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Abstract: The study is devoted to determine a solution for a non-stationary heat equation in axial 
symmetric cylindrical coordinates under mixed discontinuous boundary of the first and second kind 
conditions, with the aid of a Laplace transform and separation of variables method used to solve the 
considered problem which is the dual integral equations method.  
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INTRODUCTION 

 
 The method of dual integral equations is widely 
used to solve elliptic partial differential equation with 
many physical and technical applications[1-4], also 
several techniques were developed in the last fifty years 
to solve dual equations with different coordinate 
systems. discuss In this study the solution of two-
dimensional non-stationary heat conduction problem in 
axially symmetrical cylindrical coordinates with 
discontinuous mixed boundary conditions first and 
second kind on the level surface of a semi-infinite solid 
cylindrical coordinates will be discussed. The solution 
of the problem is based on the application of dual 
integral equations method with the help of the Laplace 
transform and separation of variables. It is known that 
the solution of dual integral equations introduced to 
some type of singular integral equations of the first kind 
with unknown function, weight and free term depend 
on the parameter of a Laplace transform. The exact 
solution of such integral equation can be obtained by 
expressing its unknown function in the form of a 
functional series in powers of a Laplace transform 
parameter The main goal of given problem in this work 
is to extend the use of dual integral equations method to 
solve parabolic partial differential equations with mixed 
discontinuous boundary conditions, by using some 
discontinuous integrals technique. This technique is 
applied to solve different type of dual equations related 
to diffraction theory, elasticity theory and other 
applications[3,4], when the second one of a dual integral 
equations is homogeneous. In heat conduction theory, 
there are several methods were used for solving heat 
conduction problems under unmixed boundary 
condition as pointed out in[5-7]. Mandrik reduced some 
dual equations to the Fredholm integral equation of the 
second kind[8,9].  
 

MATHEMATICAL FORMULATION 
OF THE PROBLEM 

 
 The main aim of this study is to solve the non-
stationary heat conductivity differential equation for a 

half-space in cylindrical coordinates with axially 
symmetry 

2 2

2 2

1 1T T T T
r r r z a τ

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂  (2.1) 

where ( , , )T T r z τ=  is the temperature distribution 
function , 0 r< < ∞ , 0 z< < ∞  are the corresponding 
cylindrical coordinates, 0τ >  is a time, 0a ≠  is the 
temperature conductivity coefficient (constant). The 
equation (2.1) can be solved by using the conditions  

0

0
z

r r

T T
T

r r →∞
= →∞

∂ ∂= = =
∂ ∂  (2.2) 

under mixed discontinuous boundary conditions first 
and second kind on the level surface 0z =  

1( ,0, ) ( , ) ,T r f r r Sτ τ= ∈ , (2.3) 

2( ,0, ) / ( , ),T r z f r r Sτ τ∂ ∂ = ∈ , (2.4) 

where (0, )S R=  ( , )S R= ∞ . The initial condition is  

( , ,0) 0T r z = . (2.5) 
 The unknown functions 1 2,f f  in (2.3),(2.4) 
continuous and have the limited variation with respect 
of each variables r and τ , moreover  

0

( , )if r drτ
∞

< ∞�  
0

( , )if r dτ τ
∞

< ∞�  , 1,2.i =  

 These restrictions allow to apply Laplace transform 
with respect to τ and Hankle transform with respect to r 
moreover, we assume that the functions ( , )if r τ , 1,2i =  
have absolutely continuous derivative with respect to r. 
 The physical significance of the given boundary value 
problem is that, inside the disk 0 , 0r R on z< < = , the 
temperature function is given by 1( ,0, ) ( , )T r f rτ τ=  and 
outside the disk R r< < ∞  at 0z =  a heat flow is given 
by 2( ,0, ) ( , )zT r f rτ τ= . Next, to simplify the 
investigation of the solution, we will assume ideal 
insulation exist, i.e, 2 0f = . 
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SOLUTION OF THE PROBLEM 
  
