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Abstract: For a discrete-time vector linear stationary pssc€X(t)}, admitting forward and backward
autoregressive representations, the variance nwtax optimal linear interpolator of X(t), based &
knowledge of {X(t-j), 0}, is known to be given by Ri(@)where Ri(0) denotes the inverse variance
of the process. Let AgtRi(0)"R(0)", where R(0) denotes the variance matrix of {X@3}d I an

sxs, identity matrix. A measure of linear interpolabiof the process, called an index of linear
determinism, may be constructed from the determijnBet[l,—A], of I,-A= Ri(0)*R©0)™. An

alternative measure is constructed by relatimfRi(0) Y], the trace of Ri(0), to tr[R(0)]. The

relationship between the matrix A and the corredpun matrix, P, obtained by considering only an
optimal one-step linear predictor of X(t) from aokviedge of its infinite past, {X(t-j),j>0}, is also
discussed. The possible role the inverse corraldtimction may have for model specification of a
vector ARMA model is explored. Close parallels betw the problem of interpolation for a stationary
univariate two-dimensional Gaussian random field time series are examined and an index of linear
determinism for the latter class of processes s defined. An application of this index for model
specification and diagnostic testing of a GausMankov Random Field is investigated together with
the question of its estimation from observed datsults are illustrated by a simulation study.

Key words: Spatial series analysis, time series analysigsgjan random fields, gaussian markov
random fields, inverse correlation function, linpaedictor

INTRODUCTION

and|c] =3 3/C,.
Consider a vector-valued linear stationary prqcessd N tuk;l v f the absolut | ¢
{X(O}, (t ON), where N =[01,...] denotes the set of all d€nOtes the sum of the absolute values of as)(s

integers. Suppose that {X(t)} satisfies the follogyi matrix  C=[GC,],(uv=12,....s & 1), Del{C] the

assumption: determinant of C, C' its transposk, an (ss) identity
matrix and O a matrix or vector of zeroes.
Assumption 1: For each BN, X(t)=[Xy(t), Xu(t),...,  For all t, VDN, the matrix covariance and correlation
X«t)]" admits the following one-sided moving averagefunctions of {X(v)} are defined by
representation: RO = B[ X() Xt ¥}, (V) =ROR(Y),
X(t)=2_B(i)e(t-1i), B(0)=1,, (1) respectively and the matrix spectral density florcty
j=0

where &(t) = [e; (1), £, (1)....£.(0)] and &)} is a purely  f (¢)=(27)" i R(V) expEivu), (77< p< m)

random process: Assumption 1 ensures th4K(t)} admits a backward

E[s(t)] =0, E[s(t)g(t— u) ] =% (2) autoregressive representation:

for all t, LJN, Vg is nonsingulard,=1, u=0,5,=0, w0, o ] ]

the B(j) are (8s) matrices satisfying ZO A X(t=j) =&(t), A0) = I 3)
i=

i”B( i) <, De{i B ))Z } £0, |zt 1 and a forward autoregressive representétion

i=0 j=0

SA(DX(E+ =60, A 0=, @)
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where gx(t) =[er (1), €06 (1),...E(t)] and {ex(t)} is
purely random with

E[& (1)]=0, E[& ()& (t-u)]=o, %,
VE is nonsingular and

3 AC)Z {is(j)z’} CYJAG <,

De{i&(j)zi] 20, |4<1.
j=0

We may, accordingly, writd

1 -1
f(u)=(2n)‘1{ZA<j)exp(—u u)} VB{ZA(D'expm u)}

=0 =0

-1 -1
=(2n)‘{ZAF(J>expcj u)} V{ZAFUYexp(—ij u)}
=0 j=0
and f{1) is nonsingular.
The inverse[f(u)]™, of f(u) has all the essentials
properties of a spectral density functfbnand the
inverse spectral density function diX(t)} may be

defined by

fi(u) = (2r) [ f ()] ™.
Let

1
Ri(v)= j fi (W) expvi)dy , (v=0,%1,...)

-
define the inverse covariance function of {X(t)} dan
ri(v) = Ri(0) Ri(v) the inverse correlation function,

where Ri(v)'=Ri(-v). It follows tha&t, fi(n) admits a
Fourier expansion:

fi(u) = (2m)* 3 Ri(v) expeivy ).

Sl
For a univariate process, s=1, the role of invers
correlation function for time series model idemiiion
is examined by several authors; see Clevéfand
Chatfield®, McClavé®, Bhansalff™®, among others. A
somewhat different application of this functionymely
for estimating the interpolation error variance amd
related B measure,
Bhansaff”.
In this paper, the potential role the
correlation function may have for model specifioati

of a multivariate time series as well as that of a

var{¢ @) = E[{X() - X(OH XX - X b |

Gaussian Markov random field, GMRF, is examined
Following Battagli#®, an inverse process, {Yi(t)}, of
{X(t)} is defined by relating this process to thera
process,{(t), of the linear interpolator, and several

related measures of linear interpolability, Ca||ein(t)=Ri(0)Z(t)=
measures linear determinism, for multivariate time

inverse

future’, the role of this function for model
identification of a multivariate time series is somhat
limited and possibly confined to special classes of
models. However, by contrast, we show that therseve
correlations define the parameters of a GMRF and
hence play a fundamental role in specifying its

structure. Based on this observation, Rh measure of
linear interpolability of Gaussian Random Fields is
introduced and potential applications of this index
model assessment and criticism are discussed. The
inverse correlations of a GMRF also define the
correlation structure of the residuals of a model
specified for a GMRF. We discuss therefore how this
property may be applied for diagnostic testing of a
fitted GMRF model. The question of how to estimate
the index of linear determinism for a Gaussian cand
field is also considered and two different estimaté
the index are defined, namely, a nonparametricnasé
based on a 'window’ estimate of the spectral dgnsit
function of the field, and a parametric likelihood
estimate. We finally provide some simulation result

Inverse process and the linear interpolator: Let
{X(t)} satisfy Assumption 1 and suppose that X(t) is

unknown for a fixed t. The question of how to counst

an optimal linear estimate of X(t) from a knowledzfe
{X(t-}),j 20} is known as the problem of linear
interpolatiod”. Examples of situations where a
question of this type arises include the problem of
outlier detection and estimation of missing valt@msa
multivariate time series, analysis of spatial data
collected over a narrow but long rectangular leftt
and spatio-temporal processes.

