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Abstract: To gain a better understanding of the internal wandcesses in service-oriented supply chains,\ieig
important to design models that are able to réedily describe the components of the supply chammeet this
goal, it is necessary to find suitable statistibiatributions of the processing times for the osdesissing the chain.
In this article we examine sample data sets withentiean 2,000 individual work times from four stépshe work
processes of a time-based aeronautical supply emairderive the best possible distributions fittihg sample data
sets. To increase the realism of the model, both dhta sets and the resulting statistical distidbst were
subdivided into several categories of order conipées( a task made more challenging by the limieaount of
data available for the rarer high-complexity orders
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INTRODUCTION
waiting periods and it takes 35 more minutes tospas

Time is money and money is time - is one of thethrough the Commission department and 25 min itntil
most commonly used phrases in the business wartd, bhas been processed by the Final Control department,
for airline suppliers it goes to the heart of thatter. completing the supply chain with 6 hours left urtié
Most airline suppliers face a fundamental probl¢éme:  deadline.
time it takes to procure and deliver the replacemart
to a airline is longer than the time the airlingpispared  Preliminaries: If we want to model the above scenario,
to wait for it"l. To clarify the problems faced by this we need to determine the time individual employees
industry, we investigated the following realistic require to complete their part of the processing
scenario. statistically. As we have seen, the time required f
h processing orders within individual departments can

Scenario approach:A customer places an order wit ; . -
P P vary considerably and if we want to realisticallypdel

36 hours left until the deadline. Since the ordefor a . .
large number of replacement parts, processingdteah the sqpply cha.ms W|th|n.a.compar-1y,. we need to come
step of the supply chain is a lengthy task andkes 11 UP with a reliable statistic prediction. However, a
hours until the order has moved through the Customevariety of factors (employee fatigue, breaks any afn
Service department. After this, the order passetheo the numerous other interruptions of the daily wibi)
Stock department, where a recent rush of high-yior conspire to make the distributions of processinges
orders (with a deadline of 25 hours or less) caitsies  different from the more common probability
wait for 30 min. After this the order is assign@dan  distribution functions. Thus, the processing tinfes
employee, but since it is late in the afternoon &Bd each department and each order complexity must be
had a lot of trouble completing the high-prioritiders,  gnaiyzed individually to find the distribution théits it

he is not quite as concentrated and has to brebk g est. Finding suitable statistical distributionsr fa

working on it after 180 min at the end of his shlbus, variety of data sets is a frequent occurrence herot

the order waits for 14 hours until the next mornin . . o L
gvgesearch and industries. You will find citationstbis

when he completes the order after 30 more min. No . L [
the order has only 7 hours left until the deadtne is early work in for example the following literat{fr8. In

thus tagged as a high-priority order. It now movedface of all this ea_lrly work our analysis is impartdior
speedily through the departments without angtlen ~ two reasons. First, we took on the challenge of
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modifying and applying these approaches to thdinish a certain task, the distribution should only

uniquely distributed processing times of processirch  assume values greater or equal than

of the aeronautical supply industry. (A2) We cannot expect to find a distribution only
Furthermore, we tried to take the peculiarities ofP@rameterized by its mean. We will also need toakno

such supply chains into account by dividing ordets &t Ieast its standard deviation.

different categories of complexity. Before startimgh (A3) We expect that the distribution is not stationary

in time. Finishing an order means that the progrdss

e ] ) $ork can be observed. Hence, after waiting some tim
notations: A tripel @, P, 3, (Q2)) on a topological space (¢ . we expect to observe a shorter time still to pass

