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Abstract:  For a discrete-time vector linear stationary process, {X(t)}, admitting forward and backward 
autoregressive representations, the variance matrix of an optimal linear interpolator of X(t), based on a 
knowledge of {X(t-j), j≠0}, is known to be given by Ri(0)-1 where Ri(0) denotes the inverse variance 
of the process. Let A=Is−Ri(0)̄ 1R(0)̄ 1, where R(0) denotes the variance matrix of {X(t)} and sI  an 

s×s, identity matrix. A measure of linear interpolability of the process, called an index of linear 

determinism, may be constructed from the determinant, A],Det[Is −  of 11
s )0R()0Ri(AI −−=− . An 

alternative measure is constructed by relating ],)0tr[Ri( 1−  the trace of Ri(0)-1, to tr[R(0)]. The 

relationship between the matrix A and the corresponding matrix, P, obtained by considering only an 
optimal one-step linear predictor of X(t) from a knowledge of its infinite past, {X(t-j),j>0}, is also 
discussed. The possible role the inverse correlation function may have for model specification of a 
vector ARMA model is explored. Close parallels between the problem of interpolation for a stationary 
univariate two-dimensional Gaussian random field and time series are examined and an index of linear 
determinism for the latter class of processes is also defined. An application of this index for model 
specification and diagnostic testing of a Gaussian Markov Random Field is investigated together with 
the question of its estimation from observed data. Results are illustrated by a simulation study. 
 
Key words: Spatial series analysis, time series analysis, gaussian random fields, gaussian markov 

random fields, inverse correlation function, linear predictor 
 

INTRODUCTION 
 
 Consider a vector-valued linear stationary process, 
{X(t)}, (t ∈N), where N =[0, ±1,...] denotes the set of all 
integers. Suppose that {X(t)} satisfies the following 
assumption: 
 
Assumption 1: For each t∈N, X(t)=[X1(t), X2(t),…, 
Xs(t)]′ admits the following one-sided moving average 
representation: 

( ) ( ) ( ) ( )
0

,  B 0 s
j

X t B j t j Iε
∞

=
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where [ ]')t(),...,t(),t()t( s21 εεε=ε  and {ε(t)} is a purely 

random process: 
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for all t, u∈N, VB is nonsingular, δu=1, u=0, δu=0, u≠0, 
the B(j) are (s×s) matrices satisfying 
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denotes the sum of the absolute values of an (s×s) 
matrix [ ], ( , 1,2,..., ; 1)uvC C u v s s= = ≥ , [ ]CDet  the 

determinant of C, C' its transpose, sI  an (s×s) identity 

matrix and 0 a matrix or vector of zeroes. 
For all t, v∈N, the matrix covariance and correlation 
functions of { })t(X  are defined by 

{ }( ) ( ) ( ) ' ,R v E X t X t v= −  )v(R)0(R)v(r 1−= , 

respectively and the matrix spectral density function by 

( ) ( ) ( )1
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Assumption 1 ensures that { })t(X  admits a backward 

autoregressive representation: 

0

( ) ( ) ( ), (0) s
j

A j X t j t A Iε
∞

=

− = =∑  (3) 

and a forward autoregressive representation[1]: 
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where [ ]')t(),...,t(),t()t( sFF2F1F εεε=ε  and )}t({ Fε  is 

purely random with 
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We may, accordingly, write[2] 
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and f(µ) is nonsingular.  
 The inverse, 1[ ( )]f µ − , of f(µ) has all the essentials 
properties of a spectral density function[4] and the 
inverse spectral density function of { }( )X t  may be 

defined by 

.)](f[)2()(fi 12 −− µπ=µ  

Let 

( ) ∫
π

π−

µµµ= d)ivexp()(fivRi , (v=0, ±1,...) 

define the inverse covariance function of {X(t)} and 

)v(Ri)0(Ri)v(ri 1−=  the inverse correlation function, 

where Ri(v)'=Ri(-v). It follows that[3], fi(µ) admits a 
Fourier expansion: 

1( ) (2 ) ( )exp( ).
v
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 For a univariate process, s=1, the role of inverse 
correlation function for time series model identification 
is examined by several authors; see Cleveland[4], 
Chatfield[5], McClave[6], Bhansali[7-9], among others. A 
somewhat different application of this function, namely 
for estimating the interpolation error variance and a 
related R2 measure, is suggested by Battaglia and 
Bhansali[10].  
 In this paper, the potential role the inverse 
correlation function may have for model specification 
of a multivariate time series as well as that of a 
Gaussian Markov random field, GMRF, is examined. 
Following Battaglia[13], an inverse process, {Yi(t)}, of 
{X(t)} is defined by relating this process to the error 
process, ζ(t), of the linear interpolator, and several 
related measures of linear interpolability, called 
measures linear determinism, for multivariate time 
series are defined. An application of the inverse 
correlation function for specifying a vector 
autoregressive moving average model is also 
considered. The results here show that because of the 
’arrow of time’ and the associated notions of ’past’ and 

’future’, the role of this function for model 
identification of a multivariate time series is somewhat 
limited and possibly confined to special classes of 
models. However, by contrast, we show that the inverse 
correlations define the parameters of a GMRF and 
hence play a fundamental role in specifying its 

structure. Based on this observation, an 2R  measure of 
linear interpolability of Gaussian Random Fields is 
introduced and potential applications of this index for 
model assessment and criticism are discussed. The 
inverse correlations of a GMRF also define the 
correlation structure of the residuals of a model 
specified for a GMRF. We discuss therefore how this 
property may be applied for diagnostic testing of a 
fitted GMRF model. The question of how to estimate 
the index of linear determinism for a Gaussian random 
field is also considered and two different estimates of 
the index are defined, namely, a nonparametric estimate 
based on a ’window’ estimate of the spectral density 
function of the field, and a parametric likelihood 
estimate. We finally provide some simulation results. 
 
Inverse process and the linear interpolator: Let 
{ }( )X t  satisfy Assumption 1 and suppose that X(t) is 

unknown for a fixed t. The question of how to construct 
an optimal linear estimate of X(t) from a knowledge of 
{X(t-j),j ≠0} is known as the problem of linear 
interpolation[11]. Examples of situations where a 
question of this type arises include the problem of 
outlier detection and estimation of missing values for a 
multivariate time series, analysis of spatial data 
collected over a narrow but long rectangular lattice[12] 
and spatio-temporal processes. 
 
Properties of the inverse process: As is well 
known[11], for each t, 

 
0

ˆ ( ) ( ) ( )
u

X t ri u X t u
≠

= − −∑  (5) 

provides an optimal linear interpolator of X(t), where 
the ri(u) denote the inverse correlation function of 
{ }( )X t . Moreover, if 

ˆ( ) ( ) ( )t X t X tζ = −  

 
denotes the error of the optimum linear interpolator, the 
interpolation error variance matrix is given by 
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We have 

{ } { } ( )( ) 0,  ( ) ( ) ' ( ) t,u 0, 1,... ;E Yi t E Yi t Yi t u Ri u= − = = ±
 
the covariance function of { })t(Yi  is, therefore, the 
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same as the inverse covariance function of { })t(X  and 

vice versa. As in Battaglia[13] { })t(Yi  may be called the 

Inverse Process of { })t(X . 