Properties of the inverse process:As is well
émowr{ll], for each t,
X () = =D riu)X(t-u) (5)

uz0
provides an optimal linear interpolator of X(t), eve
the ri(u) denote the inverse correlation functioh o
{X(t)} . Moreover, if

is suggested by Battaglia andz () = x (t) - X(t)

denotes the error of the optimum linear interpalatioe

interpolation error variance matrix is given by

={Ri ()"

Now, let

S Ri(U) X(t- )

series are defined. An application of the inversewe have

vecto
is

correlation  function
autoregressive

for specifying a
moving average model

‘arrow of time’ and the associated notions of 'pasid

297

r
also
considered. The results here show that becauskeof t

E{Yi(9} =0, E{ Yi() Y(t- 0} = R{Y(tu=0£1,.)

the covariance function o{Yi(t)} is, therefore, the
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same as the inverse covariance functioXft)} and the univariate correlation between the individual

vice versa. As in Battaghid {Yi(t)} may be called the components of X(t) ancf(_(t), we have the following
Inverse Processf {X(t)} ' inequality under Assumption 1:

4 ) , 0<sAc<ly,
Now, see Masalf!, {Yl (t)} admits forward and .

. ; where, for two 8s matrices, B and C, we use B<C to
backward linear representations:

N mean that C-B is a positive-definite matrix. Under
Yi(t) = Z ACJ)'Ti(E+ ), (6) As.sumption 1, an explici? expression for A may.atb@o
= written down by appealing to the representations (1
i and (6). We have:
Yi() = A ()T (t—j), = e
] A= =[1+ 2 VA (Vo AT,
where Ti(t) = Vge(t), Tig(t) =VF‘1sF(t), and {ti(t)} w© =
H A -17-1
and {tig(t)} define the inverse processes{a{t)} and +Z B()VaB(1)'(Va) "1™

i=1

{e(1)}, respectively. We have, Hence, A=0, if and only if B(j)=0, all j>0 and
X(t)=¢(t) is a purely random process. MoreoveR(i€)
E{ri(t)}: 0, E{Ti,:(t)}: 0, denotes a suitable scalar function attached to tixna

C, it follows from the definition (8) of A that the

E{Ti(t)Ti(t _ u)'} -5, (VB)_l ‘closer’ p(A) is to p(lf) , the stronger is the association
between X(t) and X (t). Hence, in this sense, A

provides information about the linear interpolakilof
Eitic(Dtip(t—u)p=90,V B t,u=0.%1,.., the process, {X(t)}, from a knowledge of its comgle
F F ul\Vr
past and future, {X(t-v)%0}.
Measures of linear determinism:It follows from (5) Ba‘gtaglizim suggests the following multivariate index
that E{{(t)X(t-v)}=0, for all v#0 and hence that Oflinear determinism:
~ _ -1
E{Z(t) X (t)'}=0. Thus, the individual components of A =1-{Def R{0)"]/ Ddt RO)I}, )
{(t) and X (t) are mutually uncorrelated and we may as & numerical measure of the linear interpolghifta
write, multivariate stationary process, {X(t)}. This indexay
_ o be justified by the multiplicative property of
variX(i=var{ X (O}+var{ {(0)}- ) determinants, Det[BC]=Det[B]Det[C] and by noting
This last equation provides an analysis ofthat 1".AD:Det[|.S_A.]' Battaglid"” also studies several
dispersion for X(t), see RHJ for a definition of this Properties of this index an'd relatfésD to .analogous R
last concept. It decomposes the variability of X&§  measures suggested previously in the literature.
measured by its variance matrix, as a sum of the An alternative measure of linear interpolabilitfy o
variance matrices oK (t) and{(t); the former may be X(t) may be constructed by appealing to the aditiv
thought of as the variability that could be expan property of the trace operator, tr[B+C]_:tr[B]+tr[,(}1nd
from a knowledge of the complete past and future of!lliSing the decomposition (7). This leads to the
X(t) and the latter as the unexplained variabititye to following alternative index of linear determinisrorfa
the interpolation error. Let multivariate stationary process:

A=[var{X(9)] Tovf XX X B Rar{ e * (8 A =1-{UTRIO)7I/ t{RO). (10)

where cov{)A( O XOEEX® % (7, be a normalised o A comparison of equations (9) and (10) shows that

f i bet X(t d its I h these indices have a similar form but usesdiffit
measure of association between (® and its IN€AL alar functions ofRi(0)™ and R(0) and for s=1, they
interpolator, X (t). We have

both simplify to a univariate index of linear
determinism, A, say, considered by Battaglia and
Bhansalf® and Battaglis®. Indeed, for s=1, an
explicit expression forA; may be written down in
terms of the coefficients, b(j)) and a(j), say, okt

moving average and autoregressive representaiibns,
and (3), for the process. We have, if s=1,

A=1_-Ri(0)*RO)™.
If s=1 and X(t) is univariate,

A=[cord X(), X3 2 9, where corr{X (t),X(t)} is the
standard correlation coefficient between X(t) a)AQc(t) © L& B
and in this sense, A provides a multivariate A= % = A = A :1‘{2 &( )} {Z SO I
generalisation of this univariate concept. Although 170 =0

unless R(0) is diagonal, the elements of A do wpiaé and the interpolability of the process is seen ¢oab
monotonic increasing function of the product of the
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sums of squares of the coefficients in both movingvector ARMA models: Next, we examine the
average and autoregressive representations of{X() ~behaviour of the inverse process, {Yi(t)}, when the
Next, under Assumption 1, we relati (t) to the SPectral density function of {X(t)} is a rationalriction

optimal one-step liner predictor, and discuss possible applications of the inverse
o correlation function for specifying parsimonious

Xq(t) = ZB(j)S(t -, parametric models for vector time series.
Thus suppose that {X(t)} satisfies the following

j=1
of X(t), based on the infinite past, {X(t-1}. On

arguing as above and noting that) =X () - X,(t) is  Assumption 2: That {X(t)} is a discrete-time vector
the one-step prediction error andeB}X(t-j)'}=0, for autoregressive-moving average process of orded, (p,q

assumption:

all =1, it readily follows that VARMA(p,q),
var{X (t)} =var{ X( 3} war{ £ } . Hence, if Zplm(j)x(t— i) =Zp:@(j)£(t -j)®(0)=0(0) =1, (11)
j=0 j=0

