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Abstract: This study presents an evolution strategy used to infer fuzzy finite-state automata from 
examples of a fuzzy language. We describe the fitness function of an generated automata with respect 
to a set of examples of a fuzzy language, the representation of the transition of the automata as well as 
the output of the states in the evolution strategy and the simple mutation operators that work on these 
representations. Results are reported on the inference of a fuzzy language.  
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INTRODUCTION 

 
 Grammar inference (GI) encompasses theory and 
methods for the inference of any structure that can 
recognize a language-be it a grammar, an automaton, or 
some other procedure-from training data. It has many 
applications, including syntactic pattern recognition[1], 
speech and natural language processing, gene analysis, 
image processing, sequence prediction, information 
retrieval, cryptography and many more. Gold[2] 
presented the most classical formalization of GI, known 
as Language Identification in the Limit. Valiant[3] 
propose the probably approximately correct (PAC) 
identification in which a learning method is asked to 
find models which, with arbitrarily high probability, are 
arbitrarily precise approximations to the unknown 
language. Artificial neural networks have also been 
developed to carry out the GI which focus on obtaining 
the automaton that recognizes the example set[4,5] since 
the problems of inferring a grammar or the associated 
automaton are equivalent[6].  
 Relative fewer efforts have been made to induce 
automaton using evolution strategies (ES). We believe 
that ES is suitable for the inference of a language due to 
their direct coding scheme and their simple way of 
handling constraints. We encode the state transitions 
into a matrix with some constraints due to the 
completeness and deterministic of the generated 
automaton and consequently the special mutation 
operators.  
 
Fuzzy finite state automata (FFA): We begin by the 
class of fuzzy automata which we are interested in 
learning: 
 
Definition 2.1[7]: A fuzzy finite-state automaton 
(FFA) M is a 6-tuple M =< Σ , Q, Z, q 0 , δ , ω > where Σ  
is a finite input alphabet, Q is a finite set of states, Z is a 

finite output alphabet, q0 is an initial state, δ : Σ xQx 
[0,1] → Q is the fuzzy transition map and ω : Q → Z is 
the output map.  
 It should be noted that a regular fuzzy grammar as 
well as a finite fuzzy automaton is reduced to a 
conventional (crisp) one when all the production and 
transition degrees are equal to 1. 
 The following result gives a transformation from a 
fuzzy   finite  automata  to  the  corresponding 
crisp one[7]: 
 
Theorem: Given a FFA M , there exists a 
deterministic finite state automaton (DFA) M with 
output alphabet Z ⊆ { θ : θ  is (a membership 
degree)} ∪ {0} that computes the membership 
function µ : Σ

∗
→ [0,1] of the language L ( M ) in the 

output of its states. An example of FFA-to-DFA 
transformation   is shown in Fig. 1a and b. 
 From the automata theory, it’s easy to transform an 
incomplete DFA to a complete one. So in the following 
discussion we suppose the DFA in theorem 2.1 is a 
complete one. 
 
 
Generation of FFA based on evolution strategy: 
According to theorem 2.1, the induction of FFA can be 
transformed to the induction of a complete and 
deterministic finite state automata with outputs. So, we 
only need to consider the case of the complete DFA 
when using evolution strategy in the rest part of this 
section.  
 
Algorithm of evolution strategies: Evolution 
strategies are specially suited for difficult search and 
optimization problems where the problem space is large, 
complex and contains possible difficulties like high 
dimensionality, multimodality, discontinuity and noise. 



J. Math. & Stat., 2 (2): 386-390, 2006 
�

� 387 

�

 

Fig. 1: Example of a transformation of a specific FFA 
into its corresponding DFA. (a) A fuzzy 
finite-state automaton with weighted state 
transitions. State 1 is the automaton’s start state; 
accepting states are drawn with double circle. A 
transition from state q j to q i on input symbol ak 
with weightθ is represented as a direct arc from 
qj to qj labeled ak/ θ . (b) corresponding 
deterministic finite-state automata which 
computes the membership function strings. The 
accepting states are labeled with the degree of 
membership. Notice that all transitions in the 
DFA have weight one  

 
 Currently, several evolution strategies(ES) are 
available. The two most widely used algorithm are 
noted as ( µ λ+  )-ES and ( ,µ λ )-ES[25]. The former 
selects the best µ  individuals from both of the µ  
parents and λ  off-springs as the parents of the next 
generation, while the latter selects the best µ  
individuals only from the λ  off-springs. It is believed 
that the ( ,µ λ )-ES outperforms the ( µ λ+  )-ES because 
( ,µ λ )-ES is less likely to get stuck in local optima. The 
numbers of parents and off-springs are recommended to 
be at a ratio of 1