Now, see Masani[14], { })t(Yi  admits forward and 

backward linear representations: 

0
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j
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=
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where ),t(V)t(i 1
B ε=τ −  ),t(V)t(i F

1
FF ε=τ −  and {τi(t)} 

and )}t(i{ Fτ  define the inverse processes of { })t(ε  and 

)},t({ Fε  respectively. We have, 

 
{ } { } ,0)t(iE               ,0)t(iE F =τ=τ  

 
{ } ( )         V)'ut(i)t(iE -1

Buδ=−ττ  
 

{ } ( ) ( )1,...0,ut,       V)'ut(i)t(iE -1
FuFF ±=δ=−ττ  

 
Measures of linear determinism: It follows from (5) 
that E{ζ(t)X(t-v)'}=0, for all v≠0 and hence that 

E{ζ(t) X̂ (t)'}=0. Thus, the individual components of 

ζ(t) and X̂ (t) are mutually uncorrelated and we may 
write, 

var{X(t)}=var{ X̂ (t)}+var{ ζ(t)}.              (7) 
 
 This last equation provides an analysis of 
dispersion for X(t), see Rao[15] for a definition of this 
last concept. It decomposes the variability of X(t), as 
measured by its variance matrix, as a sum of the 

variance matrices of X̂ (t) and ζ(t); the former may be 
thought of as the variability that could be explained 
from a knowledge of the complete past and future of 
X(t) and the latter as the unexplained variability due to 
the interpolation error. Let 

1 2 1ˆ ˆ[var{ ( )}] [cov{ ( ), ( )}] [var{ ( )}] ,A X t X t X t X t− −=  (8) 

where cov{X̂ (t),X(t)}=E[X(t) X̂ (t)'], be a normalised 
measure of association between X(t) and its linear 

interpolator, X̂ (t). We have 
 

1 1(0) (0) .sA I Ri R− −= −  

 
 If s=1 and X(t) is univariate,  
 

2ˆ[ { ( ), ( )}] ,A corr X t X t= [10], where corr{X̂ (t),X(t)} is the 

standard correlation coefficient between X(t) and X̂ (t) 
and in this sense, A provides a multivariate 
generalisation of this univariate concept. Although, 
unless R(0) is diagonal, the elements of A do not equal 

the univariate correlation between the individual 

components of X(t) and X̂ (t), we have the following 
inequality under Assumption 1: 

,IA0 s<≤  

where, for two s×s matrices, B and C, we use B<C to 
mean that C-B is a positive-definite matrix. Under 
Assumption 1, an explicit expression for A may also be 
written down by appealing to the representations (1) 
and (6). We have: 
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 Hence, A=0, if and only if B(j)=0, all j>0 and 
X(t)=ε(t) is a purely random process. Moreover, if ρ(C) 
denotes a suitable scalar function attached to a matrix 
C, it follows from the definition (8) of A that the 
’closer’ ρ(A) is to )I( sρ , the stronger is the association 

between X(t) and X̂ (t). Hence, in this sense, A 
provides information about the linear interpolability of 
the process, {X(t)}, from a knowledge of its complete 
past and future, {X(t-v),v≠0}.  
Battaglia[13] suggests the following multivariate index 
of linear determinism: 

11 { [ (0) ]/ [ (0)]},DA Det Ri Det R−= −  (9) 

as a numerical measure of the linear interpolability of a 
multivariate stationary process, {X(t)}. This index may 
be justified by the multiplicative property of 
determinants, Det[BC]=Det[B]Det[C] and by noting 
that 1-AD=Det[Is-A]. Battaglia[13] also studies several 
properties of this index and relates DA  to analogous R2 

measures suggested previously in the literature. 
 An alternative measure of linear interpolability of 
X(t) may be constructed by appealing to the additivity 
property of the trace operator, tr[B+C]=tr[B]+tr[C], and 
utilising the decomposition (7). This leads to the 
following alternative index of linear determinism for a 
multivariate stationary process: 

11 { [ (0) ]/ [ (0)]}.TA tr Ri tr R−= −  (10) 

 A comparison of equations (9) and (10) shows that 
both these indices have a similar form but use different 
scalar functions of 1(0)Ri −  and R(0) and for s=1, they 
both simplify to a univariate index of linear 
determinism, ,A U  say, considered by Battaglia and 

Bhansali[10] and Battaglia[16]. Indeed, for s=1, an 
explicit expression for UA  may be written down in 

terms of the coefficients, b(j) and a(j), say, of the 
moving average and autoregressive representations, (1) 
and (3), for the process. We have, if s=1, 

2 1 2 1

0 0

1 { ( )} { ( )} ,D T U
j j

A A A A a j b j
∞ ∞

− −

= =

= = = = − ∑ ∑  

and the interpolability of the process is seen to be a 
monotonic increasing function of the product of the 
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sums of squares of the coefficients in both moving 
average and autoregressive representations of {X(t)}. 

Next, under Assumption 1, we relate X̂ (t) to the 
optimal one-step liner predictor, 

,)jt()j(B)t(X̂
1j

1 ∑
∞

=

−ε=  

of X(t), based on the infinite past, {X(t-j),j≥1}. On 
arguing as above and noting that 1

ˆ( ) ( ) ( )t X t X tε = −  is 

the one-step prediction error and E{ε(t)X(t-j)'}=0, for 
all j≥1, it readily follows that 

1
ˆvar{ ( )} var{ ( )} var{ ( )}X t X t tε= + . Hence, if 

1 2 1
1 1

ˆ ˆ[var{ ( )}] [cov{ ( ), ( )}] [var{ ( )}] ,P X t X t X t X t− −=  

where 1 1
ˆ ˆcov{ ( ), ( )} [ ( ) ( ) '],X t X t E X t X t=  denotes a 

normalised measure of association between X(t) and its 

linear one-step predictor, 1ˆ ( )X t , we have 
1{ } (0) .s BP I V R −= −  

 The question of how much additional information 
about X(t) is gained from the ’future values’ 
{X(t+j),j ≥1}, relative to the infinite past, {X(t-j),j≥1}, 
or equivalently from the current and future innovations, 
{ ε(t+j),j≥0}, may thus be investigated by relating the 
measures P and A to each other. Battaglia[16] earlier 
examined this question for s=1, by assuming that X(t) 
follows an ARMA model and below we generalise his 
results to s>1 and to the class of linear processes 
satisfying Assumption 1; also, for s=1, Bhansali[17] 
examines the asymptotic distribution of an 
autoregressive estimate of P and of related multistep 
predictability measures. It is readily seen that 

1 1[ (0) ] (0) .BA P V Ri R− −− = −  

Moreover, by (6), 

( ) ( ) { }1 1
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and 1
1

ˆ ˆ(0) var[ ( )] var[ ( )].BV Ri X t X t−− = −  

 Hence, A-P may be interpreted as a normalised 
measure of association between X(t) and its linear 
estimate based only on the current and future 
innovations, {ε(t+j),j≥0}. 
We have, for s=1, 

1 2 2 1

0

(0) [1 { ( )} ],B
j

V Ri a jσ
∞

− −

=

− = − ∑  

and for a fixed 2 ,σ  the overall magnitude of the 
contribution of the future, {X(t+j),j≥1}, relative to that 
of the past, {X(t-j),j≥1}, is a monotonic increasing 
function of the sum of squares of the autoregressive 
coefficients, {a(j),j≥1} and by contrast, that of the past 
alone is a monotonic increasing function of the sum of 
squares of the moving average coefficients, {b(j),j≥1}. 
 

