
Journal of Mathematics and Statistics 2 (2): 391-394, 2006 

ISSN 1549-3644 

© 2006 Science Publications 

Corresponding Author: Sadegh Jokar, Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran  

391 

 

Least Square Approximation by Linear Combination of Exponential Functions 
 

Bahman Mehri, Dariush Shadman and Sadegh Jokar 

Department of Mathematical Sciences,  
Sharif University of Technology, Tehran, Iran 

 

Abstract: Here we were concerned with least square approximation by exponential functions for given 

data. In this manuscript, we approximate the given data such that this approximant satisfies a 

differential equation. The case of nonlinear differential equations was also considered. 
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INTRODUCTION 

 

 A continuous function f is defined on some 

interval I for which a set of data points is given. We 

would like to find a curve which fits the data in the 

sense that it is the best approximation to the function 

f in 
2

ℓ norm
[2]

. The approximation is normally made 

using a polynomial of certain degree, Chebyshev 

polynomials, etc. 

Here we propose to approximate the function f at the 

given set of points using exponential functions which 

are the solution of a linear differential equation with 

constant coefficients. This approximant gives the least 

square approximation of the solution of a linear second 

order differential equation(Section 2). Later this method 

is extended to the case of higher order differential 

equations(Section 3). The case of nonlinear differential 

equations is also considered(Section 4). 

 

Definition 1: An n -dimensional vector spaceU of 

functions on a domain X  is said to be Haar space if 

the only element U of  which has more than 1−n  

roots in X  is the zero element. 

 

Theorem 1
[1]
: Let U  have the basis },,{

1 n
uu … . The 

following properties are equivalent: 

 

• U is a Haar space. 

• 0))(det( ≠
ji

xu  for any set of distinct 

points 
n
xx ,,

1
…  in X . 

 

From this theorem, it can be easily seen that if 
N

ii 1
}{

=
λ  are distinct then the set of exponential 

functions },,,{ 21
xxx

N
eee
λλλ

…  form a Haar subspace 

and therefore we can use it for least square 

approximation. 

 

 

Least Square Approximation by Exponential 

Functions for Second order ODE 

  

Suppose we are given n pairs of data  

),(,),,(
11 nn

yxyx … . The problem is to find 
21

,λλ  

such that the function 
xx

ecec
21

21

λλ
+  is the best 

approximation in 
2

ℓ  norm for given data and it is a 

solution of the differential equation of the second order. 

First we consider the following theorem. 

 

Theorem 2: Suppose the nodes 
4

0
}{

=
+

i
iha  are given 

for some 0>h . If   

                        '' ' 0y Ay By+ + =                         (2.1) 

then 

a a 4h

a 2h a 2h

a a 4h

a 2h a 2h

y(a)-2y(a 2h) y(a 4h)

A( ( ) ( ) )

( ( ) ( ) ( 4 ) ( ) ) 0

y t dt y t dt

B a t y t dt a h t y t dt

+

+ +

+

+ +

+ + + +

+ +

− + + − =

∫ ∫

∫ ∫

 (2.2)                                 

Proof: First integrate on ],2[ xha + : 

x

a 2h

x

a 2h

[ ''( ) '( ) ( )] '( ) '( 2 )

( ( ) ( 2 )) ( ) 0

y t Ay t By t dt y x y a h

A y x y a h B y t dt

+

+

+ + = − +

+ − + + =

∫

∫

 

Integrating this equation once more to get: 
x x

a 2h a 2h

x

a 2h

'( ) '( 2 )( ( 2 )) ( )

( 2 )( ( 2 )) '( ) 0

y t dt y a h x a h A y t dt

Ay a h x a h B y t dt

+ +

+

− + − + +

− + − + + =

∫ ∫

∫

 

and finally the following formula is obtained. 

2

2

( ) ( 2 ) ( 2 )( ( 2 ))

( ) ( 2 )( ( 2 ))

( ) ( ) 0

x

a h

x

a h

y x y a h y a h x a h

A y t dt Ay a h x a h

B x t y t dt

+

+

′− − − + − + +

− + − + +

− =

∫

∫

        (2.3) 

Now setting x a=  and 4x a h= +  in Eq(2.3) we get  
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2

2

( ) ( 2 ) ( 2 )( ( 2 ))

( ) ( 2 )( ( 2 ))

( ) ( ) 0

a

a h

a

a h

y a y a h y a h a a h

A y t dt Ay a h a a h

B a t y t dt

+

+

′− + − + − + +

− + − + +

− =

∫

∫

   (2.4) 

and, 

4

2

4

2

( 4 ) ( 2 )

( 2 )( 4 ( 2 ))

( ) ( 2 )( 4 ( 2 ))

( 4 ) ( ) 0

a h

a h

a h

a h

y a h y a h

y a h a h a h

A y t dt Ay a h a h a h

B a h t y t dt

+

+

+

+

+ − + −

′ + + − + +

− + + − + +

+ − =

∫

∫

      (2.5) 

Adding Eqs(2.4) and (2.5) Eq(2.2) is obtained. 

Example 2.2. Suppose the pairs of nodes  

, 0 8
8

i

i
x i= ≤ ≤  and the values  

2
, 0 8i i

x x

i
y e e i= + ≤ ≤  are given. The  

approximate solution with Simpson rule is: 
1.9977 0.99617

1.0058 0.99426
x x

app
y e e= +  

where the exact solution is 
2x x

exact
y e e= + . 