7
µ

λ ≈ [8].  
 An ES algorithm that is capable of dealing with 
optimization can be described by the following 
notation[9]:  
 ( ,µ λ )-ES=(I, µ , λ ; m, s, σ ; f, g) (1) 
where I is a string of real or integer numbers 
representing an individual in the population, µ  and λ  
are the numbers of the parents and off-springs 
respectively; σ  is the parameter to control the step 
size, m represents the mutation operator, which is the 
main operator in the mechanism of ES. In ES algorithm, 

not only the variables, but also the step-size control 
parameter σ  are mutated. In (1), parameter s stands for 
the selection method and in this case, the parents will 
be selected only from the λ  descendants; f is the 
objective function to be minimized and g is the 
constraining function to which the variables are subject.  
 In our case, the parameters representing the states 
transitions and the corresponding state outputs are 
encoded into matrixes and we adopt the ( ,µ λ )-ES. A lot 
of strategy parameters which have great influence on 
the performance of the algorithm, must be fixed 
manually. We’ll see them later. The optimization 
problems in the real world normally have a lot of 
sub-optima, in which a standard evolution strategy can 
get trapped. To acquire a solution as good as possible, 
it’s desired to improve the performance in specific 
application domain. In practice, we control the step-size 
from large to small according to the distance between 
the current fitness generated by the best individual 
which has been found so far and the expected fitness: 
when the fitness is far away from the expected one, we 
enlarge the step-size, otherwise, it’s decreased.  
 
Representing of the FFA: The coding of a complete 
DFA is straitforward. It consists of two parts: the state 
transition and the outputs of the states. 
 The state transition coding is important because it 
determined the structure of the automata. Suppose the 
automata has n states, its state transitions can be 
encoded with the following matrix: 
q1, q2… qn 

Trans= 

11 12 1

21 22 2

1 2

, ...

, ...

..........
, ...

n

n

n n nn

a a a

a a a

a a a

� �
� �
� �
� �
� �
� �� �

 (2) 

Where q1 is the initial state of the automata; aij∈ � , 

� is the finite input alphabet. Non-zero character aij 

corresponds the state transition qj=δ (qi, aij), while aij=0 

indicates that there is no transition between the two 

states. 
 The automata we want to obtain is complete and 
deterministic and consequently there exist constrains on 
the matrix. A valid transition matrix must satisfy the 
following conditions: the non-zero characters are 
different from each other and run over the input 
alphabet � in a same row.  
 The output of an n-sate automata is directly 
represented by a 1-by-n matrix whose elements are 
initially selected from 0 to 1 with random:  
Output=[c1,c2, … , cn]  (3) 
Where cj is the output of the jth state of the automata.  
Thus, any n states FFA can be represented by an nxn 
transition matrix (2) and a 1× n output matrix (3).  
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Mutation: The n states automata is deterministic and 

complete, so the non-zero characters in each row of the 

transition matrix form an non-repeated permutation of 

the input alphabet. Due to this specification, the 

mutation in our case is concerned with arrangement. 

The step-size control parameter of the evolving of 

transition is mutated proportional to the distance 

between the fitness (denoted by fitcurrent) generated by 

the best individual up to now and the expected error 

tolerance (denoted by fitexpect):  

δ = exp ect current

current

fit fit

fit

−
*τ   

Where τ is a constant. 

For the evolution of the transition matrix, there are lots 

of words, but a very simple technique. 

 Randomly generate an integer: 

h=round( δ *rand(1,1)), repeat it until it is such that 

0 ≤ h ≤ n; it represents the number of the rows that are 

to be changed. 

 Where rand(M,N) is an M-by-N matrix with 

random entries chosen from a uniform distribution on 

the interval (0,1), round(x) rounds the elements of x to 

the nearest integers. The parameter δ  control the step 

size of the mutation of transition matrix: when the 

current fitness is far away from the expected one, δ is 

large and consequently the mutation step of the matrix. 

To avoid the mutation stopping too early, we set h= 

round( δ *rand(1,1))+1 as e1< fitcurrent <e2 and the 

evolution finally enters a fine-tuning process when 

fitcurrent <e1. 

* Randomly generate a 1xh integer matrix B=(b1j) 

where b1j (1 ≤  b 1 j ≤ n) represent the index of the 

row to be mutated at the jth step.  

* Randomly generate a hx1 integer matrix C=(ci1), 

the jth element cj1 (1 ≤  cj1 ≤ n ) indicates that the 

element in column cj1 and row b1j is to commute 

with the first nonzero element in the same row. 