Vector ARMA models: Next, we examine the 
behaviour of the inverse process, {Yi(t)}, when the 
spectral density function of {X(t)} is a rational function 
and discuss possible applications of the inverse 
correlation function for specifying parsimonious 
parametric models for vector time series. 
Thus suppose that {X(t)} satisfies the following 
assumption: 
 
Assumption 2: That {X(t)} is a discrete-time vector 
autoregressive-moving average process of order (p,q), 
VARMA(p,q), 

( ) ( ) ( ) ( )
0 0

( ) ( ), 0 0
p p

s
j j

j X t j j t j Iε
= =

Φ − = Θ − Φ = Θ =∑ ∑  (11) 

where the Φ(j) and Θ(j) are matrices of coefficients 
such that, if 

0 0
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p q

j j

j j

L z j z H z j z
= =

= Φ = Θ∑ ∑  

denote their respective characteristic polynomials, then 
Det[L(z)]≠0, Det[H(z)]≠0,   |z|≤1, 
L(z) and H(z) are left coprime and {ε(t)} is a purely 
random process satisfying conditions (2). Under 
Assumption 2, {X(t)} admits representations (1) and 
(3), where 

1

0

1

0
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( ) ( ) ( ) ( ),
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j

j
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and  
 

1ii
B

i1i1

i
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)e('L)e('HV)e(H)e(L)2(         

)'e(kV)e(k)2()(f
−µµµ−−µ−−

µµ−−

π=
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 As is well-known, however, the problem of how to 
specify a VARMA model from its spectral density 
function   is a delicate one and in particular, 
Assumption 2 only specifies an equivalence class of 
VARMA models.  
If, for example, 

L
~

(z)=u(z)L(z),      H
~

(z)=u(z)H(z), 
where u(z) is a unimodular matrix, i.e., a matrix with a 
constant determinant, then 

),z(H)z(L)z(H
~

)z(L
~

)z(k 11 −− ==  (13) 

and it is not possible to distinguish between the 
VARMA models with transfer functions specified by 
equations (12) and (13). 
 
 Although it is still possible to ensure that a given 
VARMA(p,q) model is identified[18], by prescribing a 
rule for choosing a unique member of the equivalence 
class, such a rule does not eliminate the possibility that 
a different VARMA model with the same spectral 
density function, but with possibly a different pair of 
L(z) and H(z) and also a different order, (p,q), may not 
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be found. 
 As a consequence, there has been much 
development, see Hannan and Deistler[19], in specifying 
an echelon-form VARMA model by examining the 
dependence structure of the rows of a block-Hankel 
matrix with elements consisting either of the impulse 
response coefficients, B(j), or, equivalently[20], of the 
covariances, R(u).  
 Under Assumption 2, the inverse spectral density 
function of {X(t)} is given by: 

1 1 1( ) (2 ) [ ( ) '] [ ( )] .i ifi k e k eµ µµ π − − − −=  
 Therefore, as noted by Battaglia[13], unless the 
matrix polynomials, L(z) and H(z), commute, 
L(z)H(z)=H(z)L(z), the inverse process, Yi(t), may not 
be expressed in the form of a standard VARMA model 
defined by equation (11). Although the class of 
VARMA models with commuting AR and MA 
polynomials is not sparse and it, for example, includes 
the univariate ARMA as well as the pure VAR and pure 
VMA models as members, this particular requirement 
does seem to severely limit the possible applications of 
the inverse correlations for specifying a VARMA 
model. 
 Below we discuss how the inverse correlations may 
still be applied for specifying parsimonious parametric 
models with a rational impulse response function, k(z): 
Assumption 2 specifies[20], a two-fold restriction on the 
impulse response function, k(z), as follows: 
1). k(z) is a rational matrix, in the sense that its 

elements are rational functions of z; 
2). k(z) admits a left matrix fraction description 

defined by equation (12). 
 Condition 2) above ensures that a given k(z) 
defines an impulse response function of a VARMA 
model. It is possible, however, for a rational matrix to 
admit a right matrix fraction description, of the type 
satisfied by k(z)'[21]. Indeed[22], the existence of a left 
matrix fraction description does not guarantee the 
existence of the right fraction description and vice 
versa. Moreover, as the simple example of a 
VARMA(1,1) model shows, even when both 
descriptions are known to exist, it is not straightforward 
to express one such description in terms of the second 
description. The case of commuting matrix 
polynomials, L(z) and H(z), discussed above, in this 
sense, is exceptional since, under this hypothesis, k(z) 
admits both these descriptions simultaneously and the 
parameters for both these descriptions may 
conveniently  be specified in terms of the parameters of 
only the left matrix fraction description. 
 The question of how to specify a suitable 
parametric model for a linear process whose impulse 
response function admits a right matrix fraction 
description has so far received little attention in the 
literature. Next, we show how the inverse correlations 
are useful in this case. The argument given below 
applies even when the polynomials L(z) and H(z) 
commute. 
 Suppose that k(z) admits a right matrix fraction 

description as follows: 
1( ) ( ) ( ) .R Rk z L z H z−=  

On writing, 
1 1( ) [ ( )] [ ( )],R R RH z Det H z Adj H z− −=  

it is readily seen that k(z) is a rational matrix and X(t), 
is a linear process satisfying Assumption 1. Although, 
as in Barnett[21], a left matrix description of k(z) still 
exists and it may be constructed from the Smith form of 

,]')'z(H)'z(L[ RR  the resulting matrices could be 

highly complex functions of the parameters of LR(z) 
and HR(z). A right matrix fraction description for k(z) 
could, however, be constructed by applying the existing 
methods of constructing a VARMA model to the 
inverse correlations of X(t), that is, to the corresponding 
inverse process, Yi(t). Indeed, it readily follows that 
now 1'( ) [ '( )]h z k z −=  admits a left matrix fraction 
description as follows: 

1'( ) [ ( ) '] [ ( ) '],R Rh z L z H z−=  

and the inverse spectral density function is given by 
1 1 1 1( ) (2 ) [ ( ) '] [ ( ) '] [ ( )][ ( )] .i i i i

R R R Rfi L e H e V H e L eµ µ µ µµ π − − − − − −=  

 Thus, the inverse process, {Yi(t)}, follows a 
VARMA model, but running ’forward’ in time. 
Moreover, a backward representation for the inverse 
process, {Yi(t)}, may be obtained if instead of the 
backward representation, (3), the forward 
representation, (4), is considered. Hence, the standard 
techniques for specifying a VARMA model could be 
applied to the inverse correlations and a corresponding 
right matrix fraction description for {X(t)} obtained. 
Details are omitted to save space. 
 