P =[var{X,(9}] Teov{ Xt XN frar{ @H . . . -
- . where the®(j) and ©(j) are matrices of coefficients
where cov{X,(t), X()} = B X} X( )], denotes a ¢,ch that, if

normalised measure of association between X(t)itsnd & K ;
linear one-step predictoiX, (t), we have L(Z)_JZ::;q)(J)Z’ H(Z)_JZ::;@(D :
P=1_-{V3 RO) denote their respective characteristic polynomiisn
The question of how much additional information Det[L(2)]#0, Det[H(2)F0, [z£1, '

about X(f) is gained from the ‘future values’ L(z) and H(z) are left coprime anc(f)} is a purely
{X(t+)),j 21}, relative to the infinite past, {X(t-)§1},  fandom process satisfying conditions (2). Under
or equivalently from the current and future inndeas, ~ Assumption 2, {X(t)} admits representations (1) and
{&(t+j),j=0}, may thus be investigated byaéelating the (3), where
measures P and A to each other. Battagli@arlier -\ i — 10 31

k(2) = Z= i
examined this question for s=1, by assuming tha} X( 2 % B (3~ Hy

follows an ARMA model and below we generalise his © 4 o (12)

results to s>1 and to the class of linear processeQ(Z)zz ADZ=H13" L%

satisfying Assumption 1; also, for s=1, Bhari$ali 1=0

examines the asymptotic distributon of an2nd

autoregressive estimate of P and of related meptist _ _

predictability measures. It is readily seen that f) =" kEe™)VgkEe")

A-P=[V, - R(O)"]RO)™. =@M 7LE™) THE M)V H EW) L'E) ™

Moreover, by (6),

X (1) = X, (1) :{ I, - Ri(O)'l(VB)‘l} (b As is well-known, however, the problem of how to
o specify a VARMA model from its spectral density

~RI0)™D ] AC) (V) e (t+ ), function is a delicate one and in particular,
i=1 Assumption 2 only specifies an equivalence class of

andV, - Ri(0)™ = var[X (t)] - var[ X, (1)]. VARMA models.

Hence, A-P may be interpreted as a normalise(ﬁ& for example, -
measure of association between X(t) and its linear- (2)=U(2)L(z), H (2)=u(2)H(2), "
estimate based only on the current and futurévhere u(z) is a unimodular matrix, i.e., a matrikha

innovations, £(t+),j=0}. constant determinant, then

We have, for s=1, k@ =L@ H@)=L@)"H(@), (13)
oAVl 211 NS 20 N - and it is not possible to distinguish between the

Vs ~RI(0)" =071 {;a( ! VARMA models with transfer functions specified by

and for a fixed o°, the overall magnitude of the equations (12) and (13).
contribution of the future, {X(t+))31}, relative to that Although it is still possible to ensure that aegiv
of the past, {X(t-),k1}, is a monotonic increasing VARMA(p,q) model is identifie@®, by prescribing a
function of the sum of squares of the autoregressivrule for choosing a unique member of the equivaenc
coefficients, {a(j).k1} and by contrast, that of the past class, such a rule does not eliminate the podsiltiiat
alone is a monotonic increasing function of the sasfim a different VARMA model with the same spectral
squares of the moving average coefficients, {1} density function, but with possibly a different paif
L(z) and H(z) and also a different order, (p,q)ymat
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be found. description as follows:

As a consequence, there has been muchk(z) = L(2 H(32™
development, see Hannan and DeiSflein specifying o, writing,
an echelon-form VARMA model by examining the |HR(Z = Def Hy( 3] Adj H{ }

dependence structure of the rows of a block-Hankel . . . . :
matrix with elements consisting either of the ingaul It is readily seen that k(z) is a rational matrndax(t),

response coefficients, B(j), or, equivale of the is a linear process satisfying Assumption 1. Altjlou
covgriances R(U) W d Rty as in Barnelt”, a left matrix description of k(z) still

Under Assumption 2, the inverse spectral densit?XiSts and it may be constructed from the Smitmfof
function of {X(t)} is given by: [Lr@'Hr(@)'], the resulting matrices could be
fi(u) = 2m) ' k(E€*)TIK €] highly complex functions of the parameters qf(2)

Therefore, as noted by Battaéfﬁh unless the and Hk(z). A right matrix fraction description for k(z)
matrix polynomials, L(z) and H(z), commute, could, however, be constructed by applying thetigs

L(z2)H(z)=H(z)L(2), the inverse process, Yi(t), magt methods of cqnstructlng a VARMA model tq the
be expressed in the form of a standard VARMA modefnVerse correlations of X(t), that is, to the cspending
defined by equation (11). Although the class ofNVerse process, Yi(t). Indeed, it readily followsat
VARMA models with commuting AR and MA now hi(z=[k(3]" admits a left matrix fraction
polynomials is not sparse and it, for example,ldes  description as follows:

the univariate ARMA as well as the pure VAR andepur h'(2) =[ (27 H{ I,

VMA models as members, this particular requiremeniand the inverse spectral density function is givgn

does seem to severely limit the possible applioatiof fi(u) = ) [La@) TTHL )TV HY €] L, &A]
the inverse correlations for specifying a VARMA
model.

Below we discuss how the inverse correlations ma
still be applied for specifying parsimonious paramse
models with a rational impulse response functign):k
Assumption 2 specifié&d, a two-fold restriction on the
impulse response function, k(z), as follows:

1). k(z) is a rational matrix, in the sense tha it

elements are rational functions of z;

2). k(z) admits a left matrix fraction description

defined by equation (12).

Condition 2) above ensures that a given k(z) ) _ )
defines an impulse response function of a VARMAInverse correlations and an index of linear
model. It is possible, however, for a rational rixato ~ determinism for gaussian random fields: Let
admit a right matrix fraction description, of thgpé  {X(s),(s)0 N} be a stationary Gaussian random

satisfied by k(zf"". Indee#?, the existence of a left fie|g where N=NxN is a two-dimensional space

matrix fraction description does not guarantee the, . 2 _ o
existence of the right fraction description andevic d€fined as followsN®={(st);st=0+1..}. For ease

versa. Moreover, as the simple example of gof exposition, suppose that

VARMA(1,1) model shows, even when both E{X(s,)}=0, (14)
descriptions are known to exist, it is not strafigiward  for all (5t)ON? and let, for all (5t)ON? and all
to express one such description in terms of therskc )

description. The case of commuting matrix (UV)ON?,

polynomials, L(z) and H(z), discussed above, irs thi R(u,v)=coMX(s+u,t+Vv),X(s,t)},

sense, is exceptional since, under this hypoth&&$, denote the covariance function and

admits both these descriptions simultaneously é&ed t f(u, i) =22 Y R(UV)expeivs, - i, ),

Thus, the inverse process, {Yi(t)}, follows a
VARMA model, but running ‘forward’ in time.
)f\/loreover, a backward representation for the inverse
process, {Yi(t)}, may be obtained if instead of the
backward representation, (3), the forward
representation, (4), is considered. Hence, thedatan
techniques for specifying a VARMA model could be
applied to the inverse correlations and a corregipgn
right matrix fraction description for {X(t)} obta&d.
Details are omitted to save space.

