum likelihood is often highly 
computational and does not always work well in small 
samples. For these reasons, the maximum likelihood is 
not considered here. 
 The LMOM method becomes a standard procedure 
in hydrology for estimating the parameters of certain 
statistical distributions. For regional frequency analysis 
the LN3 distribution has received special attention 
based on LMOM[2,12] . 
 
Methods of moments: This is one of the most popular 
methods of estimating the parameters of LN3 

distribution. The mean �xµ  variance �
xσ  and 

coefficient of skewness xγ of the LN3 distribution are 
given by[11] 
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 The MOM estimators for the LN3 parameters can 
be obtained by replacing the population statistics �xµ  

�
xσ  and xγ  by the mean x , standard deviation s  and 

coefficient of skewness γ  of a sample of size n, 

respectively. By inverting eq. (45), the yσ  is given by  
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 Once the value of �
yσ  is obtained yµ and ς can be 

estimated successively from Equation (44) and (43) as 
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Method of L-moments: The LMOM estimators for the 
LN3 distributions are given by [3]  
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Simulation study: A number of simulation 
experiments were conduct to investigate the properties 
of LQMOM estimators for the LN3 distribution. A set 
of 5 000 random samples of sizes n = 15, 30, 50 and 
100 were drawn from LN3 distribution. Four pair 
values of the parent distribution ��	 xCv γ  were 
considered (0.125, 0.377), (0.25, 0.766), (0.5, 1.625) 
and (1.0, 4.0) corresponding to the same values used by 
Stedinger[13] and Hoshi et al.[11] and the location τ  was 
fixed to the value τ = 0. The chosen values of ��	 xCv γ  
for different shapes of the LN3 distribution, illustrated 
in Fig. 2. 
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Fig. 2: Log-normal probability density function for 

��	 xCv γ  are a.(0.125, 0.377), b.(0.25, 0.766), 
c.(0.5, 1.625) and d.(1.0, 4.0) 

 
 In each sample, estimates of design even Tx  with 
various return period T were found by the different 
estimation methods. The 5000 estimates iTx� of a 

specific quantile Tx , derived by a given method, were 
then used in each experimental case of theoretical 
population and sample size to calculate the bias (BIAS) 
and root mean squared error (RMSE), of the estimator 

Tx  given by: 
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 Initially, parameters were estimated using 
combinations of the quick estimators parameters 
(α and p) values in the ranges 0 to 0.5. In the computer 
simulations the values of α = 0.02(0.02)0.36 and p = 

0.1, 0.2, 0.25, 0.3 and all possible combination of 
α and p were examined in order to find the best 
combination in term of RMSE.  
 Figure 3 shows the combination of α and p that 
produces of RMSE of a 100-year quantile from 30 
observations from LN3 with ��	 xCv γ  = (0.25, 0.766). 
The RMSE for ���>p  decreases as theα  increase 
reaching a minimum value for ����≈α and �"��≈p , 
then they increase again as shown in Fig. 3. The figure 
shows that the choiceα and p of LQ-moments based on 
the median, trimeans and Gaswirth is not optimal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    � 
 
Fig. 3: Combination α and p that produces of root 

mean square error (RMSE) for the LQMOM 
mthod of a 100-year qantile From 30 
oservations. Dashed line indicates the smallest 
RMSE obtained 

 
 Table 1 shows the results for different 
combinations of the quick estimators parameters 
(α and p) for different sample size, return periods and 

��	 xCv γ  values. For each case, the combination of α  

and p that led to the best estimators of iTx�  were 

recorded because this quantity is the primary interest in 
flood frequency analysis. For all combination of return 
period and sample size, the optimal values of p is 
mostly 0.2 and typically in the range 0.2 to 0.3. The 
optimal values ofα  is mostly 0.04 for T = 10 and 0.02 
for T=100-year quantile and typically are in the range 
0.02 to1.0. The RMSE for all samples increases as the 
value of ��	 xCv γ  increases. 
  
