
Journal of Mathematics and Statistics 2 (2): 386-390, 2006
ISSN 1549-3644
© Science Publications, 2006

Corresponding Author: Mozhiwen, College of Math.& Software Sci., Sichuan Normal University.E-mail:mozhiwen@263.net
386

An Evolution Strategy for the Induction of Fuzzy Finite-state Automata

1,2Mozhiwen and 1Wanmin

1College of Math.& Software Sci., Sichuan Normal University, Chengdu, 610066, P.R. China
2Department of Applied Math., Southwest Jiaotong University, Chengdu, 610031, P.R. China

Abstract: This study presents an evolution strategy used to infer fuzzy finite-state automata from
examples of a fuzzy language. We describe the fitness function of an generated automata with respect
to a set of examples of a fuzzy language, the representation of the transition of the automata as well as
the output of the states in the evolution strategy and the simple mutation operators that work on these
representations. Results are reported on the inference of a fuzzy language.

Key words: Evolution strategy, fuzzy finite state automata, mutation, fitness, generalization

INTRODUCTION

 Grammar inference (GI) encompasses theory and
methods for the inference of any structure that can
recognize a language-be it a grammar, an automaton, or
some other procedure-from training data. It has many
applications, including syntactic pattern recognition[1],
speech and natural language processing, gene analysis,
image processing, sequence prediction, information
retrieval, cryptography and many more. Gold[2]
presented the most classical formalization of GI, known
as Language Identification in the Limit. Valiant[3]
propose the probably approximately correct (PAC)
identification in which a learning method is asked to
find models which, with arbitrarily high probability, are
arbitrarily precise approximations to the unknown
language. Artificial neural networks have also been
developed to carry out the GI which focus on obtaining
the automaton that recognizes the example set[4,5] since
the problems of inferring a grammar or the associated
automaton are equivalent[6].
 Relative fewer efforts have been made to induce
automaton using evolution strategies (ES). We believe
that ES is suitable for the inference of a language due to
their direct coding scheme and their simple way of
handling constraints. We encode the state transitions
into a matrix with some constraints due to the
completeness and deterministic of the generated
automaton and consequently the special mutation
operators.

Fuzzy finite state automata (FFA): We begin by the
class of fuzzy automata which we are interested in
learning:

Definition 2.1[7]: A fuzzy finite-state automaton
(FFA) M is a 6-tuple M =< Σ , Q, Z, q 0 , δ , ω > where Σ
is a finite input alphabet, Q is a finite set of states, Z is a

finite output alphabet, q0 is an initial state, δ : Σ xQx
[0,1] → Q is the fuzzy transition map and ω : Q → Z is
the output map.
 It should be noted that a regular fuzzy grammar as
well as a finite fuzzy automaton is reduced to a
conventional (crisp) one when all the production and
transition degrees are equal to 1.
 The following result gives a transformation from a
fuzzy finite automata to the corresponding
crisp one[7]:

Theorem: Given a FFA M , there exists a
deterministic finite state automaton (DFA) M with
output alphabet Z ⊆ { θ : θ is (a membership
degree)} ∪ {0} that computes the membership
function µ : Σ

∗
→ [0,1] of the language L (M) in the

output of its states. An example of FFA-to-DFA
transformation is shown in Fig. 1a and b.
 From the automata theory, it’s easy to transform an
incomplete DFA to a complete one. So in the following
discussion we suppose the DFA in theorem 2.1 is a
complete one.

Generation of FFA based on evolution strategy:
According to theorem 2.1, the induction of FFA can be
transformed to the induction of a complete and
deterministic finite state automata with outputs. So, we
only need to consider the case of the complete DFA
when using evolution strategy in the rest part of this
section.

Algorithm of evolution strategies: Evolution
strategies are specially suited for difficult search and
optimization problems where the problem space is large,
complex and contains possible difficulties like high
dimensionality, multimodality, discontinuity and noise.

J. Math. & Stat., 2 (2): 386-390, 2006
�

� 387

�

Fig. 1: Example of a transformation of a specific FFA
into its corresponding DFA. (a) A fuzzy
finite-state automaton with weighted state
transitions. State 1 is the automaton’s start state;
accepting states are drawn with double circle. A
transition from state q j to q i on input symbol ak
with weightθ is represented as a direct arc from
qj to qj labeled ak/ θ . (b) corresponding
deterministic finite-state automata which
computes the membership function strings. The
accepting states are labeled with the degree of
membership. Notice that all transitions in the
DFA have weight one

 Currently, several evolution strategies(ES) are
available. The two most widely used algorithm are
noted as (µ λ+)-ES and (,µ λ)-ES[25]. The former
selects the best µ individuals from both of the µ
parents and λ off-springs as the parents of the next
generation, while the latter selects the best µ
individuals only from the λ off-springs. It is believed
that the (,µ λ)-ES outperforms the (µ λ+)-ES because
(,µ λ)-ES is less likely to get stuck in local optima. The
numbers of parents and off-springs are recommended to
be at a ratio of 1