 The boundary-value problem mentioned above 
should be solved by applying of the Laplace transform 
in the τ -variable. Defining of ( , , )T r z s  as[10] 

( , , )T r z s =
0

( , , )exp( )T r z s dτ τ τ
∞

−�  

 Taking the Laplace transform and separation of 
variables to equation (2.1) with regard to conditions 
(2.2), the general solution of the problem is obtained in 
form of improper integral 

2
0

0

( , , ) ( , )exp( ) ( )T r z s u p s p J pr dpα
∞

= − +�  (3.1) 

where 0 ( )J pr  is the Bessel function of the first kind of 
order zero, p  is the parameter of separation of 
variables, s is the parameter of Laplace transform with 

/s aα =  Re( ) 0s > . 
 Applying the Laplace transform to the boundary 
conditions (2.3),(2.4) and using these conditions to the 
general solution (3.1), we obtain the following dual 
integral equations to determine the unknown function 

),( spu  

0 1
0

( , ) ( ) ( , ) ,u p s J pr dp f r s r S
∞

= ∈�  (3.2) 

2
0 2

0

( , ) ( ) ( , ) ,u p s p J pr dp f r s r Sα
∞

+ = ∈�  (3.3) 

 In general equations (3.2), (3.3) can be solved by 
using discontinuous integral technique, if the second 
equation is homogeneous, i.e, 2( , )f r s =0, thus to 
simplify the investigation of the solution , we will 
assume ideal insulation exist, i.e 2 0f = .In general when 
the second dual integral equations is non-homogenous, 
it can be reduced to the homogeneous by expansion 

2( , )f r s in Hankle’s integral transform  

2
02

0

( , ) ( , ) ( )f r s F p s p J pr dpα
∞

= +� , (3.4) 

Where ( , )F p s  is known function determine by the 
inversion Hankle transform  

022
( , ) ( , ) ( )

/ R

p
F p s y f y s J py dy

p s a

∞

=
+ � . 

  Next write down ( , ) ( , ) ( , )u p s F p s A p s− = , then use 
the expansion (3.4), the following dual integral 
equations are obtained to determine the unknown 
function ( , )A p s  

0
0

( , ) ( ) ( , ) ,A p s J pr dp D r s r S
∞

= ∈�  

2
0

0

( , ) / ( ) 0,A p s p s a J pr dp r S
∞

+ = ∈�  

where 

1( , ) ( , )D r s f r s= −  0
0

( , ) ( )F p s J pr dp
∞

� .  

 As 0s → , the dual integral equations (3.2) and 
(3.3) tend to the dual integral equations of the form 

 
0 1

0

0 2
0

( ) ( ) ( ) , ,

( ) ( ) ( ) , .

u p J pr dp f r r S

pu p J pr dp f r r S

∞

∞

= ∈

= ∈

�

�
 

More detail, discussed in monographs[1,3] 
 To simplify the solution of equations (3.2),(3.3), , 
we will consider special cases such that 

2 ( , ) 0f r s = , 1( , ) ( ) /f r s f r s= ,thus, the dual equations 
(3,2),(3,3) will take the form  

0
0

( , ) ( ) ( ) / ,u p s J pr dp f r s r S
∞

= ∈�  (3.5) 

2
0

0

( , ) ( ) 0,u p s p J pr dp r Sα
∞

+ = ∈�  (3.6) 

 Replacing the function ( , )u p s  by another unknown 
function ( , )t sσ with the help of the relation 

2

2
0

( , ) ( , )cos( ) .
Rp

u p s t s t p dt
p

σ α
α

= +
+ �  (3.7) 

 It is assumed ( , )t sσ  is differentiable with respect to 
t, where (0, )t R∈ , also the inverse Laplace transform 

1[ ( , )] ( , )L t s tσ σ τ− = exist., further ,we assume that ( , )tσ τ  
is continuous or piecewise continuous in any interval 

