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Abstract: This work addresses the issue of ruin of an insurer whose portfolio is exposed to insurance 
risk arising from the classical surplus process. Availability of a positive interest rate in the financial 
world forces the insurer to invest into a risk free asset. We derive a linear Volterra integral equation of 
the second kind and apply an order four Block-by-block method in conjuction with the Simpson rule to 
solve the Volterra equation for ultimate ruin. This probability is arrived at by taking a linear 
combination of some two solutions to the Volterra integral equation. The several numerical examples 
given show that our results are excellent and reliable. 
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INTRODUCTION 

 
 The problem of finding the probability of ultimate 
ruin was first considered by Lundberg[1]. Since then, the 
problem has received much attention up to present day. 
In his thesis, Lundberg considered a surplus model of 
the type: 
Surplus = Initial reserve + Income - outflow. Among 
the earlier authors who gave a rigorous mathematical 
basis of Lundberg’s work was Cram�r[2,3]. His 
contributions were presented in his monograph 
’Collective Risk Theory’. Lundberg’s model, 
expounded by Cram�r, is termed the Cram�r-Lundberg 
model or the surplus model. 
 In this model, at time t, the surplus tY  of an 
insurance company is given by 

�
=

−+=
tN

i iSptytY
1

 (1) 

 where, 00 ≥= Yy  is the initial reserve, p > 0 is 

the premium rate, { } +ℜ∈ttN  is a Poisson process with 

intensity λ , modelling the number of claims in (0, t] 

and { } Ν∈iiS  is an independent and identically 

distributed  sequence of positive random variables (with 
distribution F ) independent of N, modelling the claim 
sizes. The distribution F  has finite expectation µ  and 

finite variance 2σ . In the literature, the process Y in 
equation (1) is commonly known as the classical risk 
model. 
 A critical look at the process in (1) raises a couple 
of questions. One question that has received much 
attention is ’what is the probability that Y ever becomes 
negative?’ The first time when this happens is termed 
the time of ruin and the associated probability is the 
probability of ruin. Ruin is considered as a technical 

term. It does not mean that the company is bankrupt. 
However, if ruin occurs, it is interpreted as meaning 
that the company has to take action in order to make the 
business profitable. 
 The Cram�r-Lundberg model serves as a skeleton 
for more realistic models that have been studied in the 
insurance literature. This standard model for nonlife 
insurance is simple enough to calculate probabilities of 
interest, but too simple to be realistic. For example, it 
does not include interest earned on the invested surplus. 
There are several papers treating this model in many 
directions and forms, all with a view of finding the 
probability of ruin. By far the majority of these papers 
are concentrated on the analytical aspects of the 
problem but there is also a quite considerable number 
that deal with numerical methods to calculate this 
probability. More on the history of this problem can be 
traced from Segerdahl[4,5], Andersen[6], Davidson[7], 
Thorin[8], Wikstad[9], Gerber[10], Harrison[11], De 
Vylder[12]. For a general background to ruin theory, we 
refer to B�hlmann[13]. In this study, we shall be 
concerned with ruin under interest force and our 
emphasis will be on numerical methods. 
 

THE MODEL AND THEORETICAL RESULTS 
 
 All processes and random variables are assumed to 
be defined on the stochastic basis { }( )Ρ+ℜ∈Ω ,,, ttff  

satisfying the usual conditions, i.e. tf  is right 
continuous and P-complete. Here, Ω  is an abstract 
sample space whose elements are denoted asω ; f  is 

aσ -algebra on Ω ; Ρ  is a probability measure and 
{ } +ℜ∈ttf  is a filtration. A filtration means an 

increasing and right continuous family of sub σ -
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algebras of f , that is, for ftfsfts ⊂⊂≤≤ ,0  and 

sftstftf >∩=+= . 