Inverse correlations and an index of linear 
determinism for gaussian random fields: Let 

2{ ( , ), ( , ) }X s t s t N∈  be a stationary Gaussian random 

field, where N2=NxN is a two-dimensional space 

defined as follows: ,...}1,0t,s);t,s{(N2 ±== . For ease 

of exposition, suppose that 
E{X(s,t)}=0, (14) 

for all 2N)t,s( ∈  and let, for all 2N)t,s( ∈  and all 

,N)v,u( 2∈  

R(u,v)=cov{X(s+u,t+v),X(s,t)}, 
denote the covariance function and 

2

2
1 2 1 2

( , )

( , ) (2 ) ( , )exp( ),
u v N

f R u v iu ivµ µ π µ µ−

∈

= − −∑  

the spectral density function of this random field. 
Assume that the covariance function, R(u,v), is 
absolutely summable, 

,|)v,u(R|
2N)v,u(

∑
∈

∞<  (15) 

and ),(f 21 µµ  is non-vanishing, 

1 2 1 2( , ) 0, , .f µ µ π µ µ π> − ≤ ≤  (16) 

Then, 
1

21
4

21 )],(f[)2(),(fi −− µµπ=µµ  
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defines the inverse spectral density function of {X(s,t)} 
and a result of Wiener shows that[23], ),(fi 21 µµ  admits 

a Fourier expansion: 

2

2
1 2 1 2

( , )

( , ) (2 ) ( , )exp( ),
u v N

fi Ri u v iu ivµ µ π µ µ−

∈

= − −∑  

where 

1 2 1 2 1 2( , ) ( , )exp( )Ri u v fi iu iv d d
π π

π π
µ µ µ µ µ µ

− −
= +∫ ∫  

defines the inverse covariance function of {X(s,t)} and 
ri(u,v)=Ri(u,v)/Ri(0,0) 
the inverse correlation function. 
 Below we discuss how the results described above 
for multiple time series generalise to a stationary 
Gaussian random fields and introduce an R2 measure, 
called an Index of Linear Determinism, of linear 
interpolability of the field. The inverse correlation 
function of a Gaussian Markov random field is also 
considered by Yuan and Subba[24]. The main focus of 
these authors’ work is, however, slightly different from 
ours; for example, the question of how to measure the 
interpolability of a general Gaussian random field is not 
discussed there and nor is the associated question of 
model validation, assessment and criticism of a 
Gaussian Markov Random Field model, GMRF for 
short, fitted to an observed realization of this field, 
especially when the stochastic structure of the process 
generating the data is unknown. 
 
Linear interpolation and gaussian markov random 
fields: Suppose that X(s,t) is unknown for a fixed 

.N)t,s( 2∈ Let 

∑
≠

−−θ−=
)0,0()vu,(

)vtu,s(X)vu,()ts,(X̂  (17) 

denote the best interpolator of X(s,t), in a linear least-
squares sense, when {X(u,v), (u,v)≠(s,t)} are treated as 
known. Let 

∑
∈

−−θ+=ζ
2Nvu,(

)vtu,s(X)vu,()ts,(X)ts,(
)

         (18) 

denote the interpolation error. Then, since ζ(s,t) is 
uncorrelated with {X(u,v),(u,v)≠(s,t)}, the θ(u,v) are 
readily seen to be the solutions of the following 
equations:  
(1) for all (j,k)≠(0,0)  

,0)kv,ju(R)v,u(
2N)v,u(

∑
∈

=−−θ  (19) 

(2) if ])}t,s([{E 22 ζ=τ  denotes the interpolation error 

variance, 
 

.)v,u(R)v,u(
2N)v,u(

2 ∑
∈

θ=τ  (20) 

Equations (19) and (20) may be solved by Fourier 
methods[2]. We have 
θ(u,v)=ri(u,v), (21) 
and 

.}0,0(Ri{ 12 −=τ  (22) 

For a random field, unlike a time series, there is no 
distinction between ’the past’ and ’the future’ and 
X(s,t) may be thought of as being influenced by, i.e., 
correlated with, all its neighbouring sites, {X(s-u,t-
v),(u,v)≠(0,0)}. The analysis described above, 
therefore, provides a theoretical framework for 
constructing suitable stochastic models for Gaussian 
random fields, in much the same manner as the classical 
Wiener-Kolmogorov Prediction Theory for time series 
provides the basis for ARMA and related finite 
parameter time series models. 
Besag[25] suggested the use of (Homogenous) Gaussian 
Markov Random Field models, GMRF, by a covariance 
selection procedure, such that only a finite number of 
elements in the inverse of the covariance matrix of the 
field are non-zero and the rest vanish. The spectral 
density function for this class of models is given by, 
Besag and Moran[26], 

2 2 1
1 2 1 2

( , )

( , ) { /(2 ) }{ ( , )exp( )} ,
u v S

f u v iu ivµ µ τ π θ µ µ −

∈

= − −∑ (23) 

where θ(0,0)=1, S denotes the set of nearest neighbours 

with which X(s,t) interacts and 2τ  is a constant. 
From the results (21) and (22) given above, it readily 
follows that[24] a GMRF model so specified possesses 
the following important properties:  
(1) if ri(u,v) denotes the inverse correlation function of 
the model, 
ri(u,v)=θ(u,v), (u,v)∈S, 
ri(u,v)=0, (u,v)∉S; 
(2) if Ri(0,0) denotes the inverse variance of the model,  

;}0,0(Ri{ 12 −=τ  

(3) if ζ(s,t) denotes the residual of the model, i.e, the 
interpolation error process, then: 

,)0,0(Ri])}t,s([{E)}t,s(var{ 12 −=ζ=ζ  

corr{ζ(s,t),ζ(s+u,t+v)}=ri(u,v), (24) 

for all 2N)t,s( ∈  and all 2N)v,u( ∈ , where ri(u,v) 

satisfies property (1) given above and Ri(0,0) satisfies 
property (2); 
(4) the ’homogeneity’ conditions satisfied by θ(u,v) 
follow from the fact that both ),(f 21 µµ  and ),(fi 21 µµ  

are the spectral density functions of two real-valued 
stationary processes. 
 
Model specification and diagnostic testing for 
GMRF’s:  For observed spatial data, however, the set S 
of neighbouring sites with which a given X(s,t) 
interacts will usually be unknown, even though some 
prior information concerning how to formulate this set 
may well be available. Also, there may not be a ’true’ 
Markovian model generating the observed data and an 
analyst may simply seek to postulate a GMRF which 
captures the main interactions that could be present in 
the data by explicitly recognising that the constructed 
model probably may not represent the true data 
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generating process, but it merely provides a convenient 
approximation to this process. These considerations 
suggest that a non-parametric R2 measure which is 
applicable to a wide class of Gaussian Random Fields 
and hence which could be estimated without assuming a 
GMRF model for the data, could be helpful in assessing 
the usefulness or otherwise of a specified model. A 
non-parametric R2 measure of this type would, for 
example, provide a yardstick against which the actual 
R2 measure of a postulated parametric model may be 
compared and the usefulness of the model judged. If, 
say, the estimated R2 measure of a relatively 
parsimonious model is sufficiently close to the 
estimated non-parametric R2 measure, then this model 
may be accepted as being suitable for the data. If, 
however, the two estimated R2 measures do not appear 
close enough, then a more complex model could be 
fitted and the R2 measure implied by this model 
estimated and compared with the estimated non-
parametric measure. The analysis may be continued in 
this way until a suitable model is chosen. Moreover, the 
model specification procedure just described may be 
further strengthened by validating the chosen model 
from an analysis of its residuals. For a GMRF, a 
suitable diagnostic testing procedure is suggested by the 
property (24) of the interpolation error process. Thus, 
the correlations of the residuals of a chosen model may 
be inspected and their overall structure checked to see 
whether they possess this particular property. This 
three-stage model specification, estimation and 
validation procedure just outlined is close in spirit to a 
popular three-stage procedure proposed earlier by Box 
and Jenkins[27] for time series analysis. It clearly retains 
some of the advantages of flexibility a procedure of this 
type enjoys; but, it also suffers from many of the 
disadvantages of a subjective model selection 
procedure. At the same time, however, the question of 
how to choose a suitable GMRF model for observed 
spatial data, with special emphasis on model assessment 
and diagnostic testing, has so far received little 
attention in the literature. For a time series, possible 
effects of fitting a misspecified model have been 
investigated by Bhansali[28] and the results given there 
suggest that, even for spatial data, the likely loss in 
efficiency due to adopting a model chosen according to 
the three-stage procedure outlined above may not be 
serious. 
 