1 2τ τ τ< <  for 1 0τ >  and ( , )n tτ σ τ  is bounded as 

0τ +→ ,moreover ( , )tσ τ  is exponential order namely 
exp( ) ( , )tγτ σ τ−  is bounded for some positive number 

asγ τ → ∞ [5].  
 Substituting (3.7) into (3.6) and integrating with 
respect to t from 0 to R, then interchanging the order of 
integration, using the value of the discontinuous 
integral[11,12]  

( )20

2
0

2 2

2 2

( )
sin

0, ,

cos ( )
, ,

p J pr
x p dp

p

r x

x r
x r

x r

α
α

α

∞

+
+

�
�

>�
�= �
�

−� >� −�

�

  

ensure the equality (3.6) to zero, such that 
( ( ( , ) ( , ) / )t t s t s tσ σ= ∂ ∂  

( )

( )

20

2
0

20

2
0 0

( )
( , ) sin

/

( )
( , ) sin 0

R

t

p J pr
R s R p dp

p s a

p J pr
t s t p dp dt

p

σ α

σ α
α

∞

∞

� �
� 	+
� 	+
 �

� �
′ � 	− + =

� 	+
 �

�

� �

. 
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 Substituting (3.7) into (3.5) and using the 
discontinuous integral[12] 

( )

( )

20

2
0

2 2

2 2

2 2

2 2

( )
cos

1
sin ( ) 0 ,

1
exp ( ) 0 .

p J pr
t p dp

p

t r r t R
t r

r t t r R
r t

α
α

α

α

∞

+
+

−� − < < <� −�= �
� − − < < <
� −�

�

  

A first kind singular integral equation is obtained to 
determine the unknown function ( , )t sσ  

( )2 2

2 2
0

2 2

2 2

( , )
exp ( ) /

( , )
sin ( ) / ( ) / , .

r

R

r

t s
r t s a dt

r t
t s

t r s a dt f r s r S
t r

σ

σ

− −
−

− − = ∈
−

�

�
 (3.8) 

Since ( , )t sσ  is analytical function of a parameter s, it 
can represent a functional series in power of degree 1/ 2s  

/ 2 1

0

( , ) exp( ) ( ) n
n

n

t s R t sσ α σ
∞

−

=

= − �  (3.9) 

 The inverse Laplace transform for (3.9) exist[8]  
1 2 1

/ 2
0

2 ( )
( , ) ( , ) exp( ) ( )

2
n

nn n
n

H L
L t s t L tσ σ τ σ

τπ

∞
− −

=

= = − � , 

2
2

4
R

L
aτ

= . 

 1( )nH L−  is a Hermite function[13]. Multiplying 

equation (3.8) by exp( )R α  and expanding exp( )x−  
and sin( )x in (3.8) in appropriate Maclaurin series , then 
using expression (3.9) ,the following integral equation 
is obtained to determine the unknown members 

0 1 2( ), ( ), ( ),....t t tσ σ σ   

12
2 2 2

0 0 0
1

2
2 2

2 1
0 0

( 1)
( )( )

!( )

( 1)
( )( )

(2 1)!( )

m n
r mm

nm
n m

n
m Rm

m
nm

n m r

s
t r t dt

m a

s
t t r dt

m a

σ

σ

+
−∞ ∞

= =
+ +

∞ ∞

+
= =

− − −

− −
+

�� �

�� �

 

/ 2

0

1
( ) ( ).

!
l l

l

R
s f r

l a

∞

=

=�  (3.10)  

 Equating the coefficient of the left and right hand 
sides in (3.10) as equal powers of 1/ 2s  we find that At 

0 : 0;s l = {(m,n)=(0,0)}, we get an Abels integral 
equation to evaluate 0( )tσ  

0

2 2
0

( )
( )

r t
dt f r

r t

σ =
−�  (3.11) 

 Solving Abels integral equations (3.11) yields 

0 2 2
0

2 ( )
( )

rd yf y
t dy

dt r y
σ

π
=

−�    

  
At 1/ 2 : 1s l = ;{(m,n)=(1,0),(0,1),(0,0)}, an Abels integral 
equation obtained to determine 1( )tσ  