 The risk model for the surplus tY  of an insurance 
company at time t is given by equation (1). A natural 
generalisation of this model is to allow reserves to earn 
interests. If there is a positive constant force of interest 
r, the surplus now become 

� �
=

−++= t tN

i iSdssYrptytY 0 1
 

 Let ( )∞<ΤΡ= yy)(ψ  where yΤ is the time of 

ruin, equal to infinity if ruin never occurs. Then )( yψ  
is the probability of ultimate ruin when initial capital is 
y and it is well known[14] that   satisfies the integro-
differential equation 

( ) ( ) ( )( ) ( )�
∞ =−−+′+ 0 .0)( xdFyxyypry ψψλψ

 Obviously ( ) 1=yψ  for y < 0 and it is well known 

[15] Theorem 3.1, that ( ) 0lim =
∞→

y
y

ψ . Using 

integration by parts, this equation is easily transformed 
into the Volterra equation of the second kind 

( ) ( )

( ) ( ) ( )y y

0 0

p
y 0

ry p ry p

F x dx K y,x x dx,

λψ ψ

ψ

= −
+ +

+� �
 (2) 

where the kernel 

( ) ( )
pry

xyFr
xyK

−

−+
=

λ
,  (3) 

and ( ) ( )xFxF −= 1 . 

 If we knew ( )0ψ , (2) could be solved using some 
numerical method for Volterra equations. For the 

classical risk model, ( )
p

λµ
ψ =0  when p<λµ  and 

( ) 10 =ψ otherwise. An expression for ( )0ψ  when r > 0 
is provided in equation (14) in Sundt and Teugels[16] , 
but this is rather complicated to calculate, also 
numerically. Sundt and Teugels give easy to calculate 
inequalities for ( )0ψ , but they are less useful if one is 

interested in exact values for ( )yψ . Asmussen and 
Nielsen[17] provide an efficient simulation procedure for 

( )yψ , but that can be a bit complicated to implement 
and it works only when p<λµ  and the moment 

generating function [ ]uSeΕ  exists for some positive u. 
Simpler simulation procedures are suggested in Paulsen 
and Rasmussen[18], but they are less precise than those 
of Asmussen and Nielsen. They also do not work well 
when p≥λµ . The method we present in this work 
works well p≥λµ . 

 We will now show how equation (2) can be used to 
find ( )yψ . To this end, let ( )yag  be the solution of 

( ) ( )

( ) ( )

y

a 0

y

a0

p
g y a F x dx

ry p ry p

K y,x g x dx,

λ= − +
+ + �

�
  (4) 

 where, ( )xyK ,  is as in (3). Note that in particular 

( )( ) ( )yyg ψψ =0 . It follows by Linz[19], Theorem 3.2 

p.32 and dominated convergence that (4) has a unique 
continuous solution for all y and all a. The following 
result will be proved at the end. 
 
Theorem 1: For all a, the equation (4) has a unique 
continuous and bounded solution and 

( ) ( )yag
yag
→∞

=∞ lim  exists. 

Let 21 aa ≠  and set 

( ) ( ) ( ) ( )yagyagyaag
2

1
12,1,

~ ααα −+=  (5) 

 Then 
2,1,

~
aagα  also satisfies equation (4) with 

( ) ( ) 2110
2,1,

~ aaaag ααα −+= . From this it is clear 

that any solution of (4) can be written in the form (5) 
for a suitable choice of α . In particular, the choice 

( )
21

20

aa

a

−

−
=

ψ
α  

gives ( ) ( )00
2,1,

~ ψα =aag  and therefore by 

uniqueness of the solution, ( ) ( )yyaag ψα =
2,1,

~ . But 

with thisα , ( ) ( ) ( ) ( ) 0
2

1
1

=∞=∞−+∞ ψαα agag , 

hence, 
( )

( ) ( )∞−∞

∞
=

12

2

agag

ag
α  (6) 

We thus have 
 
Corollary: Let 21 aa ≠  andα  be given by (6). Then 

( ) ( ) ( ) ( ),
2

1
1

yagyagy ααψ −+=  (7) 

 The procedure to numerically find ( )yψ  is now 

straightforward. To solve (4) for two starting values 1a  

and 2a , we use a numerical method like the block-by-
block that we describe later. Run them until they have 
stabilised at (or very near) ( )∞

1ag  and ( )∞
2ag . Then 

calculate ( )yψ  according to (7). In the sequel and 

without loss of generality, 12 =a . 
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 Now to the proof of Theorem 1. Letting 
 

( ) ( ) ( ),yyagyah ψ−=  
(2) and (4) give 

( ) ( ) ( ) ( )�+
+

= y dxxahxyKah
pry

p
yah 0 ,0  (8) 

where, of course ( ) ( ).00 ψ−= aah  
 
Lemma 1: The absolute value ( )ah y  is increasing in y. 
 