Q, its Borelo-algebras, () and probability measuf®  for easy complexity work or a longer time still dee

is called a probability space. Random variableg.)(r. to finish the order for difficult complexity orderas
are measurable functions Q - R. Integration of a complications during the work process tend to happe
r.v. with respect to the underlying probability spas  more often with the latter. Therefore, for arbiyrar0
denoted by an expectation E, ie., (XE= the inequality PX >s+tfX >t) < PX > s) for short
f,X(w)P(dw). Conditional probability or expectation
given an event A3 (Q) is denoted by P{A) or
E(.|A), respectively. For a given r.uX on a real

duration orders or X > s +t|X > t) > RX > s) for long

duration orders should hold.
. . . . A4) The probabilit >t) need not decrease at least
probability space @OR° ) we write fy for its density (expi)nentiaﬁ. Foneo};.@éor)simulating times of short

distribution function With_ respect t(_) thg L_ebe_sgueduration orders we expect again exponentially desee
measure (d.d.f.) anBy for its cumulative distribution ¢, long duration orders, however, we will alsooall
function (c.d.f.). distributions decreasing more slowly tar—oo.

(A5) The modal valuet,,q of most of the empiric
Statistical model: Typically, the exponential distributions is not on the boundarty, OF tmax
distribution EXP is used for simulating random wajt  Therefore, we will typically fit to d.d.f.f with a
times in a mathematical context. It has both a Emp maximum not on the boundary argsufi)t>0g>t min.

cdf. Ht) = 1l-exp(it). Moreover it can be - o _

characterized by the following properties: Ident_lfylng the class of distributions: Kee_pmg
positivity (A1) and the shape of the d.d.f. (A5)nmnd,

(E1) EXP is R*-valued. we have the following set of distributions for tuet

(E2) EXP is parameterized simply by its eXpectaﬂonconsideration (in alphabetical order) with theirangu
= and standard deviatios. It is also important that all

(E3) EXP is time-invariant: For an EXB)tdistributed distributions are parameterized py the_same _amotm_t
rv. X the conditional distribution oK- t given the parameters (here two). Otherwise, distributionshwit

already passed time periadt > 0 arbitrary) is again more parameters would fit data more easily thaseho

EXPQ)-distributed, since it is easily computed thatW|th less and the results would not be comparable:
P(X- t >s| X>t)=exp(As)=RX >s). P _
(E4) The probability that the waiting time is greater = Betaa_?IStrltiUth_)tn BET(@, b, tra):
than an arbitraryt decreases exponentially in t: Let f(t):M,
X be EXPQ)-distributed, then for arbitrary>0 the B(fL B)- f
probability FX > t) = 1AFy () = exp(2). B(a, b) = jo f() dt

a>0,b>0,0st<t, ,

a ab
. : : =—t . N R T
Remark: The time intervals between two events of aH a+p e 9 \/(a+b)z_(

t
] . - ] ' a+ b+ l) max

poisson-process with intensityare EXPY)-distributed.

The poisson-process is a good model for the rath@AC Tapje 1:  Classification of orders. (* distributiaives not fulfl

emissions a Geiger-counter receives over timeproperty (A5), y: for all parameters)

However, for the distribution of the time to finish  Short orders Orders with Long orders
certain ordelTg, which we examine in this study, we medium length__
have to assume slightly different properties analsg BET(2.0 k¥ GAM(@n), a<1,1>0 LLO@b) T

- GAM(a ), &1,A>0*  WEI (a)), a<1,A>0* LNO(u,cb) t
with (E1) to (E4): WEI (a}), @1, A>0*

(A1) The distribution should not only b&*-valued. 2. Gamma-distribution GAM (a, A):
Since we typically observe a minimal timyg, > 0 to £(0) :%.(/It)“ expiAt)a> 04> 0f> (
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a Ja Notice also that LL@a, b) has no finite second moment
H=— O0=— for a<2. For being able to use the method of moment

A A gy . . o
3. Log-logistic-distribution LLO (a, b): Et;\?eg tg)ggsdursnuelt?r?ellipzarameters of this distriton we

a-1
a(ij Fit class of distributions to observed dataTo fit the
f(t) =b72,a>0,b> 0,t=0 parameters of a certain distribution to some gidata
b(“(tja we use the method of moment fitting:
b
7 Step 1: Calculate the estimates of the mean and the

standard deviation (both estimates are unbiased and
H= sin(—] have mini.mal mean square error). S

a Step 2: Find parameters of the distribution such that
mean and standard deviation of the distributionaéqu