1
02 2

0 0

( ) 1
( ) ( )

1! !

r Rt R
dt t dt f r

a ar t

σ σ− =
−� �  (3.12) 

 Using the inversion for determining 1( )tσ  in (3.12), 
so that the solution is given by 

1 02 2
0 0

2 1
( ) ( ) ( )

1! 1!

t Rd y R
t f y d dy

dt a at y
σ σ ξ ξ

π
� 
� �= +� �
� �− � �

� �  

 At 1: 2s l = , {(m, n)=(0,2),(2,0),(1,1),(0,1)}, in 
similar process as in (3.11) and (3.12) the solution for 

2 ( )tσ  is given by 

2 2 2
0

2 2
2 2

0 12 2
0 0

2
( )

( 1) 1
( ) ( ) ( )

( ) 2! 2!( ) 1!

t

y R

d y
t

dt t y

R
f y y d d dy

a a a

σ
π

σ ξ ξ ξ σ ξ ξ

=
−

� 
−� �− − +� �
� �� �

�

� �

 

 From the above evaluation of 0 1 2( ), ( ), ( ),....t t tσ σ σ it 
is easy to conclude that ( )n tσ satisfy the following 
recurrent formula, for even index n 

( )

( )

2( 1)[ / 2]

( 2( 1))2 2
10

2 2 (2 1)
2( 1)

0
/ 2[ / 2]

(2 1)
1

2 2 2
(2 1)

0

( ) ( 1)

( 2( 1))!

( )( )

( 1)

( (2 1))!

( )( ) ( )
( ) !

r n kn
n

n k
k

r
n k

k

n kn

n k
k

R n
n k

k n

t
dt

r t n k a

t r t dt

n k a

R
t t r dt f y

a n

σ

σ

σ

− −

− −
=

− −
−

−

− −
=

−
−

−+
− − −

−

−−
− −

− =

��

�

�

�

 (3.13) 

 The solution Abel integral equation (3.13) for the 
unknown function ( )n tσ  in terms of the known 
functions 2 1 2( 1)( ), ( )k kt tσ σ− −  is given by: 

2 2
0

2
( )

t

n

d y
t

dt t y
σ

π
=

−�  

( )

( )

/ 2[ / 2]
2 2 2

(2 1)(2 1)
1 0

2( 1)[ / 2]
2 2 (2 1)

2( 1)2( 1)
1 0

( )
( ) !

( 1)
( )( )

( (2 1))!

( 1)
( )( )

( 2( 1))!

n

n

Rn kn
n k

kn k
k

yn kn
n k

kn k
k

R
f y

a n

y d dy
n k a

y d
n k a

σ ξ ξ ξ

σ ξ ξ ξ

−
−

−− −
=

− −
− −

−− −
=

� 

� �
� �+
� �
� �

−� �− −� �
� �− −
� �
� �− −� �

− −� �
��

� �

� �

(3.14) 

 On the other hand for odd values of n we have the 
recurrent formula 

2 2
0

( )r
n t

dt
r t

σ
−�  

( )

1
[ ] (2 1)2

2 2 2
(2 1)(2 1)

1 0

( 1)
( )( )

( (2 1))!

n
rn k

n k
kn k

k

t r t dt
n k a

σ

−
− −

−
−− −

=

−+ −
− −

� �  

( )

1
[ ]

2
2 2 2

(2 1)(2 1)
1 0

( 1)
( )( )

(2 1)!

n
Rk

k
n kk

k

t t r dt
k a

σ

−

− ++
=

−− −
+

� �  

( ) ,
( ) !

n

n

R
f y

a n
=  (3.15) 
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  Again treating (3.15) as an Abels integral equation 
to determine ( )n tσ  for odd index n  

2 2
0

2
( )

t

n

d y
t

dt t y
σ

π
=

−�  

( )

( )

1
[ ]

2
2 2 2

(2 1)(2 1)
1 0

1
[ ] (2 1)2

2 2 2
(2 1)(2 1)

1 0

( )
( ) !