Proof: Formal differentiation in (8) gives 

( ) ( ) ( ) ( ) ( ) .0
0

�
�
��

�
� −′+

+
=′ �

y

aaa dxxyhxFyFh
pry

yh
λ

 Actually, considering 
( ) ( )

δ

δ
δ

yahyah −+
→0

lim  

shows that this equation is correct for 

( ) ( ),yh
dy
d

yh aa

+
+ =  i.e 

( )

( ) ( ) ( ) ( )( )
a

y

a a0

h y
ry p

h 0 F y F x h y x dx .

λ+

+

=
+

+ −�
 (9) 

 By Moiseiwitsch[20], (9) has a unique integrable 
solution on any interval (0, T]. 

 Letting y = 0 in (9) gives ( ) ( )00 +=+
ah

p
ah

λ
, 

hence ( )0+
ah  has the same sign as ( )0ah . If we 

assume that ( ){ yahyy += :inf0  has opposite sign of 

( )0+
ah } is finite, it follows from (9) that this leads to a 

contradiction, hence ∞=0y . The result follows. 

 
Proof of Theorem 1: By Lemma 1, 

( ) ( )yah
y

yag
y ∞→

=
∞→

limlim  (since ( ) 0=∞ψ ) exists, 

but may be infinite. Again by Lemma 1, to prove that 
the limit is finite, it is sufficient to prove that 

( ) ( )( )� +≤y yCydxxah0 1 ε  (10) 

for some constant C and a function ε  which satisfies 

( ) 0lim =
→∞

y
y

ε .  Assume first that ( ) 00 ≥ah , hence 

by Lemma 1, ( ) 0≥yah  for all y. By the version of a 
Tauberian theorem given in Linz[19], Theorem 6.8, (10) 
follows provided we can prove that ( ) ,lim Ct

ahtL
t

=
∞→

 

where, ( ) ( )�
∞ −= 0 dyyah

ty
et

ahL  is the Laplace 

transform of ah . By Linz[19], 

( ) ( ) ,exp0
	


�

�

� +

≤ y
p

r
ahyah

λ
hence ( )t

ahL  exists at 

least for 
p

r
t

λ+
> . Taking the Laplace transform for 

p

r
t

λ+
>  on both sides of (8) gives after a few 

calculations, 

( ) ( ) ( ) ( )
,

101
tr

ph
tL

r
p

tL
rt

tL a
hFh aa

−=�
�

�
�
�

� −++′ λ  (11) 

where 

( ) ( )�
∞ −= 0 dyyF

ty
et

F
L  

 Note that ( ) µ=0
F

L  and consequently ( )z
F

L  is 

analytic for Re(z) > 0. Solving (11) gives 

( ) ( )1

a

c

h Ft

1 p
L t exp t L u du

t r r
λ� �= −� �

� �
�  

( ) ( )2 1c ca
3 Ft u

ph 0 p
c exp u L s ds du ,

r r r
λ� �� �= + − +� �� �

� �� �
� �  (12) 

 Where, 1c , 2c  and 3c  are constants. Replacing t 
by a complex z in (12), it is clear that the right hand 
side of (12) is analytical for Re(z) > 0. Hence, by 
Widder[21] , ( )t

ahL  exists for all t > 0. Furthermore 

( ) ( ) �
�

�
�
�

�
�−=

→
10exp

0
lim c duu

F
L

r
t

ahtL
t

λ
 

( ) ( )2 1c ca
3 F0 u

ph 0 p
c exp u L s ds du

r r r
λ� �� �= + − +� �� �

� �� �
� �   

∞<= C   

 If ( ) ,00 <−ψa  simply let ( ) ( )yhyh aa −=ˆ . 

Then ( )yha
ˆ  satisfies (8) with ( ) 00ˆ >ah . This ends 

the proof of the theorem. 
 