,only fora>1,0=h

T the estimated moments. This is done by simply
Vs 2 a . .
— - ,only fora> 2 applying standard mathematical software solverthen
a sin(zll] sirf(’lj squared difference of the actual mean and standard
a a deviation and the respective target values.
4. Lognorm-distribution LNO(Y, o): We used this method instead of maximum
1 p[ 1 Int-p'\? likelihood estimators (ML-estimator), as we havdito
f(t)=———.exp - , ) J a>04> 0tz ( a rather big class of distributions and it is magtfor all
toon 2\ o distributions that the ML-estimator of their paraers

estimators of the mean and standard deviation,
however, always are. Since for all of the above
distributions and for LL@a; b) witha >2 the first and
5. Weibull-distribution WEI (a, &): second moment exists, we will not encounter any
problems.

To test the hypothesis that the observed data is
actually distributed as we just calculated andrid the
distribution which fits best the data we use the
Kolmogorov-Smirnov-test (K-S-test). We preferree@ th
K-S-test to the¢ -test for two reasons:

The exponential distribution EXP( 1) equals , o
GAM(1; I) and WEI(L; I). Because of this and since *. First, the K-S-test is independent of the assumed
has only one parameter, we do not list it seperfaty ~ distribution.

more details about these distributions we refer thé  Second, the K-S-statistics are more sensitive to
reader the following statistical handb&tk singular deviations from the assumed distribution

It is easily seen that depending on the propefties Whereas the><2 -statistics is only sensible to greater
the remaining time (A3) and the longtime behaviorSingle deviations or deviations within many intdsva
(A4) we may classify the above listed distributidns
the way described in Table 1.

2 o) is unbiased and has minimal mean square error. The
g =lIn % ,0' = In[l{}}
W+o

f(t) =at’t*texp(At),a> 0,4> 0f> (

u=%.l'(1+ ahy, J=;l.\/l' e )

According to (A1) we have to find the minimum
tmir= 0 of the distribution (and for BET also the
*  Short duration orders: (X >s+t| X >t)<P(X >s) maximumt,s,). We started with the observed minimum

S : . of the data and the iteratively examined smalleintm
g?)it)lr(:)(()(é)xpd(i():)r%ar\sgxs >gx:p g?;?g? il)))/ f(c))r;_f)zfter, I'e"We finally took thet,, with the smallest K-S-estimator

*  Medium duration orders: (X >s+t| X>t) > AX >s) (analogously fotmax).
and KX >t) decreases nearly exponentially, i.e(XP

>t)= O(exp()) or RX > 1) = o(exp()) for someas1 Section 1: The summary of the results for the work

times for Section 1 (as well as the summaries Hier t

fndt_’oo' ) ] other sections) can be found in Fig. 1.

Long duration orders: (X >s+t| X >t)>P(X>s) and We see that with the complexity of the order the
P(X >E) decreases slower than exponentially, i.€.mean timelTe, increases as well as the empiritah
P(>t)=o(exp(t)) for all a> 0 andt—co. andtyax (€xcept for medium complexity orders).

For simple and medium complexity orders we may
easily decide which distribution to choose: Forhbot
cases the gamma distribution is one obts fits,

BET(a, b, tay iS an extreme case in the class of
distributions for easy complexity orders as it lihs
feature that the probability for timds>t,., equals O.