Comparison of LQMOM, LMOM and MOM 
methods: The proposed estimators of LN3 distribution 
were compared with the estimators based on 
conventional LMOM and MOM for various sample 
sizes and return periods. For different values of Cv , 
the RMSE estimators for the LN3 distribution are 
compared and shown in Fig. 4 for samples sizes, n = 30 
and 100. 
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Fig. 4: Root mean square error (RMSE) of (a) 100-year and (b) 1000-year quantiles estimated by conventional 

LMOM and MOM, compared with the LQMOM estimator  
 
 
Table 1: Values of ��	 αp  leading to minimum root mean square error of LQMOM quantile estimators 

   T = 10   T = 100 
   --------------------------------------------- --------------------------------------------------------- 

N CV xγ  p  α  RMSE p  α  RMSE 

15 0.125 0.377 0.30 0.08 0.049 0.3 0.08 0.085 
 0.250 0.766 0.25 0.04 0.108 0.25 0.04 0.220 
 0.500 1.625 0.20 0.02 0.261 0.25 0.02 0.647 
 1.000 4.000 0.20 0.06 0.601 0.2 0.02 2.141 
30 0.125 0.377 0.20 0.04 0.082 0.25 0.04 0.069 
 0.250 0.766 0.20 0.04 0.036 0.25 0.04 0.177 
 0.500 1.625 0.25 0.08 0.199 0.20 0.02 0.519 
 1.000 4.000 0.20 0.08 0.439 0.20 0.02 1.804 
50 0.125 0.377 0.20 0.04 0.029 0.25 0.02 0.051 
 0.250 0.766 0.20 0.04 0.067 0.20 0.02 0.131 
 0.500 1.625 0.20 0.08 0.157 0.20 0.08 0.339 
 1.000 4.000 0.20 0.10 0.350 0.20 0.10 1.108 
100 0.125 0.377 0.20 0.04 0.021 0.30 0.04 0.052 
 0.250 0.766 0.20 0.06 0.048 0.20 0.02 0.153 
 0.500 1.625 0.20 0.08 0.111 0.20 0.02 0.459 
 1.000 4.000 0.20 0.10 0.248 0.20 0.08 1.484 
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Table 2: RMSE and bias of quantile estimators in case T = 100 and n = 15, 30, 50, 100 
    RMSE   BIAS 
    --------------------------------------  ---------------------------------------- 

n Cv xγ  MOM LMOM LQMOM MOM LMOM LQMOM 

15 0.125 0.377 0.088 0.125 0.085 0.012 -0.009 0.005 
 0.250 0.766 0.233 0.314 0.220 0.074 -0.024 -0.013 
 0.500 1.625 0.711 0.915 0.647 0.309 -0.049 0.152 
 1.000 4.000 2.280 2.952 2.141 1.090 -0.089 1.025 
30 0.125 0.377 0.066 0.084 0.069 0.005 -0.005 0.004 
 0.250 0.766 0.180 0.209 0.177 0.042 -0.014 0.032 
 0.500 1.625 0.546 0.614 0.519 0.188 -0.037 0.130 
 1.000 4.000 1.871 2.107 1.804 0.703 -0.099 0.761 
50 0.125 0.377 0.054 0.063 0.052 0.006 -0.002 0.015 
 0.250 0.766 0.147 0.158 0.153 0.033 -0.003 -0.001 
 0.500 1.625 0.447 0.465 0.459 0.145 -0.008 0.139 
 1.000 4.000 1.497 1.527 1.484 0.579 -0.012 0.253 
100 0.125 0.377 0.041 0.044 0.051 0.003 -0.002 0.011 
 0.250 0.766 0.109 0.111 0.131 0.015 -0.005 0.043 
 0.500 1.625 0.339 0.325 0.339 0.081 -0.008 0.062 
 1.000 4.000 1.180 1.085 1.108 0.366 -0.024 0.001 
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Fig. 5 The LN3 distribution fitted to annual 

maximum floods for the River Linggui at 
Johor, Malaysia, (1978-1992) 
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Fig. 6: The LN3 distribution fitted to annual 

maximum floods for the River Pari at Perak, 
Malaysia, (1960-2002) 