NUMERICAL METHODS 
 
 Here, we will discuss numerical solutions of (2) 
(and its associated equation (4)). 
 To fix ideas, we write a general form of both 
equations thus 
 

( ) ( ) ( ) ( )yy dxxgxyKyg β=�+ 0 ,  (13)  

 Where, K(y, x) is as in (3) and the expression for 
the forcing function ( )yβ  is obvious. Using a fixed 
grid  y = 0, h, 2h, . . . , the solution of (13) is of the 
form 
 

n
n

i iginKihng βω =�
=

+
1 ,  (14) 
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 where, ig  is the numerical approximation to 

( )ihg , ( ) ( )nhgngihnhKinK == ,,,  and 

( )nhn ββ = . The iω  are the integration weights. Here 

we shall use the block-by-block method in conjuction 
with the Simpson integration rule, thus obtaining 
solutions in blocks of 2. The block-by-block is 
recommended[22] as the best of the higher order 
methods for numerically solving (13). To briefly 
explain the method, Simpson’s rule gives 

222,211,2400,232 β=+++ �
�
�

�
�
�

gKgKgK
h

g

 (15) 
 Here 1g  is unknown, but using the same rule with 

stepsize 
2

h
 ,  Simpson’s rule gives 

111,1
2
1

2
1,1

400,161 β=+++ �
�
�

�
�
�
�

�
gK

g
KgK

h
g  (16) 

 Quadratic interpolation gives that 

28
1

14
3

08
3

2
1 gggg −+≈  and inserting this into (16) 

yields 

( )
1
2

1 1
2 2

1,0 01,

1 1

1,1 1 21, 1,

3
K K g

h 2g
6 1

K 3K g K g
2

β

� �� �+ +� �� �
� �� �+ =
� �+ −� �
� �

  (17) 

 Equations (15) and (17) is a pair of equations to 
solve for 1g  and 2g . Continuing like this in blocks of 

2 we get, 
2m

2m 2 i 2m 2,i i
i 0

2m 2, 2m 2m 2m 2,2m 1 2m 1
2m 2

2m 2,2m 2 2m 2

g h K g

K g 4K gh
K g3

ω

β

+ +
=

+ + + +
+

+ + +

+ +

+� �
=� �+� �

�
 (18)  

and  

1 1
2 2

2m

2m 1 i 2m 1,i i
i 0

2m 1, 2m 2m 2m 1,2m 2m
2m 1

2m 1,2m 1 2m 1

g h K g

K g 4K gh
K g6

ω

β

+ +
=

+ + + +
+

+ + +

+ +

+� �
=� �� �+� �

�
 (19) 

 Approximating 
2
12 +m

g  by 3 3 1
2m 2m 1 2m 28 4 8g g g+ ++ −  and 

inserting this into (19) yields a set of two linear 
equations for 12 +mg  and 22 +mg . 

 It follows from results by Linz[19]  that for fixed y 
so that ynh = , the solution satisfies 
 

( ) ( ),4hOygng =−  (20) 

 provided g  is four times continuously  
differentiable as is the case here by Theorem 2.1 in 

 Paulsen et al.[23]. On the other hand, 

( ),4
1222 hOmgmg =+−+  as well, so there may be 

some fairly large oscillations. In (5), since 12 =a , we 

have ( )∞−
=

1
1

1

ag
α  . To approximate ( )∞

1a
g , an 

upper bound y  is chosen. Then to nullify the effect of 

the oscillations, we let ( )∞
1a

g  equal the average 

( ) �
−=

=∞
0

9990
,

1000

1

1

n

nk kgag  

 Where, h
y

n =0 . The constant y  must be large 

enough so that ( )hy 999−ψ  is virtually equal to 1. 

With this value of ( )∞
1ag , the numerically calculated 

ruin probability becomes 
 ( ) ( ) .1

1
ααψ −+= yagy    

 Dickson and Waters[24]  presented several 
numerical methods for this case, but without any effort 
to analyse the error rate. Of all the methods they 
discuss, the one that is closest to ours is a method by 
Sundt and Teugels[16]. They showed that it performs 
very well, although it is clear from the algorithm of 
their method that it is of order no higher than 2. The 
results i show that the block-by-block method performs 
extremely well. 
 

NUMERICAL RESULTS 
 
 We now report some numerical results obtained 
using the method described earlier. 
 For a given ( )yhy ψ,  is the calculated ruin 

probability when a stepsize h is used. Since ( )yhψ  is 

known, we compute the percentage relative error 

( ) ( ) ( )
( )y

yyhyhD
ψ

ψψ −
= .100 . 