241



J. Math. & Stat., 1 (3): 239-245, 2005

Section 1 Section 2 Section 3 Section 4
Description Simple Medium  Difficult Simple Medium ifficult Simple Medium Difficult ~ Simple Medium Diftult
No. of data 173 52 18 262 50 10 567 186 166 678 132 61
Min. 1 1 4 5 15 25 2 2 2 3 5 10
Max. 18 6 26 560 125 540 30 20 240 25 45 260
Mean 2,5 34 8,9 22,0 34,9 176,9 5,9 7,2 12,0 75 311 30,4
Variance 3,2 1,5 30,1 1.670,2 777,0 22.399,6 18.7 132 4114 12,1 45,5 1.266,9
K-Stest (5%) 0,115 0,210 0,358 0,094 0,215 0,379 ,06@ 0,111 0,118 0,058 0,132 0,194
Beta
(K-S statistics) 0,179 0,094 0,201 0,199 0,197 004 0,048 0,116 0,127 0,152 0,221 0,213
a 1,649 5,200 1,819 0,313 0,970 0,924 1,701 2,153 ,3090 4,798 3,156 0,592
b 21,904 11,510 6,367 6,701 3,200 4,298 20,071 597,9 10,002 23,334 20,884 3,974
Tmin. 0 0 0 3 0 0 0 0 0 1 0 2
tmax. 35 11 40 560 150 1.000 90 100 400 50 100 250
Gamma
(K-S statistics) 0,115 0,110 0,126 0,181 0,125 603 0,093 0,110 0,124 0,157 0,220 0,186
a 0,648 8,001 0,794 0,290 1,568 1,337 1,892 2,396 ,3500 4,668 3,784 0,730
A 0,447 2,337 0,162 0,013 0,045 0,008 0,318 0,335 0290, 0,620 0,288 0,024
tmin 1 0 4 5 0 6 0 0 0 0 0 3
Log-logistic
(K-S statistics) 0,197 0,146 0,124 0,156 0,193 711 0,185 0,184 0,144 0,184 0,256 0,149
a 3,170 5,502 3,549 2,224 3,021 2,893 3,193 3,442 2672 4,865 4,051 2,526
b 2,069 3,240 7,773 15,394 28,941 144,106 5,028 986,1 8,506 7,947 11,852 23,154
tmin 0 0 0 0 0 0 0 0 0 1 0 0
Lognormal
(K-S statistics) 0,163 0,130 0,145 0,130 0,166 @05 0,145 0,151 0,087 0,154 0,216 0,133
s 0,680 1,172 2,023 2,425 3,306 4,896 1,570 1,793 1,809 2,066 2,458 2,983
¢ 0,658 0,343 0,568 1,193 0,702 0,748 0,651 0,591 ,162 0,393 0,484 0,929
tmin 0 0 0 1 0 0 0 0 0 1 0 0
Wiebull
(K-S statistics) 0,183 0,106 0,198 0,174 0,191 7,03 0,105 0,126 0,112 0,171 0,229 0,196
a 1,376 3,094 1,664 0,616 1,260 1,159 1,393 1583 610 2,290 2,038 0,885
A 0,373 0,261 0,101 0,061 0,027 0,005 0,154 0,126 1210, 0,118 0,067 0,034
tmin 0 0 0 2 0 0 0 0 0 0 0 1

Fig. 1: Statistics and fitted distributions for theelers in sections 1-4. Best fits are marked Wil values of their
K-S statistics

20 In the Q-Q plot the steeper ascenthan
the empirical distribution indicates th#te fitted
300

-‘_F.I". =t Beta 250
megem Gamma
=mient | 0g-logistic —te
10 =msmm | ognormal 200 ——— geta
magmn Weibull e Lam;na' 1
u ) ==~- Log-logistic
5 = Empirical 150 == [ ognormal
= Weibull
1004 — Empirical
0 T T T 307
0 5 10 15 20
) . . . O T T
Fig. 2: Q-Q plot for work times in section 1 of 0 100 200 300

difficult complexity orders

Fig. 3: Q-Q plot for work times in section 2 for
for medium weibull fits best. Depending on the simple complexity orders
parameters all of these distributions are clasbifis
short or medium. For difficult complexity orders we distribution puts less probability on the intenahd
have the problem to decide which distributionsbéist: ~ Vvice versa. The steeper than asymptotic asceridripe
The best fitting distributions belong to differamiasses. t also means that the respective distribution is more
To decide which distribution fits best we use anheavy-tailed than the empirical distribution.