* This step guarantees the difference between the 

parent and its off-springs as h is larger than 0.  

* Commute the corresponding elements in the 

transition matrix according to the indexes obtained 

from step 1-3. 

 We give an example to illustrate the mutation 

operator: suppose Trans=(aij), n=5, h=2, B=[2 4], 

C= 3
2
� �
� �
� �

, then the mutation includes two steps: a23 

exchange with the first nonzero character in row 2 and 

a42 commute with the first nonzero character in row 4. 

The output matrix is evolved as follows: 

c'i =ci - (or +)η *rand(1,1), i=1,2,…,n (3) 

Where the sign in (3) is selected randomly and η  is 

the step-size control parameter. If the mutated value is 

out of the expected range, repeat the following process 

until 0 ≤ c '
i ≤ 1: 

If c '
i >1 c '

i =ci -η *rand(1,1) 

elseif c '
i <0 c '

i =c i +η *rand(1,1) 

 Besides the above-mentioned mutations, the size of 

the off-springs (denoted by sizechild) is also adaptive. It’s 

randomly chosen from a range [sizeparent-m, 

sizeparent+m], where sizeparentis the size of the parent, m 

is an invariable integer. If sizechild> sizeparent, the 

mutated parent is copied to the off-spring and the 

remainder of the matrix is generated randomly. On the 

other hand, the mutated parent is copied to the child up 

to the size of the off-spring when sizechild ≤  sizeparent. 

The size of the parent is initialized by the number of 

different outputs seen from the training examples 

multiplying a small integer mp.  

 
Selection of the objective function: The fitness of 

automata is evaluated according to 2 fitness criteria that 

assess (a) consistency of the language recognized by the 

automata with the training examples fE and (b) 

generalization   capacity  of  the  generated 

automata fgener: 

f E = 2

1

( )
N

i i
i

T O
=

−�  (6) 

where Ti is the desired output of the ith sample while Oi 

is the actual output when the ith sample is presented to 

the generated automata. N is the size of the training 

examples. 
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fgener=
K
V

 (7) 

where K is the number of the strings in the test samples 

that the automata can correctly recognize, V is the 

length of the test examples.  

 The quality of a generated automata is evaluated 

with the following objective function: 

fit =α × f E - β × fgener  (8) 

Where α  is the proportional coefficient for the 
consistency and β  for the generalization capacity in 

the fitness function.  

 

Application example: In this part, we will induce the 

FFA from training examples using our evolution 

strategy.  
 
Generation of examples: We start from a fuzzy 
automata M as shown in Fig. 1a, we generate a set of 
400 examples recognized by M from Fig.1b. Any 
example consist of a pair (Pi, iµ ) where Piis a random 
sequence formed by symbols of the alphabet Σ ={a, b} 
and iµ is the membership degree to fuzzy language L 
(M)[8]. The samples strings are ordered according to 
their length. The first 200 examples are used to train 
and the rest are for generalization.  
 

“Forgetting” the initial automaton M: Our objective 

was to find a complete DFA to correctly recognize the 

examples using ES. The parameters for the evolution 

strategy are: the initial size of the parent is set to 

4*2=8,i.e. mp=2; the number of the parentsµ=4, each 

parent generates 7 off-springs, the constant τ is set to 

0.2, the control parameters e1=0.5, e2=5.3, the step-size 
control for the mutation of the output η =0.08, the 

proportional coefficientα =1, β =0.3 and the expected 

fitness is set to 2.5× 10-5-0.3. After the evolving phase, 

the size of the final automata is 12 and the evolution of 

the fitness is plotted in Fig. 2. The generated automata 

recognize all the training examples and test examples in 

generation 63. Figure 3 shows the evolution of the 

generalization capacity.  The final obtained automata 

is shown in Fig. 4, it’s not difficult to see that it’s 

equivalent to the automata in Fig. 1 b:  
 

 
 
 
 
    Fitness 
 
 
 
 
 

Generations 
Fig. 2: Evolution of the fitness  
 
 
 
 
 
Generalizations 
 
 
 
 

Generations 
Fig. 3: The evolution of the generalization in the 

fitness 
 

 

 
Fig. 4: Automata induced by the evolution strategy 
 

CONCLUSION 
 
 We present a simple technique for the induction of 
an unknown fuzzy finite-state automata from the 
training data. The result indicates that the evolution 
strategy can successfully be applied to search for an 
optimal automata in the structure space to match the 
data and generalize well.  
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