parameters for both these descriptions may (UON?
conveniently be specified in terms of the paramsed¢  the spectral density function of this random field.
only the left matrix fraction description. Assume that the covariance function, R(u,v), is

Thet.quesgo?fof rll_ow to specify ha S‘_Jitablleabsolutelysummable,

parametric model for a linear process whose impulse

response function admits a right matrix fraction Z|§(u,v) <o, (15)
description has so far received little attentiontfie ~ (“V)N

literature. Next, we show how the inverse correlati and f(uy,H,) is non-vanishing,

are useful in this case. The argument given belows (1, 14,) > O,~TT< 11, J1,< TT. (16)
applies even when the polynomials L(z) and H(z)tnhen
commute. ’

: _ -4 -1
Suppose that k(z) admits a right matrix fraction fil(u,H2) = (210 TF (Mg, H2)]
300
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defines the inverse spectral density function of§¥} {2 ={Rj(00} . (22)

and a result of Wiener shows thaf fi(uy k) admits  £or 5 random field, unlike a time series, therends

a Fourier expansion: distinction between ’the past’ and 'the future’ and

fi(w, 1) = (2m)° Z Ri(u,v)exptiuy, —ivy, ), X(s,t) may be thought of as being influenced bg,,i.
uvON? correlated with, all its neighbouring sites, {X(g-u

where v),(u,v}#(0,0)}. The analysis described above,

therefore, provides a theoretical framework for

Ri(uv) = [ [ fi(s, 1,) explugs, + iv, d ' : . X
(V) I—n.[—n (b ) EXPQUAL + 1At o, constructing suitable stochastic models for Gaussia

defines the inverse covariance function of {X(sa)id random fields, in much the same manner as theiciss
ri(u,v)=Ri(u,v)/Ri(0,0) . Wiener-Kolmogorov Prediction Theory for time series
the inverse correlation function. provides the basis for ARMA and related finite

Below we discuss how the results described abovgarameter time series models.

for mgltiple time §eries generalise to a stationaryBesadf® suggested the use of (Homogenous) Gaussian
Gaussian random fields and introduce efnn&asqre, Markov Random Field models, GMRF, by a covariance
called an Index of Linear Determinism, of linear selection procedure, such that only a finite numbfer
interpolability of the field. The inverse correati  elements in the inverse of the covariance matrighef
function of a Gaussian Markov random field is alsofield are non-zero and the rest vanish. The spectra
considered by Yuan and Sulffa The main focus of density function for this class of models is givey
these authors’ work is, however, slightly differérdm  Besag and MordfY,
ours; for example, the question of how to meashee t ¢ —(72)(2 exol — iU — v
interpolability of a general Gaussian random fieldgiot (o) =712 7DH (u,zv)‘as&u yexp(=iu ~ v} (23)
discussed there and nor is the associated question \\hereg(0,0)=1, S denotes the set of nearest neighbours
model validation, assessment and criticism of . . ) 2
Gaussian Markov Random Field model, GMRF forWith which X(s,{) interacts an@" is a constant.
short, fitted to an observed realization of thieldj ~From the rezults (21) and (22) given above, it ifgad
especially when the stochastic structure of thegss  follows that) a GMRF model so specified possesses
generating the data is unknown. the following important properties:

(2) if ri(u,v) denotes the inverse correlation ftioo of
Linear interpolation and gaussian markov random the model,
fields: Suppose that X(s,t) is unknown for a fixed ri(u,v)=68(u,v), (u,vjJs,

t) N2 Let ri(u,v)=0, (u,vJS;
ES ) © (2) if Ri(0,0) denotes the inverse variance ofritnedel,
XEH=- D> 8uVXE-ut-v) (17) 2 ={Ri(00} "
(u,v)#(0,0)

(3) if ¢(s,t) denotes the residual of the model, i.e, the

denote the best interpolator of X(s,t), in a linksast- | . )
interpolation error process, then:

squares sense, when {X(u,v), (#,t)} are treated as

known. Let var{{(st)} =E[{2st)}*1=Ri(00)
() =XG6t)+ Ze(u,v)x(s—u,t—v) (18) corr{{(s,)) £(s+u,t+V)}=ri(u,v), (24)
(UV)ON2 for all (st)ON? and all (u,v)OON?, where ri(u,v)

denote the interpolation error. Then, sinés,t) is  satisfies property (1) given above and Ri(0,0)s$iat
uncorrelated with {X(u,v),(u,®(s,)}, the 6(u,v) are  Property (2); _ N o
readily seen to be the solutions of the following(4) the 'homogeneity’ conditions satisfied B(u,v)

equations: follow from the fact that bott (u;,1,) and fi(py, 1)

(1) for all (j,k}%(0,0) are the spectral density functions of two real-gdlu
ZG(U'V)R(U -jv-k)=0, (19) stationary processes.

(u,v)DN2

. ) i . Model specification and diagnostic testing for
(2) if T2 =E[{{(s1)}"] denotes the interpolation error GMRF’s: For observed spatial data, however, the set S

variance, of neighbouring sites with which a given X(s,t)
interacts will usually be unknown, even though some
%= ZG(U,V)R(U,V). (20) prior information concerning how to formulate tlsist

may well be available. Also, there may not be a€etr
r]\/Iarkovian model generating the observed data and an
analyst may simply seek to postulate a GMRF which
captures the main interactions that could be ptesen
the data by explicitly recognising that the consted
model probably may not represent the true data
301

(u,v)ON?
Equations (19) and (20) may be solved by Fourie
method¥’. We have
B(u,v)=ri(u,v), (21)
and



J. Math. & Stat., 1 (4): 296-308, 2005

generating process, but it merely provides a coeven v),(u,v)}2(0,0)} and {(s,t), the interpolation error, is
approximation to this process. These ConSiderationﬁncorrelated with)A( (s.). We thus have the following
suggest that a non-parametrié Rieasure which is decomposition e

applicable to a wide class of Gaussian Random &ield P ' -

and hence which could be estimated without assuming R(0,.0)=var{X(s,)}=var{X (s,)}+var{{(s,)} (25)

GMRF model for the data, could be helpful in assgss where var{{(st)} ={Ri(00)}*. Equation (25)
the usefulness %r otherwise fOf ha specified Té)d‘?- Aprovides an analysis of variance of X(s,t) and show
non-parametric R measure of this type would, for 2 -

example, provide a yardstick against which the alctu that, for all LN, the quantity,
R® measure of a postulated parametric model may b&afZ (st)}/va{X (st)}={R (00)Ri (00)} *

compared and the usefulness of the model judged. Ieasures the proportion of variance of X(st) tisat