A linear interpolability measure for gaussian 
random fields: It readily follows from (17) and (18) 

that[25], for all 2N)t,s( ∈ , we may write 

X(s,t)=X̂ (s,t)+ζ(s,t), 
where 

∑
≠

−−−=
)0,0()v,u(

)vt,us(X)v,u(ri)t,s(X̂  

is the optimal interpolator of X(s,t) for a Gaussian 
random field, conditional on a knowledge of {X(s-u,t-

v),(u,v)≠(0,0)} and ζ(s,t), the interpolation error, is 

uncorrelated with X̂ (s,t). We thus have the following 
decomposition,  

R(0,0)=var{X(s,t)}=var{X̂ (s,t)}+var{ζ(s,t)}           (25) 

where 1)}0,0(Ri{)}t,s(var{ −=ζ . Equation (25) 

provides an analysis of variance of X(s,t) and shows 

that, for all ,N)t,s( 2∈  the quantity, 

{ } { } { } 1)0,0(Ri)0,0(R)t,s(Xvar/)t,s(var −=ζ  

measures the proportion of variance of X(s,t) that is 
"unexplained" by the optimal linear interpolator, 

X̂ (s,t). Hence the ratio 

{ } { } { } 1ˆvar ( , ) / var ( , ) 1 (0,0) (0,0)FA X s t X s t R Ri
−= = − (26) 

measures the interpolability of the process and provides 
an R2 measure of the amount of variability of X(s,t) that 
could be explained by a knowledge of all its 
neighbours, {X(s-u,t-v),(u,v) ≠ (0,0)}. 
It should be noted that, in common with all R2 

measures, FA  has the following properties: 

(a) ;)]t,s(X̂),t,s(X{corr[A 2
F =  (27) 

(b) .1A0 F <≤  

 In view of property (27), ,0A F =  if and only if 

X(s,t) does not interact with its neighbours, implying 
that the process is purely random and R(s,t)=0, all 
(s,t)≠(0,0). Conversely, if 0A F > , then there is 

interaction between X(s,t) and its neighbours and AF 
measures the strength of this interaction; the closer this 
index is to 1, the greater is the interaction, in the sense 
that the proportion of variability of X(s,t) that could be 
explained by a knowledge of all its neighbours 
increases. 
 An additional application of the index, AF, is for 
model assessment and criticism. Thus, for a Gaussian 
random field, let S denote the actual set of sites with 
which X(s,t) interacts and hence θ(u,v)=0, for all 
(u,v)∉S and provided S is not a null set, θ(u,v)≠0, if 
(u,v)∈S. Here, S need not be a finite set and in 
principle, it could coincide with N2. Suppose now that 
for a given data set, a GMRF model is actually chosen 
and let Z denote the finite set of sites specified by this 
model. As regards Z, the following three possibilities 
arise: 
a). Z⊂S, that is, Z is a subset of S, or S=Z but a more 

restricted model than the generating GMRF is 
chosen;  

b). S=Z, that is, Z coincides with S and the chosen 
model also coincides exactly with the generating 
GMRF;  

c). S⊂Z, that is, S is a subset of Z and Z includes a 
larger collection of sites than S, or S=Z but the 
chosen model contains more parameters than the 
generating GMRF.  

 Possibilities a) and c) above together characterize 
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the situations in which a misspecified model, which is 
either underparametrized or overparametrized, is fitted. 
By contrast, b) describes the situation in which the 
fitted model coincides with the actual data generating 
process. 
 Now, let AZ denote the value of the index (26) for 
the models specified according to possibilities a) - c) 
above and which may be calculated by subtracting from 
one the ratio of the residual error variance to the 
variance of the data. We have, if a) holds,Z FA A< . By 

contrast, under b) and c) Z FA A= . Under a), however, 

an underparametrized model may still be chosen if the 
difference between AZ and AF  is sufficiently small. 
Moreover, more parameters than necessary are 
estimated under c) and this could lead to an efficiency 
loss because the increased variability due to the 
redundant parameters would inflate the interpolation 
error variance. 
 The model specification procedure outlined later 
may thus be implemented by working with a non-
parametric estimate of AF  and a parametric estimate of 
AZ, obtained from the fitted model, as substitutes for 
the actual unknown values of these two measures; we 
discuss this point further later. 
 
Torus lattice processes: The index of linear 
determinism, AF, applies to stationary Gaussian random 
fields defined on infinite lattices. In practice, only a 
finite dimensional lattice, L, of size M×M will be 
observed. For this situation, the results may be 
extended[26], if we replace the infinite-lattice GMRF’s 
by their analogue on M×M torus lattices and for which 
the top and bottom rows and the left and right columns 
of L, become adjacent and the spectral density function, 

1 2( , ),f µ µ  is defined only for 1 2 /j Mµ π=  and 

2 2 /k Mµ π= , {j,k=0,1,...,M-1}. The resulting spectral 

density coincides with the spectral density function, 
(23), of a stationary GMRF, provided the set S is a 
subset of the torus lattice L.  
 The joint distribution of X={X(s,t),s,t=0,1,…,M-1} 
is Gaussian with a 0 mean vector and a circular 
dispersion matrix 2 1( )V Qτ θ −= . Here, Q(θ) is known as 
the potential matrix; its main diagonal elements are 
constrained to equal 1 and the off-diagonal elements 
have a zero-pattern structure defined by θ, the 
parameter vector, in accordance with the property (1) 
listed above, namely, θ(u,v)=0, if (u,v)∉S and θ(u,v)≠0 
if (u,v)∈S. 
 Thus, for a GMRF defined over a torus lattice, the 
interpolation error variance, 2,τ  is parametrised 
separately from the parameters, θ(u,v) and which now 
define[9], the inverse correlations of this GMRF. The 
variance, R(0,0), of this GMRF may be defined by 
following Fuller[29] and noting that the 2 1[ ]k Mk th+ , 

eigenvalue, λ([k2+Mk1]), of Q(θ) is given by, with 

1 2 1 2{( , ) : 0 1;0 1}k k k M k M≤ ≤ − ≤ ≤ − : 

[ ]( ) ( )µhcosMkk
Sv)(u,h
h12 ⋅θ−=+ ∑

∈=

21λ  

It thus follows that[26], 

( )1 2

1
2

2
, ( , )

(0,0) 1 2 cos( ) .h
k k L h u v S

R h
M

τ θ µ
−

∈ = ∈

 
= − ⋅ 

 
∑ ∑  (28) 

Hence, for a GMRF defined over a torus lattice, an 
index of linear determinism is defined by 

21 / (0,0)LA Rτ = −    (29) 

 It is readily verified that the index, AL defined 
above has the same properties as the index, AF defined 
over an infinite lattice. Moreover, a parallel index may 
also be defined when the generating stochastic structure 
of the random variables defined over a torus lattice is 
unknown and a possibly mis-specified parameter 
vector, θ, is chosen by an analyst at the model 
estimation stage. The resulting index now plays the 
same role as the corresponding index, AZ defined above 
the details are omitted. 
 