additional tool: The Q-Q plot where the quantiléshe ~ For difficult complexity orders we see that all
empirical distribution on the ordinate are compated distributions have lower probabllmes for theterval
the quantiles of the fitted distributions (Fig. 2). [6,10] and compensate that on tinerval [10, 14. For

times > 14 all distributions are parallel to thepéncal
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distribution, but on different levels. The gamma plausible way to modelTg;, with the accessible data

distribution fits better for small times whereas thg-  (Fig. 1).
logistic distribution fits better for large timeSince the

data for small times is more reliable (10 pointstu Section 3:Again, we see that with the complexity of
interval [0, 7] compared to 3 on thieterval [14, 28)  the order the mean tinidr, increases as well as the

we rely on the better fit for small times and ttHere
prefer the gamma distribution. For more reliablgutts 500
we would need more data (Fig. 1). 450

400
350

Section 2: Again, we see that with the complexity of
the order the mean timeTg;, increases. For medium
complexity orders we can easily decide which 300
distribution to choose: The only best fit is the 250
lognormal distribution. Therefore, it is classifieabs 200
long. 150
For simple and difficult complexity orders we have
the problem of deciding which distribution fits beSor
difficult complexity orders the best fitting didtritions
belong to different classes and for simple no
distribution fits properly according to the K-S tid#cs.
To decide which distribution fits best we consigaim

—— Beta
-—#+— Gamma

==m=- Weibull
== Empirical

100 200 300 400 500

the Q-Q plot: _ , , difficult complexity orders
For simple complexity orders (Fig. 3) we easilg se
in accordance with the K-S statistics that the trgral 100
distribution is the best fit of the data. Howevére 9001 ~
probability for smallt (up to 30 min) is larger and the sl
probability for mediumt (from 30 min to 80 min) is g 70
smaller than modeled by any of the distribugion §
(Fig.- 5). Since we observed a large number of data, 2 60 7
resampling of the empirical distribution would be a g 507
option. 5 40 A
Resampling means that instead of simulating the g 30 -
unknown distribution with a best fit estimate this-d z 20
tribution is directly simulated by the empirical
distribution. This is done by drawing numbers af get 10 -I'I Moo i
of data independently and with equal probability. O SRS S e e NS e N ST e T S
Minutes -

Advantages of resampling compared to sampling
from a fitted distribution Fig. 5: Histogram for work times in section
1. The simulated distribution equals exactly thesimple complexity orders

observed distribution.

2. It works for arbitrary data and is easy to handl 140

Disadvantages of resampling compared to sampling 1201

from a fitted distribution

100
1. Only events that have actually occured can be ~
samples, i.e., rare events (here lakde,,) will not be 8011
simulated. 601

2. This only works for large numbers of observed
data. Otherwise there would be too much varianee du
to random perturbations.

Number of observations

For difficult complexity orders the Q-Q plot does

[\e] S
(=} (=} (=}

: :
—

not give any additional information (Fig. 4). We wid N e Nw e S -g-:-;'-g-gg
need more data to classify the distribution cotyect Minutes "
Classifying the distribution as difficult and simatihg ~ Fig. 6: Histogram for work times in section
LT, with a fitted lognormal distribution is the most simple complexity orders
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empirical times t,, and t.. (except for medium respective data sets. For short or medium duration
complexity orders). For medium and difficult orders (recognizable as a rule of thumb by an doabir
complexity orders we can easily decide whichmean of less than 10) gamma and weibull distrilmgtio
distribution to choose: The only best fit is thergaa or  were the best fits. For long duration orders thg- lo
lognormal distribution, respectively. Therefore andlogistic or lognormal distributions fitted best.
according to the parametar= 2:396 for the gamma
distribution it is classified as short or long,pestively. 25
For simple complexity orders no distribution _ts
properly according to the K-S statistics. As alsers 20
for other orders the best fit is the gamma distidyu
However, the empirical distribution has (at leaktee
local maxima (trimodal) and should be quite rekabl
with 567 observations. Therefore, the value of Kk8
statistics is too large and we again suggest sampli
directly from the empirical distribution (Fig. 6).
However, since the local maxima are at 5 min, 10 5
min, 15 min and 20 min there might be a flaw in
recording data. Some recorded times seem to beo
rounded to the next multiple of 5 min. For a more
detailed analysis of the distribution in this cabe
experiment should be repeated.