: 2 : . : . :
say, the estimated “‘Rmeasure of a relatively “ynexplained" by the optimal linear interpolator,
parsimonious model is sufficiently close to the

estimated non-parametric? Rneasure, then this model X (S:)- Hence the ratio .

may be accepted as being suitable for the data. IfA: :var{X(S,t)}/Vr’sll{ X (st} = ={ R(0,0)Ri(0,9)" (26)
however, the two estimated Rreasures do not appear caq res the interpolability of the process andipes
close enough, then a more complex model could bg, 2 measure of the amount of variability of X(s,t)ttha

ﬁtt?,d zt;m(;j th% R measu(rje ir.r:ﬁlietﬁ by :'his trr:jodel could be explained by a knowledge of all its
estimated and compared wi e estimated non- . s

parametric measure. The analysis may be continued Inelghbours, {X(s-u,t-v), (u. v (0,0)}.
this way until a suitable model is chosen. Moreotiez ) ]
model specification procedure just described may paneasuresA ¢ has the following properties:

further strengthened by validating the chosen mode{a) AF=[cor|{X(st),>2(st)]2; (27)
from an analysis of its residuals. For a GMRF, a(b) 0<A. <1

suitable diagnostic testing procedure is suggdsyetie SR ) )
property (24) of the interpolation error processus, In view of property (27),Ag =0, if and only if

the correlations of the residuals of a chosen modgl  X(s,t) does not interact with its neighbours, inipty

be inspected and their overall structure checkese® that the process is purely random and R(s,t)=0, all

whether they possess this particular property. Thigs,t}2(0,0). Conversely, if A >0, then there is

three-stage model specification, estimation  andpteraction between X(s,t) and its neighbours and A
validation procedure just outlined is close in 8 &  measyres the strength of this interaction; theecldsis
popular thfegf-stage procedure proposed earlierdy B jnqex s to 1, the greater is the interaction,tie sense
and Jenkirl8" for time series an_a!y3|s. It clearly retains hat the proportion of variability of X(s,t) thabald be
some of.the advantgges of flexibility a procedurthis explained by a knowledge of all its neighbours
type enjoys; but, it also suffers from many of thejncreases.

disadvantages of a ;ubjectlve model selection  ap additional application of the index,Ais for
procedure. At the same time, however, the questfon oqe| assessment and criticism. Thus, for a Gaussia
how to choose a suitable GMRF model for observeqsngom field. let S denote the actual set of Sitiih

spatial data, with special emphasis on model assads which X(s,) interacts and hence(u,v)=0, for all

and diagnostic testing, has so far received little ; : :
attention in the literature. For a time series, siue (uV)IS and provided S is not a null s&.,v)0, if

effects of fitting a misspecified model have been(u’V)DS' Here, S need not be a finite set and in

investigated by Bhans&f! and the results given there princip!e, it could coincide with N Suppose now that
) 4 . for a given data set, a GMRF model is actually ehos
suggest that, even for spatial data, the likelys los

efficiency due to adonting a model chosen accorthn and let Z denote the finite set of sites specifigcthis
y bting . 9 model. As regards Z, the following three possiiat
the three-stage procedure outlined above may not be

it should be noted that, in common with al’ R

serious. anse- . .
a). Z1S, that is, Z is a subset of S, or S=Z but a more
A linear interpolability measure for gaussian restricted model than the generating GMRF is

random fields: It readily follows from (17) and (18) chosen; . o '
that?, for all (st)[IN?, we may write b). S=z, that is, Z gommdes with S and the cho;en
model also coincides exactly with the generating

X(s,H)=X (s,1)+((s.1), GMRF;

where c). 917, that is, S is a subset of Z and Z includes a

X@t) =- Zri(u,v)x(s—u,t—v) larger collection of sites than S, or S=Z but the
(UV)#(00) chosen model contains more parameters than the

is the optimal interpolator of X(s,t) for a Gaussia generating GMRF. .

random field, conditional on a knowledge of {X(-u, Possibilities a) and c) above together charaaeriz
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the situations in which a misspecified model, whigh )l([kz + Mkl]):l—z zehcos(h k)
either underparametrized or overparametrized ttisdfi

By contrast, b) describes the situation in whicle th
fitted model coincides with the actual data geriegat ,

process. R(0,0)= - > [1— 2> 6, coshEu} (28)

Now, let A, denote the value of the index (26) for _W(kl,kz)DL r=(tvos
the models specified according to possibilities-&)  Hence, for a GMRF defined over a torus lattice, an
above and which may be calculated by subtractiogfr  index of linear determinism is defined by
one the ratio of the residual error variance to theﬁzl—[rle(0,0)] (29)

variance of the data. We have, if a) holdss A.. By . i N ) .
It is readily verified that the index, Adefined

contrast, under b)_ and 0, = A.. Undgr a), howevgr, above has the same properties as the indexiefined
an underparametrized model may still be choseheif t gyer an infinite lattice. Moreover, a parallel indmay
difference between Aand A is sufficiently small. 5150 pe defined when the generating stochastictsie:
Moreover, more parameters than necessary argf the random variables defined over a torus latti
estimated under c) and this could lead to an efiy  ynknown and a possibly mis-specified parameter
loss because the increased variability due to the¢..ior g is chosen by an analyst at the model
redundant parameters would inflate the interpofatio octimation stage. The resulting index now plays the

error \rqarlanc(;e.l ificati q ined | same role as the corresponding indexdafined above
The model specification procedure outlined latery,q qetails are omitted.

may thus be implemented by working with a non-
parametric estimate of/Aand a parametric estimate of . : , -
A,, obtained from the fitted model, as substitutes fo Estimation of the index of linear determinism for a

the actual unknown values of these two measures; wgaussian ran('JIom f'?"d: Suppgse .tha.lt
discuss this point further later. {X(s).(s)0 N} is a Gaussian random field satisfying

assumptions (14), (15) and (16), but only a finite
Torus lattice processes The index of linear realization, {X(s), st=0,1,..,M}, is observedin
determinism, 4, applies to stationary Gaussian randomestimate of the variance, R(0,0), of this realmatis
fields defined on infinite lattices. In practicenlp a  given by:
finite dimensional lattice, L, of size &M will be - _ 1S 2
observed. For this situation, the results may beRM (0.0)= MZSZ:(; IZO{X(SD}' (30)
extendef®, if we replace the infinite-lattice GMRF’s Also, as in Yuan and Subba R4b a non-
by their analogue on MM torus lattices and for which parametric smooth periodogram estimaﬁ@(lul”uz) , of
the top and bottom rows and the left and right coia F (0 12,) may be computed for
of L, become adjacent and the spectral densitytiomc nite ) _
f(uop,), is defined only for g=2mj/M and {(th#) =@271)IM,27k[M);jk=01.. M- 1 and a
1, =27kIM, {j,k=0,1,...M-1}. The resulting spectral non-parametric estimate of Ri(u,v) obtained afed:

N )
density coincides with the spectral density fungtio Riy (U, V):(ZNMZ)
(23), of a stationary GMRF, provided the set S is am-im-1,

h=(uyv)Js
It thus follows that®),

127} 1M +iv 27 /M)

subset of the torus lattice L. >3 fu2mjiM, 2nk I M} . (31)
The joint distribution of X={X(s,t),s,t=0,1,.,M-1} 10 k=0
is Gaussian with a O mean vector and a circular (uv 0,1,...[M/Z]
dispersion matrixv = 72Q(8)*. Here, Q@) is known as The corresponding non-parametric estimates of the

the potential matrix; its main diagonal elements ar iNverse correlations are now given by:

constrained to equal 1 and the off-diagonal elementfi, U,v)=Ri, (u,v)/ Rj, (0,0),

have a zero-pattern structure defined By the and which also provide non-parametric estimatethef
parameter vector, in accordance with the propet)y ( interpolation coefficients, 8(u,v), for a Gaussian
listed above, namely(u,v)=0, if (u,vdS andd(u,v}20  random field, without invoking assumption (23),ttia

if (u,v)0S. without requiring that the field is Markovian.

Thus, for a GMRF defined over a torus lattice, the ~ The corresponding non-parametric estimate of the
interpolation error variance,z?, is parametrised index, A ¢, may now be constructed from the estimates
separ%]tely frqm the paramet_e%u,v) an(_j which now (30) and (31) as follows:
defind”, the inverse correlations of this GMRF. The A =1-{R,(0,0)Rj, (0,0)}"*,

variance, R(0,0), of this GMRF may be defined by .
following Fulle? and noting that thelk, + MK th where for convenience, we suppress the dependdnce o
2 ’ ~

eigenvalue, A([k+Mky), of Q@) is given by, with “\F O M.
{(k, k):0<s k< M-L0< k,< M-1}: On the assumption that a torus lattice is obseraed
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maximum  likelihood procedure is applied for study was carried out. The study was designedwe gi
estimating the parameter vectdr?,6]', of @ GMRF  only an indication of the different types of belawi
over the valid parameter space. As in Besag anthe various estimates exhibit under particular éiovs
Morar®l, Kashyap and ChellaBd, the potential ang it is not intended to be exhaustive.

matrix, Q@), is readily diagonalized with a two- A second-order GMRF with parameter values,
dimensional discrete Fourier transform and the |099(1,O)= -0.1,6(0,1)= -0.09%(1,1)= -0.0928(1,-1)= -
likelihood maximized over the valid parameter sPacey 106 1=1 and toroidal- boundary conditions was
numerically. Let 75 denote the corresponding simulated by using a discrete Fourier transformhoet
described by Kashyap and Chell&fJaand Dubes and
Jaif®¥. Two different values of M, namely M=64 and
M=128, were used and for each M, 1000 different
realizations were generated. The parameters of the
generated second-order model were estimated fdr eac

maximum likelihood estimate of the interpolatiomogr
variance, r>. A parametric maximum likelihood
estimate of the index of linear determinism, Aefined
by equation (29), may now be obtained as follows:

S a
A =1-7:/R,(0.0) . _ _ _ realization by maximum likelihood, ML and also by a
The corresponding estimated residuals of thedfitte pseudo-likelihood procedure, PL and the correspandi
GMRF model are given by parametric estimated , of the index of determinism,
{(s9= 2 GUIX(s yu Y, A_ was computed. A non-parametric estimate (NP),

(u,v)Js ~ . . . .
A_, of the index was also obtained in accordance with

where 6,(0,0)=1 and 4,(u,v) denotes the maximum _
L o ), (1Y) , _ (30) and (31); following Yuan and Subba B4pthe
likelihood estimate 0B(u,v). The residual covariances ;4 dimensional spectral  density, f (x4, u,), Was

may then be estimated in the standard‘Wayy using estimated with truncation point (25,25), but weditiee

1 2
a fcirmul? analogous to (30) but witk(s 9° replaced Tukey-Hanning window instead of the related Parzen
by Z(st)((s+ ut +v). and Bartlett-Priestley windows used there.
As discussed earlier, if the specified model is ~ For each value of M, the simulated means and
suitable for the observed data, then the non-parame variances of the parameters estimated by these thre

estimate,A_, of the index of linear determinism should Methods were evaluated over the generated 1000
replications and the corresponding values of the

. . = simulated bias and simulated standard errors were
be close to the corresponding parametric estimate, found; the former was calculated as the difference
Moreover, now, the estimated variance of the res&lu petween the simulated mean of each parameter éstima
should approximately equal? and the estimated and its true value and the latter as the squareofaie

correlations,f, (u,v), of the residuals should vanish for simulated variance after dividing this variance by

all (u,v)dS and the estimated residual correlations forNRP:lOOO' where NRP denotes the total number of

: replications.
all - (uwbs, should approximately —equal the Table 1 shows the simulated bias and simulated

corresponding ML estimateg (u,v), of the parameter giandard errrors of the estimated parameters by the
B(u,v). three methods for M=64 and Table 2 shows the same

If an estimated model does not possess thghformation for M=128.
aforementioned properties then a different modey ma For M=64, the performance of both maximum
be fitted and the procedure described above repeatéikelihood and pseudo-likelihood methods is very
until a suitable model is chosen. The three-stagdeh  similar, with only a slight difference in their pective
specification, estimation and validation procedurestandard deviations. The non-parametric methodscbas
described earlier, could thus be implemented wiréyn o on the window spectral estimate, by contrast, fisriar
a finite realization of a GMRF is observed. to these two methods in terms of its bias, thouwge

As an alternative to a maximum likelihood js Jittle to choose between them in terms of their
procedure, a pseudo-likelihood estimation procedurestandard deviations. The bias of the non-parametric
which permits a trade-off between efficiency andmethod, however, decreases substantially when the
simplicity, may also be used for parameter|attice size increases to M=128, though the sizéhisf
estimatioff®* %] bias is still somewhat larger than that of the mmaxi

likelihood and pseudo-likelihood methods.
SIMULATION RESULTS Table 3 shows, with M=64,128, the simulated
For illustrating the efficacy of the three-stage means and standard errors ofthg estimated' inadekdo
o o -~ 2" three methods. The corresponding theoretical vafue

model  specification, estimation and validation 4,4 index, A for the parameterization used here, may
procedure described earlier, especially with ob=grv pe evaluated using equation (28) and it is given by
realizations of small to moderate sizes, M, a satioh A =0.1359.
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It may be gleaned that the simulated means of thebtained by fitting the full second order model by
two parametric estimates, even with M=64, are quiteanaximum likelihood and computing the residual
close to the theoretical value. The non-parametricorrelations. The numerical results are shown iblda
estimate of the index, by contrast, is badly biaked 4. It may be seen that the behaviour of the siredlat
M=64. However, for M=128, the bias of the non- means of the residual correlations accords with the
parametric estimate is substantially smaller andheoretical behaviour described. For the lags ohetlin
comparable to that of the two parametric methodiés T the set S, the mean residual correlations are glote
last result is not surprising since the window #$@#c to the actual parameter values of the generateceimod
estimation method is known to perform relatively By contrast, for the lags not included in S, thawdated
poorly with realizations of small lengths. means are close to 0.