Estimation of the index of linear determinism for a 
gaussian random field: Suppose that 

2{ ( , ),( , ) }X s t s t N∈  is a Gaussian random field satisfying 
assumptions (14), (15) and (16), but only a finite 
realization, {X(s,t), s,t=0,1,...,M}, is observed. An 
estimate of the variance, R(0,0), of this realization is 
given by: 

1 1
2

2
0 0

1ˆ (0,0) { ( , )} .
M M

M
s t

R X s t
M

− −

= =

= ∑∑  (30) 

 Also, as in Yuan and Subba Rao[24], a non-
parametric smooth periodogram estimate, 1 2

ˆ ( , )Mf µ µ , of 

1 2( , )f µ µ  may be computed for 

1 2{( , ) (2 / ,2 / ); , 0,1,..., 1}j M k M j k Mµ µ π π= = −  and a 

non-parametric estimate of Ri(u,v) obtained as follows: 

( )
( )

22

1 1
2 / 2 /1

0 0

ˆ ( , ) 2

ˆ {2 / ,2 / } ,

                                  (u,v 0,1,...,[M/2]-1)

M

M M
iu j M iv k M

M
j k

Ri u v M

f j M k M e π π

π

π π

−

− −
+−

= =

=

=

∑∑  (31) 

 The corresponding non-parametric estimates of the 
inverse correlations are now given by: 

ˆ ˆˆ ( , ) ( , ) / (0,0),M M Mri u v Ri u v Ri=  

and which also provide non-parametric estimates of the 
interpolation coefficients, θ(u,v), for a Gaussian 
random field, without invoking assumption (23), that is, 
without requiring that the field is Markovian. 
 The corresponding non-parametric estimate of the 

index, FA , may now be constructed from the estimates 

(30) and (31) as follows: 
1ˆ ˆ1 { (0,0) (0,0)} ,F M MÂ R Ri −= −  

where for convenience, we suppress the dependence of 

FÂ  on M. 

 On the assumption that a torus lattice is observed, a 
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maximum likelihood procedure is applied for 
estimating the parameter vector, 2[ , ]'τ θ , of a GMRF 
over the valid parameter space. As in Besag and 
Moran[26], Kashyap and Chellapa[30], the potential 
matrix, Q(θ), is readily diagonalized with a two-
dimensional discrete Fourier transform and the log-
likelihood maximized over the valid parameter space 

numerically. Let 2
pτ  denote the corresponding 

maximum likelihood estimate of the interpolation error 
variance, 2τ . A parametric maximum likelihood 
estimate of the index of linear determinism, AL, defined 
by equation (29), may now be obtained as follows: 

2 ˆˆ1 [ / (0,0)].L P MÂ Rτ= −  

 The corresponding estimated residuals of the fitted 
GMRF model are given by 

( , )

ˆ ˆ( , ) ( , ) ( , ),P
u v S

s t u v X s u u vζ θ
∈

= − −∑  

where ˆ (0,0) 1Pθ =  and ˆ ( , )P u vθ  denotes the maximum 

likelihood estimate of θ(u,v). The residual covariances 
may then be estimated in the standard way[31], by using 
a formula analogous to (30) but with 2( , )X s t  replaced 

by ( ) ( )vt,usˆt,sˆ ++ζζ . 
 As discussed earlier, if the specified model is 
suitable for the observed data, then the non-parametric 
estimate, ,FÂ  of the index of linear determinism should  

 
be close to the corresponding parametric estimate, LÂ . 

Moreover, now, the estimated variance of the residuals 
should approximately equal 2ˆPτ  and the estimated 

correlations, ̂ ( , ),r u vζ  of the residuals should vanish for 

all (u,v)∉S and the estimated residual correlations for 
all (u,v)∈S, should approximately equal the 
corresponding ML estimate, ̂θ (u,v), of the parameter 
θ(u,v). 
 If an estimated model does not possess the 
aforementioned properties then a different model may 
be fitted and the procedure described above repeated 
until a suitable model is chosen. The three-stage model 
specification, estimation and validation procedure 
described earlier, could thus be implemented when only 
a finite realization of a GMRF is observed. 
 As an alternative to a maximum likelihood 
procedure, a pseudo-likelihood estimation procedure, 
which permits a trade-off between efficiency and 
simplicity, may also be used for parameter 
estimation[26,32, 33]. 
 

SIMULATION RESULTS 
 
 For illustrating the efficacy of the three-stage 
model specification, estimation and validation 
procedure described earlier, especially with observed 
realizations of small to moderate sizes, M, a simulation 

study was carried out. The study was designed to give 
only an indication of the different types of behaviour 
the various estimates exhibit under particular conditions 
and it is not intended to be exhaustive.  
 A second-order GMRF with parameter values, 
θ(1,0)= -0.1, θ(0,1)= -0.095,θ(1,1)= -0.092, θ(1,-1)= -
0.106, τ2=1 and toroidal boundary conditions was 
simulated by using a discrete Fourier transform method 
described by Kashyap and Chellapa[30] and Dubes and 
Jain[34]. Two different values of M, namely M=64 and 
M=128, were used and for each M, 1000 different 
realizations were generated. The parameters of the 
generated second-order model were estimated for each 
realization by maximum likelihood, ML and also by a 
pseudo-likelihood procedure, PL and the corresponding 
parametric estimate, LÂ , of the index of determinism, 

AL was computed. A non-parametric estimate (NP), 
,FÂ  of the index was also obtained in accordance with 