 The implementation of the method we described 
earlier was done using FORTRAN and taking 
advantage of the Double Precision feature to get 
satisfactory accuracy. Of course slower programs like 
Splus, R, Gauss, Matlab, Maple or Mathematica could 
have been used, but at the expense of considerably 
longer computing time. 
 The process parameters 05.0,2,3 === rp λ  are 
used and S is assumed to be exponentially distributed 
with expectation 2. The true ruin probability was found 
way back by Segerdahl[5] and later reappearing in many 
papers. The exact ruin probability is calculated to a high 
degree of accuracy from Segerdahl’s formula using the 
Splus program integrate. Tables 1, 2 and 3 show that 
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we can achieve the same results irrespective of what a1 
we choose. The value of  (0) is very accurate! As 
expected, the smaller the step size h the better the 
results. This is the case as shown in Table 1-3 
compared to the results in Table 4.  Note that the 
stepsize in Table 4 is 10 times that in Table 1-3. 
 
Table 1: Ruin probabilities for 

( )
11 aa 0.300000,g 47.580706, 0.020584α= ∞ = − =  

y  ( )yψ  ( )y01.0ψ  ( )yD 01.0  

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.985591 
0.806240 
0.494963 
0.215339 
0.066726 
0.015188 
0.002633 
0.000360 
0.000040 
0.000004 

0.985591 
0.806504 
0.495288 
0.215556 
0.066815 
0.015213 
0.002638 
0.000361 
0.000040 
0.000004 

0.000000 
0.032765 
0.065715 
0.100625 
0.133259 
0.162322 
0.187962 
0.209072 
0.218223 
0.255316 

 
Table 2: Ruin probabilities for 

( )
11 aa 0.500000,g 33.700504, 0.028818α= ∞ = − =  

y  ( )yψ  ( )y01.0ψ  ( )yD 01.0  
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.985591 
0.806240 
0.494963 
0.215339 
0.066726 
0.015188 
0.002633 
0.000360 
0.000040 
0.000004 

0.985591 
0.806504 
0.495288 
0.215556 
0.066815 
0.015213 
0.002638 
0.000361 
0.000040 
0.000004 

0.000000 
0.032765 
0.065715 
0.100624 
0.133258 
0.162326 
0.187960 
0.208983 
0.217341 
0.265045 

 
Table 3: Ruin probabilities for 

( )
11 aa 0.700000,g 19.820302, 0.048030α= ∞ = − =  

y  ( )yψ  ( )y01.0ψ  ( )yD 01.0  
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.985591 
0.806240 
0.494963 
0.215339 
0.066726 
0.015188 
0.002633 
0.000360 
0.000040 
0.000004 

0.985591 
0.806504 
0.495288 
0.215556 
0.066815 
0.015213 
0.002638 
0.000361 
0.000040 
0.000004 

0.000000 
0.032765 
0.065715 
0.100625 
0.133259 
0.162325 
0.187954 
0.209159 
0.218783 
0.249504 

 
Table 4: Ruin probabilities for 

( )
11 aa 0.300000,g 47.580743, 0.020584α= ∞ = − =  

y ( )yψ  ( )0.1 yψ  ( )0.1D y  
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.985591 
0.806240 
0.494963 
0.215339 
0.066726 
0.015188 
0.002633 
0.000360 
0.000040 
0.000004 

0.985591 
0.808875 
0.498218 
0.217513 
0.067620 
0.015436 
0.002683 
0.000367 
0.000041 
0.000004 

0.000001 
0.326810 
0.657524 
1.009289 
1.339229 
1.634071 
1.893354 
2.119934 
2.327116 
2.611787 

 

CONCLUSION 
 
 We have been able to use a numerical method 
which is simple and straight forward to calculate 
ultimate ruin probabilities under interest force. The 
results indicate the quality of our numerical method. An 
extension of this problem is to allow a diffusion in (1) 
thus 

�
=

≥−+=
tN

i
tiStPWPpttY

1
.0;,σ  

 With another diffusion, the return on investments 
process will no longer be rttR =  but 

0;, ≥+= ttRWRrttR σ . 

 For a detailed description of such a model, see e.g 
Paulsen et al.[23]. The same method is likely to work 
once the corresponding Volterra equation is obtained. 
The task will be to identify the right kernel and the 
forcing function to use in the FORTRAN program. 
Also, apart from the exponential distribution, other 
distributions can be used. In the event that the 
distribution is difficult to achieve analytically, 
Simpson’s rule can be employed. Such an approach was 
used in Paulsen et al.[23]. 
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