7
µ

λ ≈ [8].
 An ES algorithm that is capable of dealing with
optimization can be described by the following
notation[9]:
 (,µ λ)-ES=(I, µ , λ ; m, s, σ ; f, g) (1)
where I is a string of real or integer numbers
representing an individual in the population, µ and λ
are the numbers of the parents and off-springs
respectively; σ is the parameter to control the step
size, m represents the mutation operator, which is the
main operator in the mechanism of ES. In ES algorithm,

not only the variables, but also the step-size control
parameter σ are mutated. In (1), parameter s stands for
the selection method and in this case, the parents will
be selected only from the λ descendants; f is the
objective function to be minimized and g is the
constraining function to which the variables are subject.
 In our case, the parameters representing the states
transitions and the corresponding state outputs are
encoded into matrixes and we adopt the (,µ λ)-ES. A lot
of strategy parameters which have great influence on
the performance of the algorithm, must be fixed
manually. We’ll see them later. The optimization
problems in the real world normally have a lot of
sub-optima, in which a standard evolution strategy can
get trapped. To acquire a solution as good as possible,
it’s desired to improve the performance in specific
application domain. In practice, we control the step-size
from large to small according to the distance between
the current fitness generated by the best individual
which has been found so far and the expected fitness:
when the fitness is far away from the expected one, we
enlarge the step-size, otherwise, it’s decreased.

Representing of the FFA: The coding of a complete
DFA is straitforward. It consists of two parts: the state
transition and the outputs of the states.
 The state transition coding is important because it
determined the structure of the automata. Suppose the
automata has n states, its state transitions can be
encoded with the following matrix:
q1, q2… qn

Trans=

11 12 1

21 22 2

1 2

, ...

, ...

..........
, ...

n

n

n n nn

a a a

a a a

a a a

� �
� �
� �
� �
� �
� �� �

 (2)

Where q1 is the initial state of the automata; aij∈ � ,

� is the finite input alphabet. Non-zero character aij

corresponds the state transition qj=δ (qi, aij), while aij=0

indicates that there is no transition between the two

states.
 The automata we want to obtain is complete and
deterministic and consequently there exist constrains on
the matrix. A valid transition matrix must satisfy the
following conditions: the non-zero characters are
different from each other and run over the input
alphabet � in a same row.
 The output of an n-sate automata is directly
represented by a 1-by-n matrix whose elements are
initially selected from 0 to 1 with random:
Output=[c1,c2, … , cn] (3)
Where cj is the output of the jth state of the automata.
Thus, any n states FFA can be represented by an nxn
transition matrix (2) and a 1× n output matrix (3).

J. Math. & Stat., 2 (2): 386-390, 2006
�

� 388

Mutation: The n states automata is deterministic and

complete, so the non-zero characters in each row of the

transition matrix form an non-repeated permutation of

the input alphabet. Due to this specification, the

mutation in our case is concerned with arrangement.

The step-size control parameter of the evolving of

transition is mutated proportional to the distance

between the fitness (denoted by fitcurrent) generated by

the best individual up to now and the expected error

tolerance (denoted by fitexpect):

δ = exp ect current

current

fit fit

fit

−
*τ

Where τ is a constant.

For the evolution of the transition matrix, there are lots

of words, but a very simple technique.

 Randomly generate an integer:

h=round(δ *rand(1,1)), repeat it until it is such that

0 ≤ h ≤ n; it represents the number of the rows that are

to be changed.

 Where rand(M,N) is an M-by-N matrix with

random entries chosen from a uniform distribution on

the interval (0,1), round(x) rounds the elements of x to

the nearest integers. The parameter δ control the step

size of the mutation of transition matrix: when the

current fitness is far away from the expected one, δ is

large and consequently the mutation step of the matrix.

To avoid the mutation stopping too early, we set h=

round(δ *rand(1,1))+1 as e1< fitcurrent <e2 and the

evolution finally enters a fine-tuning process when

fitcurrent <e1.

* Randomly generate a 1xh integer matrix B=(b1j)

where b1j (1 ≤ b 1 j ≤ n) represent the index of the

row to be mutated at the jth step.

* Randomly generate a hx1 integer matrix C=(ci1),

the jth element cj1 (1 ≤ cj1 ≤ n) indicates that the

element in column cj1 and row b1j is to commute

with the first nonzero element in the same row.

* This step guarantees the difference between the

parent and its off-springs as h is larger than 0.

* Commute the corresponding elements in the

transition matrix according to the indexes obtained

from step 1-3.

 We give an example to illustrate the mutation

operator: suppose Trans=(aij), n=5, h=2, B=[2 4],

C= 3
2
� �
� �
� �

, then the mutation includes two steps: a23

exchange with the first nonzero character in row 2 and

a42 commute with the first nonzero character in row 4.

