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On the Prime Radical of a Hypergroupoid
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Abstract: In this study, we give definitions of a prime ideal, a s-semiprime ideal and a w-semiprime
ideal for a hypergroupoid K. For an ideal A of K we show that radical of A (R(A)) can be represented
as the intersection of all prime ideals of K containing A and we define a strongly A-nilpotent element.
For any ideal A of K, we prove that R(A)=n(s-semiprime ideals of K containing A)= N(w-semiprime
ideals of K containing A)={strongly A nilpotent elements}. For an ideal B of K put B=B and
B™P=(B™)2 If a hypergroupoid K satisfies the ascending chain condition for ideals then (R(A))™cA
for some n. For an ideal A of K we give a definition of right radical of A (R,(A)). If K is associative

then R(A)=R,(A)=R_(A).
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1. Hypergroupoids and Complete {-Groupoids

Definition 1.1: A groupoid K is a system (K, -), where
K'is a set and - is a binary operation on K.

Definition 1.2": A complete C-groupoid is a system

(K, -), where K is a complete lattice and - is a binary

operation on K which satisfies the following conditions:

a (Vb )= V (a-b,), (Vb)-a= V (b, -a)
teT teT teT teT

for all a, be K
Let K be a set and denote by 2 the set of all its subsets.

Definition 1.3"*: A multivariable binary operation on K
is a map 9:KxK—2". A hypergroupoid is a system (K,
), where K is a set and ¥ is a multivariable operation
on K.
From now on, we write a-b instead of 3 (a, b)
Let (K, -) be a hypergroupoid. For A, B €2%. Az@,
B#J, put AB= U (a-b) and @-A=A-@= for all
acA
beB
Ae 2" Then (2%, -) is a complete ¢-groupoid.

Conversely, If (2, -) is a complete £-groupoid then
a restriction of the binary operation of 2 to K is a
multivariable operation on K and K is a hypergroupoid,
with respect to this operation.

Let w be a ternary relation on K.

For (a, b)e KxK, put a-b={xe Kl (a, b, x)e w}, then
(K, -) is a hypergrupoid.

Conversely, let (K, -) be a hypergroupoid. Denote
by w the set (a, b, c)e KxKxK such that a-b#J and
ceab. Then w is a ternary relation on K.

Hypergroupoids contain the following two classes
of algebraic systems.

1. A partial binary operation O on K is a map

B¥:A—K, where A is a subset of KxK. A partial
groupoid is a system (K, -), where - is a partial binary
operation on K.
Let (K, -) be a partial groupoid and A is the
definition domain of -. For (a, b)¢ A put a-b=0J.
Then - is defined for all (a, b)e KxK and (K, ) is a
hypergroupoid.

2. Let {k, Oy, veS} be a universal algebra such that
every Uy is a binary operation on K. For
(a, b)e KxK put a-b={0,(a, b), ve S} then (K, ) is a
hypergroupoid.

2. Prime and Semiprime Elements of an Ordered
Gruopoid: Let (G, -) be an ordered groupoid!", ch
XIV). An ordered groupoid G is called £,-groupoid
if G is a complete lattice. Denote by 15 the greatest
element of G.

Definition 2.1": Let (G, -) be an £,-groupoid. An
element peG is prime if p#lg and a-b<p, for a, beG,
then a<p or b<p.

For ae G, a#1g, denote by Rg(a) the intersection of
all prime elements of G containing a. Put Rg(a)=1g if
there are not any element with this property.

Definition 2.2: An element he G is s-semiprime if h#1g
and azsh, for ae G, implies that a<h.

For ae G, a#1g, denote by rE (a) the intersection of

all s-semiprime elements of G containing a. Put

rE(a):lG if there are not any element with this

property. For aeG denote by <a> the groupoid
generated by a. An element of the groupoid <a> will be
denoted by f(a).
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Definition 2.3: An element he G is w-semiprime if
h#1g and f(a)<h, a€ G, f(a) € <a> implies that a<h.
Therefore every w-semiprime element

s s-

semiprime. For aeG, a#lg, denote by rz}v(a) the

intersection of all w-semiprime elements of G

containing a. Put r g (a)=1g if there are not any element

with this property. It is clear that rE (a)Srg (a)<Rg(a)
for all ae G.

3. The Prime Radical of an Ideal

Definition3.1: Let K be a hypergroupoid. A right (left)
ideal of K is a subset H such that hacH (respectively
a-hcH) for all acK, he H. An (two-side) ideal of K is a
subset H such that hacH and ahcH for all ac K, he H.
Denote by Id(K) (Id,(K), Id_(K)) the set of all ideals
(respectively, right ideals, left ideals) of K. Put
eld(K), Feld(K), Deld_(K). Then Id(K), 1d,(K),
Id_(K) are complete lattices with respect to the
inclusion relation.