(30) and (31); following Yuan and Subba Rao[24], the 
two-dimensional spectral density, 1 2( , ),f µ µ  was 

estimated with truncation point (25,25), but we used the 
Tukey-Hanning window instead of the related Parzen 
and Bartlett-Priestley windows used there. 
 For each value of M, the simulated means and 
variances of the parameters estimated by these three 
methods were evaluated over the generated 1000 
replications and the corresponding values of the 
simulated bias and simulated standard errors were 
found; the former was calculated as the difference 
between the simulated mean of each parameter estimate 
and its true value and the latter as the square root of the 
simulated variance after dividing this variance by 
NRP=1000, where NRP denotes the total number of 
replications. 
 Table 1 shows the simulated bias and simulated 
standard errrors of the estimated parameters by the 
three methods for M=64 and Table 2 shows the same 
information for M=128. 
 For M=64, the performance of both maximum 
likelihood and pseudo-likelihood methods is very 
similar, with only a slight difference in their respective 
standard deviations. The non-parametric method, based 
on the window spectral estimate, by contrast, is inferior 
to these two methods in terms of its bias, though there 
is little to choose between them in terms of their 
standard deviations. The bias of the non-parametric 
method, however, decreases substantially when the 
lattice size increases to M=128, though the size of this 
bias is still somewhat larger than that of the maximum 
likelihood and pseudo-likelihood methods. 
 Table 3 shows, with M=64,128, the simulated 
means and standard errors of the estimated index for the 
three methods. The corresponding theoretical value of 
the index, AL for the parameterization used here, may 
be evaluated using equation (28) and it is given by 
AL=0.1359. 
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 It may be gleaned that the simulated means of the 
two parametric estimates, even with M=64, are quite 
close to the theoretical value. The non-parametric 
estimate of the index, by contrast, is badly biased for 
M=64. However, for M=128, the bias of the non-
parametric estimate is substantially smaller and 
comparable to that of the two parametric methods. This 
last result is not surprising since the window spectral 
estimation method is known to perform relatively 
poorly with realizations of small lengths. 
 The simulation results broadly support the model 
assessment and criticism procedure based on a 
comparison of the non-parametric and parametric 
estimates of the index of determinism described earlier.  
The efficacy of the model validation procedure given 
was also investigated by an analysis of the residuals  

obtained by fitting the full second order model by 
maximum likelihood and computing the residual 
correlations. The numerical results are shown in Table 
4. It may be seen that the behaviour of the simulated 
means of the residual correlations accords with the 
theoretical behaviour described. For the lags included in 
the set S, the mean residual correlations are quite close 
to the actual parameter values of the generated model. 
By contrast, for the lags not included in S, the simulated 
means are close to 0. 
  

 For the same simulated realizations of the second-

order model, we also applied the maximum likelihood 

procedure for fitting three underparametrized models 

defined as follows: 

 
 
Table 1: The bias and (standard errors) of the parameter estimates from 1000 simulations of a (64×64) zero mean second order GMRF with 

toroidal boundary conditions. The true parameters are θ(0,1)=-0.095, θ(1,0)=-0.100, θ(1,1)=-0.092, θ(1,-1)=-0.106 and 2 1τ =  

Method θ̂ (0,1) θ̂  (1,0) θ̂  (1,-1) θ̂  (1,1) 2τ̂  
PLE -0.0009 0.0006 -0.0052 0.0030 -0.0010 
 (0.0154) (0.0152) (0.0148) (0.0145) (0.0228) 
MLE -0.0012 0.0004 -0.0012 0.0007 -0.0014 
 (0.0153) (0.0148) (0.0142) (0.0142) (0.0225) 
NP 0.0296 0.0303 -0.0230 -0.0229 -0.0718 
 (0.0139) (0.0135) (0.0136) (0.0116) (0.0237) 
 
 
Table 2:  The bias and (standard errors) of the parameter estimates from 1000 simulations of a (128×128) zero mean second order GMRF with 

toroidal boundary conditions. The true parameters are θ(0,1)=-0.095, θ(1,0)=-0.100, θ(1,1)=-0.092, θ(1,-1)=-0.106 and 2 1τ =  

Method θ̂ (0,1) θ̂  (1,0) θ̂  (1,-1) θ̂  (1,1) 2τ̂  
PLE 0.0002 0.0003 -0.0029 0.0011 0.0002 
 (0.0076) (0.0076) (0.0071) (0.0074) (0.0117) 
MLE 0.0001 0.0001 -0.0008 -0.0005 -0.0001 
 (0.0075) (0.0073) (0.0068) (0.0070) (0.0116) 
NP 0.0010 0.0010 -0.0028 -0.0027 0.0007 
 (0.0075) (0.0075) (0.0069) (0.0068) (0.0115) 

 
Table 3: The mean and (standard errors) of the estimated indices of determinism by various methods in 1000 simulations of a (64×64) and 

(128×128) zero mean second order GMRF with toroidal boundary conditions. The theoretical value of the index of determinism, AL 
for the parameterization used is 0.1359 

M PL ML NP 
M=64 0.1351 0.1354 0.0721 
 (0.0151) (0.0148) (0.0129) 
M=128 0.1351 0.1354 0.1347 
 (0.0077) (0.0076) (0.0067) 
 
Table 4: The mean values of the residual correlations estimated by fitting a (128×128) zero mean second order GMRF with true parameters: 

θ(0,1)=-0.095,θ(1,0)=-0.100, θ(1,1)=-0.092, θ(1,-1)=-0.106 and 2 1τ =  
     v 
u ------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 -4 -3 -2 -1 0 1 2 3 4 
 4 0.0007 -0.0001 -0.0005 0.0008 0.0000 -0.0005 -0.0005 0.0000 -0.0007 
 3 0.0000 -0.0005 0.0010 0.0002 -0.0007 -0.0012 0.0013 0.0005 -0.0003 
 2 -0.0007 -0.0002 -0.0012 0.0015 0.0010 -0.0020 0.0000 0.0006 -0.0004 
 1 0.0005 -0.0001 0.0007 -0.0887 -0.0950 -0.1038 -0.0005 0.0002 -0.0001 
 0 -0.0001 -0.0001 -0.0006 -0.0993 1.0000 -0.0993 -0.0006 -0.0001 -0.0001 
-1 -0.0001 0.0002 -0.0005 -0.1038 -0.0950 -0.0887 0.0007 -0.0001 0.0005 
-2 -0.0004 0.0006 0.0000 -0.0020 0.0010 0.0015 -0.0012 -0.0002 -0.0007 
-3 -0.0003 0.0005 0.0013 -0.0012 -0.0007 0.0002 0.0010 -0.0005 0.0000 
-4 -0.0007 0.0000 -0.0005 -0.0005 0.0000 0.0008 -0.0005 -0.0001 0.0007 
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Table 5: The means and (standard errors) of the estimated indices of determinism when Models 2, 3 and 4 are fitted to 1000 simulations of 
Model 1 with M=128; the theoretical value of the index of determinism, AL, for Model 1 is 0.1359 

Models PL ML 
Model 2 0.0961 0.1149 
 (0.0073) (0.0084) 
Model 3 0.1349 0.1351 
 (0.0077) (0.0076) 
Model 4 0.1347 0.1348 
 (0.0077) (0.0076) 
 