( 1)
( )( )

(2 1)!

( 1)
( )( )

( (2 1))!

n

n

n
Rk

k
n kk

k

n
yn k

n k
kn k

k

R
f y

a n

y d dy
k a

y d
n k a

σ ξ ξ ξ

σ ξ ξ ξ

−

− ++
=

−
− −

−
−− −

=

� 

� �
� �+
� �
� �
� �−� �− −� �
� �+
� �
� �−� �−
� �− −� ���

� �

� �

(3.16) 

  In particular ,if the temperature function inside the 
region 0<r<R, z=0 is constant, say ( , ) /f r s K s=  in 
equation (3.10) then the value of each ( ), 1,...,i t i nσ =  is 
polynomial in t.  

0

2
( )t Kσ

π
=  

1

2 2
( ) (1 )

R
t K

a
σ

π π
= +  

2
2 2

2 2 2

2 1 1 2 2 1 2
( ) ( ) (1 ) ( )

2! ( ) 1!( ) 2!( )
R

t K t
a a a

σ
π π π π

= + + −  

�   
 In general if the function ( , )f r s  depends on 
time(in general case) , it should be expressed as  

/ 2

0

( , ) ( ) j
j

j

f r s f r s
∞

=

=� , 

hence, the right hand side of (3.10) can be written as 

( ) / 2

0 0

1
( )

!

l
l j

j
l j

R
f r s

l a

∞ ∞
+

= =

� �
� 	

 �

�� . 

 Equating the left and the right hand side of (3.10) 
to determine recurrence relations to ( )n tσ  for even and 

odd index n in powers of ( ) / 2l js +  
 To determine the general solution ( , , )T r z s , 
substituting equations (3.14) and (3.16) into equation 
(3.9), then putting the obtaining result into (3.7) and 
finally substituting the result into the general solution 
(3.1) we get  

( ) / 2

0

( , , ) exp n

n

T r z s R sα
∞

=

= − �  

( ) ( )2 20

2
0 0

( )
( ) cos exp .

R

n

p J pr
t t p z p dp dt

p
σ α α

α

∞� �
� 	+ − +
� 	+
 �

� � (3.17) 

 Now express in (3.17) cos( )x  as 
(exp( ) exp( )) / 2ix ix+ − , 1i = −  and use the value of the 
integral[12] 

2 2 2 2

02 2 2 2
0

exp( ) exp( )
( )

a x y y a c
x J cx dx

x y a c

∞ − + − +=
+ +�  (3.17-a)  

 The solution of (3.17) with regard to (3.17-a) can 
be written as  

/ 2

0

1
( , , ) exp( )

2
n

n

T r z s R sα
∞

=

= − �  

1 2

1 20

exp( ) exp(
( )

R

n

R R
t dt

R R
α ασ

� 
− −� �+� �
� �� �

� . (3.18)  

where 2 2 2 2 2 2
1 2( ) , ( ) .R z it r R z it r= − + = + + It is clear that 

as r and z tend to infinity ( , , )T r z s  is vanished. The 
inverse Laplace transform of (3.18) is 

/ 2
0 0

1 ( )
( , , )

22

R
n

n n
n

t
T r z

στ
τπ

∞

=

= ��   

( ) ( ){ }2 2
1 1 1 2 1 2exp( ) exp( )n nL H L L H L dt− −− + −  

where 
2

2 1
1

( )
4

R R
L

aτ
+= , 

2
2 2
2

( )
4

R R
L

aτ
+=  . 