The output matrix is evolved as follows:

c'i =ci - (or +)η *rand(1,1), i=1,2,…,n (3)

Where the sign in (3) is selected randomly and η is

the step-size control parameter. If the mutated value is

out of the expected range, repeat the following process

until 0 ≤ c '
i ≤ 1:

If c '
i >1 c '

i =ci -η *rand(1,1)

elseif c '
i <0 c '

i =c i +η *rand(1,1)

 Besides the above-mentioned mutations, the size of

the off-springs (denoted by sizechild) is also adaptive. It’s

randomly chosen from a range [sizeparent-m,

sizeparent+m], where sizeparentis the size of the parent, m

is an invariable integer. If sizechild> sizeparent, the

mutated parent is copied to the off-spring and the

remainder of the matrix is generated randomly. On the

other hand, the mutated parent is copied to the child up

to the size of the off-spring when sizechild ≤ sizeparent.

The size of the parent is initialized by the number of

different outputs seen from the training examples

multiplying a small integer mp.

Selection of the objective function: The fitness of

automata is evaluated according to 2 fitness criteria that

assess (a) consistency of the language recognized by the

automata with the training examples fE and (b)

generalization capacity of the generated

automata fgener:

f E = 2

1

()
N

i i
i

T O
=

−� (6)

where Ti is the desired output of the ith sample while Oi

is the actual output when the ith sample is presented to

the generated automata. N is the size of the training

examples.

J. Math. & Stat., 2 (2): 386-390, 2006
�

� 389

fgener=
K
V

 (7)

where K is the number of the strings in the test samples

that the automata can correctly recognize, V is the

length of the test examples.

 The quality of a generated automata is evaluated

with the following objective function:

fit =α × f E - β × fgener (8)

Where α is the proportional coefficient for the
consistency and β for the generalization capacity in

the fitness function.

Application example: In this part, we will induce the

FFA from training examples using our evolution

strategy.

Generation of examples: We start from a fuzzy
automata M as shown in Fig. 1a, we generate a set of
400 examples recognized by M from Fig.1b. Any
example consist of a pair (Pi, iµ) where Piis a random
sequence formed by symbols of the alphabet Σ ={a, b}
and iµ is the membership degree to fuzzy language L
(M)[8]. The samples strings are ordered according to
their length. The first 200 examples are used to train
and the rest are for generalization.

“Forgetting” the initial automaton M: Our objective

was to find a complete DFA to correctly recognize the

examples using ES. The parameters for the evolution

strategy are: the initial size of the parent is set to

4*2=8,i.e. mp=2; the number of the parentsµ=4, each

parent generates 7 off-springs, the constant τ is set to

0.2, the control parameters e1=0.5, e2=5.3, the step-size
control for the mutation of the output η =0.08, the

proportional coefficientα =1, β =0.3 and the expected

fitness is set to 2.5× 10-5-0.3. After the evolving phase,

the size of the final automata is 12 and the evolution of

the fitness is plotted in Fig. 2. The generated automata

recognize all the training examples and test examples in

generation 63. Figure 3 shows the evolution of the

generalization capacity. The final obtained automata

is shown in Fig. 4, it’s not difficult to see that it’s

equivalent to the automata in Fig. 1 b:

 Fitness

Generations
Fig. 2: Evolution of the fitness

Generalizations

Generations
Fig. 3: The evolution of the generalization in the

fitness

Fig. 4: Automata induced by the evolution strategy

CONCLUSION

 We present a simple technique for the induction of
an unknown fuzzy finite-state automata from the
training data. The result indicates that the evolution
strategy can successfully be applied to search for an
optimal automata in the structure space to match the
data and generalize well.

ACKNOWLEDGEMENT

 This research has been supported by National
Natural Science Foundation of china (No.60474022).

J. Math. & Stat., 2 (2): 386-390, 2006
�

� 390

REFERENCES

1. Fu, K. and T. Booth, 1986. Grammatical inference:

Introduction and survey. IEEE Trans. Pattern
Analysis and Machine Intelligence, 8: 343-375.

2. Gold, E., 1967. Language identification in the limit.
Information and Control, 10: 447-474.

3. Valiant, L., 1984. A theory of the learnable.
Communications of the ACM, 27: 1134-1142.

4. Giles, C.L. C.B. Miller and D. Chen, 1992.
Learning and extracting finite state automata with
second-order recurrent neural networks. Neural
Computation, 4: 393-405.

5. Zeng, Z., R. Goodman and P. Smyth, 1994.
Discrete recurrent neural networks for grammatical
inference. IEEE Trans. Neural Networks, 5:
320-330.

6. Kohonen, T., 1990. The self-organizing map. Proc.

IEEE, 9: 1464-1480.
7. Christian, W.O., K.K. Thornber and C.L. Giles,

1998. Fuzzy finite-state automata can be
deterministically encoded into recurrent neural
networks. IEEE Trans. Fuzzy Systems, 6: 1.

8. Schwefel, H.P., 1995. Evolution and Optimum
Seeking. New York, Wiley.

9. Back, T., 1994. Parallel Optimization of
Evolutionary Algorithms. Parallel Problem Solving
from Nature. Berlin, Germany, Spring-Verlag, pp:
418-427.