Table 6: The mean values of the residual correlations estimated by fitting Model 2 to a (128×128) zero mean second order GMRF with true 

parameters: θ(0,1)=-0.095, θ(1,0)=-0.100, θ(1,1)=-0.092, θ(1,-1)=-0.106 and 2 1τ =  
     v 
u ------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 -4 -3 -2 -1 0 1 2 3 4 
4 0.0007 0.0005 -0.0003 0.0015 0.0006 0.0000 0.0001 0.0002 -0.0003 
3 0.0001 0.0002 0.0020 0.0018 0.0001 0.0014 0.0013 0.0012 -0.0001 
2 -0.0003 0.0009 0.0062 -0.0074 0.0209 -0.0121 0.0096 0.0009 0.0000 
1 0.0010 0.0014 -0.0077 0.0971 -0.2233 0.1079 -0.0107 0.0022 0.0005 
0 0.0002 0.0007 0.0195 -0.2249 1.0000 -0.2249 0.0195 0.0007 0.0002 
-1 0.0005 0.0022 -0.0107 0.1079 -0.2233 0.0971 -0.0077 0.0014 0.0010 
-2 0.0000 0.0009 0.0096 -0.0121 0.0209 -0.0074 0.0062 0.0009 -0.0003 
-3 -0.0001 0.0012 0.0013 0.0014 0.0001 0.0018 0.0020 0.0002 0.0001 
-4 -0.0003 0.0002 0.0001 0.0000 0.0006 0.0015 -0.0003 0.0005 0.0007 
Table 7: The mean values of the residual correlations estimated by fitting Model 3 to a (128×128) zero mean second order GMRF with true 

parameters: θ(0,1)=-0.095, θ(1,0)=-0.100, θ(1,1)=-0.092, θ(1,-1)=-0.106 and 2 1τ =  
     v 
u ------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 -4 -3 -2 -1 0 1 2 3 4 
4 0.0007 -0.0001 -0.0005 0.0008 0.0000 -0.0006 -0.0005 0.0000 -0.0007 
3 -0.0001 -0.0004 0.0010 0.0002 -0.0007 -0.0012 0.0013 0.0005 -0.0003 
2 -0.0007 -0.0002 -0.0011 0.0015 0.0010 -0.0020 0.0001 0.0006 -0.0005 
1 0.0005 -0.0001 0.0007 -0.1014 -0.0997 -0.0911 -0.0004 0.0002 -0.0001 
0 0.0000 -0.0001 -0.0005 -0.0946 1.0000 -0.0946 -0.0005 -0.0001 0.0000 
-1 -0.0001 0.0002 -0.0004 -0.0911 -0.0997 -0.1014 0.0007 -0.0001 0.0005 
-2 -0.0005 0.0006 0.0001 -0.0020 0.0010 0.0015 -0.0011 -0.0002 -0.0007 
-3 -0.0003 0.0005 0.0013 -0.0012 -0.0007 0.0002 0.0010 -0.0004 -0.0001 
-4 -0.0007 0.0000 -0.0005 -0.0006 0.0000 0.0008 -0.0005 -0.0001 0.0007 

 
Table 8: The mean values of the residual correlations estimated by fitting Model 4 to a (128×128) zero mean second order GMRF with true 

parameters: θ(0,1)=-0.095, θ (1,0)=-0.100, θ (1,1)=-0.092, θ (1,-1)=-0.106 and 2 1τ =  
     v 
u ------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
 -4 -3 -2 -1 0 1 2 3 4 
4 0.0007 -0.0001 -0.0005 0.0008 0.0000 -0.0006 -0.0005 0.0000 -0.0006 
3 0.0000 -0.0004 0.0010 0.0002 -0.0006 -0.0012 0.0013 0.0005 -0.0003 
2 -0.0007 -0.0002 -0.0012 0.0015 0.0009 -0.0020 0.0001 0.0006 -0.0004 
1 0.0005 -0.0001 0.0007 -0.1014 -0.0998 -0.0910 -0.0004 0.0002 -0.0001 
0 -0.0001 -0.0001 -0.0006 -0.0947 1.0000 -0.0947 -0.0006 -0.0001 -0.0001 
-1 -0.0001 0.0002 -0.0004 -0.0910 -0.0998 -0.1014 0.0007 -0.0001 0.0005 
-2 -0.0004 0.0006 0.0001 -0.0020 0.0009 0.0015 -0.0012 -0.0002 -0.0007 
-3 -0.0003 0.0005 0.0013 -0.0012 -0.0006 0.0002 0.0010 -0.0004 0.0000 
-4 -0.0006 0.0000 -0.0005 -0.0006 0.0000 0.0008 -0.0005 -0.0001 0.0007 

 
Model 2:  

[ ] [ ] )t,s(
~
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~
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~

)t,s(X 2ζ+++−θ−++−θ−=  
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[ ]1

2 3
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             ( , )
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Model 4:  

4

( , ) [ ( , 1) ( , 1) ( 1, )
( 1, ) ( 1, 1)

              ( 1, 1) ( 1, 1)

( 1, 1) ( , )

X s t X s t X s t X s t
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X s t X s t

X s t s t

θ

ζ
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ɶ

ɶ

 

where ( , ),    2,3,4i s t iζ =ɶ , denote the theoretical 

interpolation errors when Model 1 is approximated in a 
linear least-squares sense by Models 2, 3 and 4, 
respectively. 
 Here, Model 2 is a two-parameter homogenous 
first-order GMRF, while Models 3 and 4 are obtained 
from Model 1 by specifying certain isotropic 
restrictions. In particular, Model 3 is a two-parameter 
model with 1θɶ  describing the horizontal and vertical 

interactions and 2θɶ  the diagonal interactions. Model 4 

is a further simplification of Model 3 and specifies only 
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one parameter for all four interactions; it thus assumes 
that the magnitudes of these interactions are equal and 
the first and second order effects may simultaneously 
be captured by just one parameter. 
 Table 5 shows the simulated means and standard 
errors of the estimated indices, ,LÂ  in 1000 

realizations, each of size M=128, for these three 
misspecified models. The simulated means for the two 
isotropic models, Models 3 and 4, are quite close to 
those shown in Table 3 for the generated Model 1, 
though the simulated means for Model 4 are slightly 
smaller than those for Model 3 and this could be 
because the former uses fewer parameters than the 
latter. By contrast, for Model 2, the simulated means 
are noticeably smaller than the non-parametric estimate. 
The simulation results suggest that, for the 
parameterization used here, both Models 3 and 4, are 
probably as effective as the generated second order 
model with four parameters for describing the spatial 
correlation structure of the data and for estimating the 
possible effects of the nearest-neighbours. By contrast, 
however, the homogeneous first-order model is 
probably not as effective in capturing the diagonal 
interactions and it may be improved by choosing either 
of the two isotropic models or the full second-order 
model. 
 The model validation procedure described earlier 
was also applied to the residuals of Models 2, 3 and 4 
by examining the simulated means of their residual 
correlations. The results are shown in Tables 6, 7 and 8. 
For Model 2, let S-Z ={(u,v),u,v=±1}, denote the set of 
sites included in S but excluded from Z={(0,-1),(0,1),(-
1,0),(1,0)}. It may be seen that the residual correlations 
at all lags (u,v) such that (u,v)∈S-Z, are non-negligible, 
especially relative to their values at lags {(u,v)∉S}. 
This finding accords with the procedure described in  
 and provides further evidence against adopting Model 
2 for data generated from Model 1. By contrast, the 
residual correlations for both Models 3 and 4 are 
negligible at lags {(u,v)∉S} and the results provide 
further evidence that either of these two models may 
not be excluded as being implausible, even when the 
observations are generated from Model 1. 
 The simulation results thus broadly support the 
three-step procedure suggested in this paper for 
choosing a suitable GMRF model. This procedure is, 
however, not a model selection procedure and it does 
not enable a unique model to be chosen from within the 
class of models being considered. Rather, it helps in 
identifying plausible models which could be validly 
considered as being suitable for the observed data and 
the final choice among them could well depend upon 
the actual purpose of the analysis. Further research is 
nevertheless needed in developing suitable statistical 
tests for a residual analysis of GMRF and in deriving 
the sampling distributions of the various measures of 
linear determinism proposed earlier. 
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