—=— Beta

—-=— Gamma
---=-. Log-logistic
—-u—- Lognormal
=== Weibull
= Empirical

15 1

10 1

Fig. 7: Q-Q plot for work times in section 4 for
simple complexity orders

Section 4:Again, the summaries for the task Section 4
can be found in Fig. 1. This time, we see that it
complexity of the order the mean timhd;, increases 40
as well as the empirical timég, andt,,. For difficult
complexity orders we can easily decide which
distribution to choose: The best fit is the lognatm
distribution. Therefore, it is classified as long.

For simple and medium complexity orders no 20
distribution fits properly according to the K-Sti#cs.
This time, the best fit is either the gamma or the
lognormal distribution with only slight differencen
the value of the K-S statistics. Let us again haveok
on the Q-Q plots (Fig. 7 and 8). 0 ; ; T -

The distribution of the simple complexity ordess i 0 10 20 30 40
again bimodal and thus no distribution fits properl
Again we would suggest sampling directly the enepiri Fig. 8: Q-Q plot for work times in section 4 for

—=— Beta

—=—— Gamma
—-—- Log-logistic
—w-— Lognormal
—=—- Weibull
— Empirical

10

distribution, if we were sure that the data is rded medium complexity order
correctly. Since the local maxima are at 5 minniif,
15 min and 20 min, there is definitely a flaw ireth 400
recorded data. Nearly all recorded times seem to be 350 -
rounded to the next multiple of 5 min (Fig. 9).
For more detailed analysis of the distribution of & 3001
times, the experiment should be repeated. The fliest ks 250
for medium complexity orders is either the lognokma g
or the log-logistic distribution having for all tes §2oo- ]
nearly the same increase as the empirical distoiburh °
the Q-Q plot (Fig. 8). For continuity reasons wggest £ 1301
using the lognormal distribution for sampling. Z 1001
50
RESULTS AND DISCUSSION 0leno H _ o [ 0o
R e R
We found that depending on the difficulty of the Minutes A

order process in a service oriented supply chairrig- 9: Histogram for work times in section 4 for
different distributions qualified as the bditfor the  simple complexity order
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According to this result, we suggest to simulbaig;,
depending on the complexity of the order.

For future work it might be interesting to find

proper fitting bimodal distributions and extend the
classification of distributions of time accordinglin

* LTy of short duration orders should be simulatedthis context compare also the work on hazard models
with fitted gamma or weibull distributions. Keep in (technical background) by Bain and Engelhrdtnd
mind that as seen in Fig. 1 for gamma distributians survival times (biological and medical backgroubg)
good estimate fot.y, is crucial. It is therefore very Led® and Kalbfleisch and Prentife

important to know the minimal time from data anays
or even better from theoretical considerationsc&itte

best fits of the gamma distribution have suitable
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best fit, so we suggest to use always the lognormas.
distribution for sampling data.

* Some of the empirical distributions were bimodal
or one even trimodal. Since we can relay on many
observations this should not be the result of stiail 4.
perturbations. In all these cases no distributibted
properly. For actual simulations we therefore use t 5.
empirical distribution to sample from. However, c@n

the local maxima of the empirical distribution ftino
were always multiples of 5 s, there might also lleava 6.
in recording the data.

We suggest the simulation of time3, according to 7.
Table 2.

Table 2:  Final Results: Proposal for simulating thiéedgnt types
of orders (*: possibly not reliable data as times seetretrounded to
multiples of 5 min)

Order Classification Method of simulation
Section 1, simple Medium GAM(0.648,0.447)+1
Section 1, medium Short GAM(8.001, 2.337)
Section 1, difficult Medium GAM(0.794, 0.162)+4
Section 2, simple Long Empirical distribution
Section 2, medium Long LNO(3.306, 0.702)
Section 2, difficult Long LNO(4.896, 0.748)
Section 3, simple Short Empirical distribution*
Section 3, medium Short GAM(2.396, 0.335)
Section 3, difficult Long LNO(1.809, 1.162)
Section 4, simple Shot Empirical distribution*
Section 4, medium Long LNO(2.458, 0.484)

Section 4, difficult Long LNO(2.983, 0.929)
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