Figure 1 shows the approximate and the exact solution 

of this example. 

Example 2.3. Here the pairs of nodes  

, 0 8
8

i

i
x i= ≤ ≤  and the values  

3 , 0 8i i
x x

i
y e e i

−

= + ≤ ≤  are given. The 

approximate solution by Simpson rule is  
1.0003 0.99964

2.9994 1.0006
x x

app
y e e

−

= +  

and the exact solution is  3 i i
x x

exact
y e e

−

= + . 

Figure 2 shows the approximate and the exact solutions 

of this example. 

 

Least square approximation by exponential 

functions for higher order ODE’s 

Here the problem in the previous section is generalized. 

Suppose we are given n vectors of data  

( 2) ( 2)

1 1 1 1 2 2 2 2

( 2)

( , , ,..., ), ( , , ,..., ),

..., ( , , ,..., )

m m

m

n n n n

x y y y x y y y

x y y y

− −

−

′ ′

′

 

The problem is to find a differential equation of order m 

with constant coefficients such that the solution of this 

differential equation is the least square approximation 

of given data. Therefore we should find 
1 2
, ,...,

m
λ λ λ  

such that the function 
1

k
m x

kk
c e

λ

=
∑  is the best 

approximation in 
2
ℓ  norm and it is a solution of some 

differential equation of order m. The following theorem 

is a generalization of theorem 2. 

Theprem 3.1. Suppose , ,..., 4a a h a mh+ +  is given 

for some 0h > . Form  

           

( ) ( 1) ( 2)

1 2

1 0
... 0

m m m

m m
y A y A y

A y A y

− −

− −

+ + +

′+ + =

                 (3.1) 

we have  
( 2) ( 2) ( 2)

( 3) ( 3) ( 2)

1

4

1
2 2

4

0
2 2

( ) 2 ( 2 ) ( 4 )

( ( ) 2 ( 2 ) ( 4 ))

... ( ( ) ( ) )

( ( ) ( ) ( 4 ) ( ) ) 0

m m m

m m m

m

a a h

a h a h

a a h

a h a h

y a y a h y a h

A y a y a h y a h

A y t dt y t dt

A a t y t dt a h t y t dt

− − −

− − −

−

+

+ +

+

+ +

− + + + +

− + + + +

+ + +

− + + − =

∫ ∫

∫ ∫

   (3.2) 

Proof. The proof is similar to Theorem (2.1). 

Example 3.2. Suppose we are given the pairs of nods  

, 0 12
12

i

i
x i= ≤ ≤  and the values  

2 3
, 0 12i i i

x x x

i
y e e e i

−

= + − ≤ ≤ . The 

 approximate solution with Simpson rule is: 
2.9973 2.0084

0.9978

1.0084 1.0068

1.0016

x x

app

x

y e e

e
−

= − +

+

 

where the exact solution is 
2 3x x x

exact
y e e e

−

= + − . 

Figure 3 shows the exact and approximate solution of 

this example. 

 

Least square approximation by exponential function 

for nonlinear ODE’s 

Here we would like to find an approximate solution for 

nonlinear ODE’s by the method of the previous section. 

One way to solve this problem is to approximate the 

unknown function y  by linear combination of 

exponential functions, i.e. such that 

1
( ) ( ) k

n x

kk
y x s x c e

λ

=

=∑≃ . Then the nonlinear least 

square approximation is used such that  
2

1
( ) ( , ( ))

n

i i ii
s x f x s x

=

′ −∑  is minimized.  

However the obove nonlinear approximation method is 

very difficult to compute. Instead we introduce the 

following aproach. First we look at the first order 

equation ( , )y f x y′ = . To begin we use Runge Kutta 

method of foruth order to find an approximate solution 

at some points. Then we use these data to find a linear 

ODE such that the solution of this ODE is an 

approximate solution of the nonlinear ODE. 

Example 4.1. The approximate solution of the 

following nonlinear differential equation 

sin( ) cos( ) , [0, ]
2

(0) 0

y y x x

y

π

′ = + ∈

=






 

is given in Figure 4. 
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Example 4.2. Suppose it is required to solve the 

following nonlinear differential equation  

sin( ) 0 , [0,10]

(0) , (0) 0
2

y y x

y y
π

′′ + = ∈

′= =






 

Figure 5 shows the approximate solution. 

Example 4.3. Next the following nonlinear differential 

equation is considered. 
2

0.2(1 ) 0 , [0,10]

(0) 1 , (0) 0

y y y y x

y y

′′ ′+ − + = ∈

′= =





 

Figure 6 shows the approximate solution. 

 

CONCLUSION 

 

In this manuscript we deal with the problem of finding 

a function which is a linear combination of exponential 

functiona and is the least square approximation of the 

given data. Finally we approximate the nonlinear 

differential equation by linear differential equation with 

constant coefficients in a finite domain. We can also 

generalize this method for the solution of PDEs. 

 

 

 
 

Fig. 1: Approximate and Exact solution for Example 

2.2. 

 

 
 

Fig. 2: Approximate and Exact solution for Example 

2.3. 

 
 

 
Fig. 3: Approximate and Exact solution for Example 

3.2. 
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Fig. 4: Approximate solution for Example 4.1. 

 

 
Fig. 5: Approximate solution for Example 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Approximate solution for Example 4.3. 
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