The simulation results broadly support the model
assessment and criticism procedure based on a For the same simulated realizations of the second-

comparison of the non-parametric and parametrigger model, we also applied the maximum likelihood
estimates of the index of determinism describetiezar - :
procedure for fitting three underparametrized medel

The efficacy of the model validation procedure give defined as follows:
was also investigated by an analysis of the re§dua elined as follows.

Table 1: The bias and (standard errors) of thempeter estimates from 1000 simulations of ax@¥ zero mean second order GMRF with
toroidal boundary conditions. The true parametee®@,1)=-0.0950(1,0)=-0.1008(1,1)=-0.0926(1,-1)=-0.106 andr? =1
Method 6(0,1) 9 (1,0) 0 (1,-1) 9 (1,1 72
PLE -0.0009 0.0006 -0.0052 0.0030 -0.0010
(0.0154) (0.0152) (0.0148) (0.0145) (0.0228)
MLE -0.0012 0.0004 -0.0012 0.0007 -0.0014
(0.0153) (0.0148) (0.0142) (0.0142) (0.0225)
NP 0.0296 0.0303 -0.0230 -0.0229 -0.0718
(0.0139) (0.0135) (0.0136) (0.0116) (0.0237)
Table 2:  The bias and (standard errors) of thamater estimates from 1000 simulations of a ¥128) zero mean second order GMRF with
toroidal boundary conditions. The true parametee®@,1)=-0.0950(1,0)=-0.1008(1,1)=-0.0926(1,-1)=-0.106 andr? =1
Method 6 (0,2) 8 (1,0) 0 (1,-1) 0 (1,1) 72
PLE 0.0002 0.0003 -0.0029 0.0011 0.0002
(0.0076) (0.0076) (0.0071) (0.0074) (0.0117)
MLE 0.0001 0.0001 -0.0008 -0.0005 -0.0001
(0.0075) (0.0073) (0.0068) (0.0070) (0.0116)
NP 0.0010 0.0010 -0.0028 -0.0027 0.0007
(0.0075) (0.0075) (0.0069) (0.0068) (0.0115)
Table 3: The mean and (standard errors) of thenagtid indices of determinism by various method$df0 simulations of a (644) and
(128x128) zero mean second order GMRF with toroidal blemy conditions. The theoretical value of the indéxleterminism, A
for the parameterization used is 0.1359
M PL ML NP
M=64 0.1351 0.1354 0.0721
(0.0151) (0.0148) (0.0129)
M=128 0.1351 0.1354 0.1347
(0.0077) (0.0076) (0.0067)
Table 4:  The mean values of the residual correiatiestimated by fitting a (12828) zero mean second order GMRF with true paramsete
6(0,1)=-0.0950(1,0)=-0.1006(1,1)=-0.0926(1,-1)=-0.106 andr® =1
\
u
-4 -3 -2 -1 0 1 2 4
4 0.0007 -0.0001 -0.0005 0.0008 0.0000 -0.0005 004b 0.0000 -0.0007
3 0.0000 -0.0005 0.0010 0.0002 -0.0007 -0.0012 01RO 0.0005 -0.0003
2 -0.0007 -0.0002 -0.0012 0.0015 0.0010 -0.0020 00a 0.0006 -0.0004
1 0.0005 -0.0001 0.0007 -0.0887 -0.0950 -0.1038 .004b 0.0002 -0.0001
0 -0.0001 -0.0001 -0.0006 -0.0993 1.0000 -0.0993 0.0006 -0.0001 -0.0001
-1 -0.0001 0.0002 -0.0005 -0.1038 -0.0950 -0.0887 .00@r -0.0001 0.0005
-2 -0.0004 0.0006 0.0000 -0.0020 0.0010 0.0015 0120 -0.0002 -0.0007
-3 -0.0003 0.0005 0.0013 -0.0012 -0.0007 0.0002 01mOo -0.0005 0.0000
-4 -0.0007 0.0000 -0.0005 -0.0005 0.0000 0.0008 0046 -0.0001 0.0007
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Table 5: The means and (standard errors) of thma&sd indices of determinism when Models 2, 3 drafe fitted to 1000 simulations of
Model 1 with M=128; the theoretical value of theéx of determinism, A for Model 1 is 0.1359
Models PL ML
Model 2 0.0961 0.1149
(0.0073) (0.0084)
Model 3 0.1349 0.1351
(0.0077) (0.0076)
Model 4 0.1347 0.1348
(0.0077) (0.0076)
Table 6: The mean values of the residual correlatiestimated by fitting Model 2 to a (2288) zero mean second order GMRF with true
parameters9(0,1)=-0.0956(1,0)=-0.1006(1,1)=-0.0926(1,-1)=-0.106 andr? =1
v
u
-4 -3 -2 -1 0 1 2 3 4
4 0.0007 0.0005 -0.0003 0.0015 0.0006 0.0000 0.0001 0.0002 -0.0003
3 0.0001 0.0002 0.0020 0.0018 0.0001 0.0014 0.0013 0.0012 -0.0001
2 -0.0003 0.0009 0.0062 -0.0074 0.0209 -0.0121 9B00 0.0009 0.0000
1 0.0010 0.0014 -0.0077 0.0971 -0.2233 0.1079 ar.01 0.0022 0.0005
0 0.0002 0.0007 0.0195 -0.2249 1.0000 -0.2249 ®.019 0.0007 0.0002
-1 0.0005 0.0022 -0.0107 0.1079 -0.2233 0.0971 070 0.0014 0.0010
-2 0.0000 0.0009 0.0096 -0.0121 0.0209 -0.0074 8200 0.0009 -0.0003
-3 -0.0001 0.0012 0.0013 0.0014 0.0001 0.0018 0.002 0.0002 0.0001
-4 -0.0003 0.0002 0.0001 0.0000 0.0006 0.0015 azB00 0.0005 0.0007
Table 7: The mean values of the residual correlatiestimated by fitting Model 3 to a (2288) zero mean second order GMRF with true
parameters9(0,1)=-0.0956(1,0)=-0.1006(1,1)=-0.0926(1,-1)=-0.106 andr? =1
Y
u
-4 -3 -2 -1 0 1 2 3 4
4 0.0007 -0.0001 -0.0005 0.0008 0.0000 -0.0006 (0[41310] 0.0000 -0.0007
3 -0.0001 -0.0004 0.0010 0.0002 -0.0007 -0.0012 0180 0.0005 -0.0003
2 -0.0007 -0.0002 -0.0011 0.0015 0.0010 -0.0020 0QLO 0.0006 -0.0005
1 0.0005 -0.0001 0.0007 -0.1014 -0.0997 -0.0911 oo@ms 0.0002 -0.0001
0 0.0000 -0.0001 -0.0005 -0.0946 1.0000 -0.0946 00@b -0.0001 0.0000
-1 -0.0001 0.0002 -0.0004 -0.0911 -0.0997 -0.1014 oo@r -0.0001 0.0005
-2 -0.0005 0.0006 0.0001 -0.0020 0.0010 0.0015 0410 -0.0002 -0.0007
-3 -0.0003 0.0005 0.0013 -0.0012 -0.0007 0.0002 01m0 -0.0004 -0.0001
-4 -0.0007 0.0000 -0.0005 -0.0006 0.0000 0.0008 00@b -0.0001 0.0007
Table 8: The mean values of the residual correlatiestimated by fitting Model 4 to a (2288) zero mean second order GMRF with true
parameters9(0,1)=-0.0958 (1,0)=-0.1008 (1,1)=-0.0928 (1,-1)=-0.106 and?=1
v
u
-4 -3 -2 -1 0 1 2 3 4
4 0.0007 -0.0001 -0.0005 0.0008 0.0000 -0.0006 (0[41510] 0.0000 -0.0006
3 0.0000 -0.0004 0.0010 0.0002 -0.0006 -0.0012 1R00 0.0005 -0.0003
2 -0.0007 -0.0002 -0.0012 0.0015 0.0009 -0.0020 0QLO 0.0006 -0.0004
1 0.0005 -0.0001 0.0007 -0.1014 -0.0998 -0.0910 oo@ms 0.0002 -0.0001
0 -0.0001 -0.0001 -0.0006 -0.0947 1.0000 -0.0947 .00@s6 -0.0001 -0.0001
-1 -0.0001 0.0002 -0.0004 -0.0910 -0.0998 -0.1014 oo@r -0.0001 0.0005
-2 -0.0004 0.0006 0.0001 -0.0020 0.0009 0.0015 0420 -0.0002 -0.0007
-3 -0.0003 0.0005 0.0013 -0.0012 -0.0006 0.0002 01m0 -0.0004 0.0000
-4 -0.0006 0.0000 -0.0005 -0.0006 0.0000 0.0008 00@b -0.0001 0.0007
Model 2: . ~ where {/(st), i=23¢ denote the theoretical
:A(ngl_g(ol)[x S-D+X6t+D]-80OXE-1) +XE+10]+ L 6D interpolation errors when Model 1 is approximatedi
odel o:

linear least-squares sense by Models 2, 3 and 4,
respectively.

Here, Model 2 is a two-parameter homogenous
first-order GMRF, while Models 3 and 4 are obtained
from Model 1 by specifying certain isotropic
restrictions. In particular, Model 3 is a two-paeter

model with 8 describing the horizontal and vertical

X(s)=-G[X(st-1+ X(st 1+ X sl } Xs1 }+
5[ X(s=Lt=D)+ X(s- Lt I+
_ 2|:X(S+l,t—]_)+ X(S+ 1t l) :|++Z3(S,t)
Model 4:
X(s)=-G[X(stD+ X stD+ X s1 1+
X(s+L19+ X(s-1 t- 1
+X 6- 1+ 1y X 6+ - 1)

FX(S+L A1)+, (5 1 interactions andg, the diagonal interactions. Model 4

is a further simplification of Model 3 and specfienly
306



J. Math. & Stat., 1 (4): 296-308, 2005

one parameter for all four interactions; it thuswases
that the magnitudes of these interactions are eajucl
the first and second order effects may simultangous
be captured by just one parameter.

ACKNOWLEDGEMENTS

The research reported in this paper was carri¢d ou

while Prof. R.J. Bhansali visited the Department of

Table 5 shows the simulated means and standaig,antitative Methods and Economic Theory and it was

errors of the estimated indicesA, in 1000
misspecified models. The simulated means for the tw
isotropic models, Models 3 and 4, are quite clase t
those shown in Table 3 for the generated Model 1,
though the simulated means for Model 4 are slightly
smaller than those for Model 3 and this could be
because the former uses fewer parameters than the
latter. By contrast, for Model 2, the simulated mea 1-
are noticeably smaller than the non-parametricredt.

The simulation results suggest that, for the2.
parameterization used here, both Models 3 andet, ar
probably as effective as the generated second order
model with four parameters for describing the spati 3.
correlation structure of the data and for estintatine
possible effects of the nearest-neighbours. Byrasht
however, the homogeneous first-order model i,
probably not as effective in capturing the diagonal
interactions and it may be improved by choosinbegit

of the two isotropic models or the full second-arde g
model.

The model validation procedure described earlieg
was also applied to the residuals of Models 2, @ 4n
by examining the simulated means of their residual
correlations. The results are shown in Tables&)d@8. 7.
For Model 2, let S-Z ={(u,v),u,v£1}, denote the set of
sites included in S but excluded from Z={(0,-1)1(X-
1,0),(1,0)}. It may be seen that the residual datiens g
at all lags (u,v) such that (UNg-Z, are non-negligible,
especially relative to their values at lags {(1]$}.

This finding accords with the procedure descrilved i

and provides further evidence against adopting éflod 9.
2 for data generated from Model 1. By contrast, the
residual correlations for both Models 3 and 4 are
negligible at lags {(u,M))S} and the results provide
further evidence that either of these two modely ma
not be excluded as being implausible, even when thil
observations are generated from Model 1.

The simulation results thus broadly support the
three-step procedure suggested in this paper fo
choosing a suitable GMRF model. This procedure is,
however, not a model selection procedure and isdoe
not enable a unique model to be chosen from withen
class of models being considered. Rather, it heips
identifying plausible models which could be validly
considered as being suitable for the observed alada
the final choice among them could well depend upon,
the actual purpose of the analysis. Further rebemrc
nevertheless needed in developing suitable staisti
tests for a residual analysis of GMRF and in degvi
the sampling distributions of the various measwks
linear determinism proposed earlier.
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