 
Introduction the solution of dual integral equations 
(3.5) and (3.6) to integral equation of the second 
kind: We will discuss another technique for solving the 
above dual equations (3.5) and (3.6) by reducing these 
equations to second kind singular integral equations. 
Rewriting equation (3.8) in the following form using 
the relation ( ) ( ) exp( )ch x sh x x− = −  
  

2 2

2 2
0

( ) /
( , )

r ch r t s a
t s dt

r t
σ −

−�  

2 2

2 2
0

sin ( ) /
( , ) ( , ),

R t r s a
t s dt f r s r S

t r
σ −

− = ∈
−�  (4.1) 

 The next step is expanding in (4.1) ( ), ( ),ch x sh x  in 
appropriate Maclurin series, then rearranging the 
obtaining result, asimple calculation yields a first kind 
integral equation to determine the unknown function 

( , )t sσ  

2 2 1/ 2

2 2
10 0

( , )
( , )( )

(2 )!

r rm
m

m
m

t s s
dt t s r t dt

a mr t

σ σ
∞

−

=

+ − −
−

�� �  

1/ 2
2 2

1/ 2
0 0

( 1)
( , )( ) ( , ),

(2 1)!

Rm m
m

m
m

s
t s t r dt f r s r S

a m
σ

+∞

+
=

− − = ∈
+� �  (4.2) 

 Treating (4.2) as an Ables’ integral equation by 
applying the inversion for ( , )t sσ , then interchanging 
the order of integration inside the integral sign for the 
obtaining result, a second kind singular integral 
equation is achieved as  

0

( , ) ( , ) ( , ) ( , , )
t

t s F t s s N t s dσ σ ξ ξ ξ= − �  

0

( , ) ( , , )
R

s M t s dσ ξ ξ ξ+�  (4.3) 

where
2 2

0

2 ( )
( , )

td yf y
F t s dy

dt t yπ
=

−�   

( )
1/ 2 2 2

1/ 2 2 2
0 0

2 ( 1) ( )
( , , ) ,

2 1 !

tm m m

m
m

s d y y
M t s dy

m a dt t y

ξξ
π

+∞

+
=

− −=
+ −

� �   
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2 2 1/ 2

2 2
1

2 ( )
( , , ) .

2 !

tm m

m
m

s d y y
N t s dy

m a dt t yξ

ξξ
π

−∞

=

−=
−

� �  

Substituting the expansion (3.9) , into equation (4.3) an 
integral equation of the second kind is obtained to 
evaluate the sequence ( ), 0,1,2,.....,i t i nσ =  

/ 2
/ 2

/ 2
0 0

2
( ) ( )

!

l l
n

n l
n n

R s
t s F t

a l
σ

π

∞ ∞

= =

= +� �  

2 1
2

1/ 2
0 0 0

( 1)
( ) ( , )

(2 1)!

m n
Rm

n mm
m n

s
t M t d

m a
σ ξ ξ

+ +
∞ ∞

+
= =

−
+�� �  

2
2

1 0 0

2
( ) ( , )

2 !

m n
t

n mm
m n

s
N t d

m a
σ ξ ξ ξ

π

+
∞ ∞

= =

− �� �  (4.4)  

where 
2 2

2 2
0

2 ( )
( , )

t m
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Where 2 1F  is a hypergeometric function[14] and  
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Γ + Γ +

, 

( )xΓ  is a gamma function[14]. 
If we equate the left and the right hand side of equation 
(4.4) with equal powers of 1/ 2s  , the same recurrent 
relations to find ( ), 0,1,2,.....,i t i nσ =  given in (3.14) and 
(3.16). The terms ( ), 0,1,2,.....,i t i nσ =  must be satisfy the 
property 
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CONCLUSION 

 
 With the help of known methods, the solution of 
non-stationary heat conduction equation under mixed 
boundary conditions is obtained by introducing the 
given problem to some type of dual integral equations 
were solved by using discontinuous integrals techniques 
and the known generating series 

/ 2 1

0

( , ) exp( ) ( ) n
n

n

t s R t sσ α σ
∞

−

=

= − �  .  

 If the Laplace transform parameter appears in dual 
equations tends to zero, the solution of the considered 
problem introduced to the known results. 
 
 
 

 The above exact solution of the mixed boundary 
value problem given in form of infinite series can be 
used widely to solve various mixed boundary problems 
deal with unsteady state heat equation for example to 
infinite or finite cylinder, unsymmetrical cylindrical 
coordinates, spherical coordinates and other mixed 
problems.  
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