 
 The RMSE increases as the Cv increases for all 
methods. The LQMOM has the smallest RMSE for n = 
30 and ≥T  100-year. However for n = 100, the 

LMOM has the smallest RMSE for T = 100-year and 
perform as well as LQMOM and MOM for T = 1000-
year return period. 
 The RMSE and BIAS of quantile estimators for the 
LN3 distribution for different sample size and T = 100-
year return period are compared and shown in Table 2. 
The results are quite similar. For sample size, n 
�< , 
the LQMOM estimator has the smallest RMSE in 
comparison to the other estimators. The MOM performs 
next followed by LMOM. However for sample size, 


�≥n , the LQMOM method was comparable to the 
LMOM and MOM method in terms of RMSE. The 
LMOM method consistently shows the lowest BIAS in 
comparison to the other estimators. The LQMOM 
performs next followed by MOM method.  
 
Annual flood data from Malaysia stations: To 
compare the performance of LQMOM, LMOM and 
MOM methods in a more realistic setting actual annual 
flood data collected at various stations in Malaysia were 
analyzed. Here, numerical results are presented for two 
stations, namely, the river Linggui in Johor, with 15 
annual maximum floods covering 1978-1992 and the 
river Pari in Perak, with 42 annual maximum floods 
covering 1961-2002. These stations are chosen for no 
particular reason other than the fact that they represent 
typical short (15 years) and long (42 years), term data, 
respectively, in the available data-base of annual flood 
data.  
 Observed and computed frequency curves for the 
two data sets are plotted in Fig. 5 and 6. The observed 
data values are plotted against the corresponding EV1 
reduced variates –log(-logFi), i=1,K,n, where Fi=(i-
0.44)/(�+0.12) is the Gringorton (1963) plotting 
position for the i th smallest of n  observations. For the 
river Linggui, the curves fitted by matching LQMOM 
better capture the trends shown by the larger flows. The 
LQMOM estimates of large return periods events are 
less influenced by the small annual maximum flows.  
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 For the river Pari, the frequency curves obtained by 
the LQMOM and MOM methods are in close 
agreement and lie much closer to the data than LMOM. 
 This suggests that from the LN3 distribution may 
reasonably be fitted to the annual maximum flood 
series, by the LQMOM than the LMOM or MOM 
methods. 
 

CONCLUSION 
 
 The LQ-moments are constructed by using 
functional defining the quick estimators, such as the 
median, trimean or Gastwirth, in places of expectations 
in L-moments are re-examined. The quick estimators 
using weighted kernel estimators are introduced for 
fitting the data for characterizing the upper part of 
distributions in a sample.  
 This study has demonstrated that the choiceα and 
p of quick estimator for LQ-moments based on the 
median, trimeans or Gaswirth is not optimal for the 
estimation of LN3 quantiles. For all combination of 
return period and sample size, the optimal values of p is 
mostly 0.2 and α  is 0.04 for T = 10-year and 0.02 for 
T = 100-year quantile. 
 The LQMOM method always performs better than 
the LMOM and MOM methods with respect to RMSE 
in estimating high quantiles for small samples. It also 
was seen comparable with the other two methods in 
estimating high quantiles with large samples. 
 This study has demonstrated that the conventional 
LMOM is not optimal for the estimation of the LN3 
distribution. The new method of estimation, denoted the 
LQMOM method, in many cases represents higher 
efficiency in the quantile estimation compared the 
LMOM and MOM method. The simplicity and 
generally good performance of this method make it an 
attractive option for estimating quantiles in the LN3 
distribution.  
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