Proposition 3.2: Let K be an hypergroupoid. Then:
1. N A¢eldK)and U A eld(K) for any Aeld(K);

teT teT
2. N ByeldyK)and U B eld,(K) for any €1d,(K);
teT teT

..M Ct eld_(K)and C,€ Id_(K) for any CeId_(K).
teT teT
The proof is clear. We next consider the

multiplication operation A-B on 2¥.

Definition 3.3: Hypersemigroup is a hypergroupoid K
such that (A-B)-C=A-(B-C) for any A, B, Ce 2K,

If K is hypersemigroup then A-BeId(K) for any A,
Beld(K). But there are a hypergroupoid K and A,
Beld(K) such that A-B¢Id(K). Therefore for any
hypergroupoid K we define a multiplication operation
of ideals as follows:

For A, Beld(K) denote by A-B the intersection of
all ideals of K containing the set G={xlx=a'b, ac A,
be B}

Multiplication operations on 1d,(K) and Id_(K) are
introduced similarly.

Proposition 3.4: For any hypergroupoid K, the lattices
Id(K), 1d.(K), Id_(K) are complete {-groupoids with
respect to above multiplication operations.

Proof: We give a proof for Id(K) and the proofs for
Id(K) and Id_(K) are similar. Suppose A, B.Ild(K),

teT. Itis clear that A-( U B) 2 U (A-By)
teT teT
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Conversely the ideal A-(UB,) is the smallest ideal
containing all elements a-b, where ac A, be U B;-

teT
Leta, be A-(y B,)-
teT
Since be B, for some te T then a-be A-B,. Therefore
A(UB)C U(A-B))
teT teT

Now, we apply the definitions and designations of
the prime and semiprime elements of ordered groupoids
to 25, 1d(K), 1d,(K), Id_(K). Put

Ro(A)=R(A). 1 ; (A)=r'(A), 1 §§ (A)=r"(A) for
G=1d(K), AcId(K)

Ra(A)=R,(A). r ¢ (A)=r} (A), 1 (A)=r (A) for
G=Id,(K), Ac1d,(K)

Ra(A)=R_(A), r¢; (A)=r2 (A), 1§ (A)=rY (A) for
G=Id_(K), AcId_(K)

Ra(A)=R(A), 15 (A)=r o (A). 1 ; (A)=r g (A) for
G=2%, Ae2X.

For AeId(K) the ideal R(A) will be called radical
of A. Anideal A is called radical if A=R(A)

Definition 3.5: An ideal H is maximal if H#K and
HcBcK, BeId(K) implies that H=B or B=K.

For ae K denote by [a] the intersection of all ideals
of K containing a.

Proposition 3.6: Let K be a hypergruopoid. Then any
maximal ideal of K is prime if and only if K=K>.

Proof: Let K=K* and M be a maximal ideal of K.
Assume that A-BcM, A, Beld(K). If A¢B and B&eM
then AUM=K, BUM=K. Therefore
K-K=(AuUM)(BUM)=A-BUAMUMBUMMCcMCcK by
Proposition 3.4. Hence M=K. This is a contradiction.
Thus M is prime.

Conversely, Let K*2K and ac K\K*>. We prove that
M=K\{a} is a maximal ideal of K and it is not prime.
Let beM\{a}. Then hbeM and bheM for all heK.
Indeed, if there is he K such that hb¢ M then a€ hb.

Hence ac K°. It is a contradiction. Thus hbe M and
bheM for any he K. It is clear that M is a maximal
ideal. Prove that M is not prime. By agM we have
[a]zM. But [a]nggM. Therefore M is not prime.

Remark: This proposition is known for semigroups'”’.
Every sequence {Xo, Xp,..., Xp,...}, where X,=a,
Xpt 1€ [Xn]z, will be called an s-sequence of the element a.

Definition 3.7: Let Aeld(K). An element acK is
strongly A-nilpotent if every s-sequence of a meets A.
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Remark: This definition is similar to the definition of
the n-sequence'®.
Denote by n(A) the set of all strongly A-nilpotent

elements of K.

Theorem 3.8: Let K be a hypergroupoid. Then for any
ideal A of K, we have n(A)=r’(A)=r"(A)=R(A).

Proof: From the definitions r’(A), r"(A), R(A) we
obtain r'(A)cr™(A)cR(A) for any Ae Id(K).

We prove that n(A)cr’(A). If there is not an s-
semiprime ideal of K containing A then r’(A)=K and
n(A)cr’(A).

Assume that there exists an s-semiprime ideal of K
containing A. Let acn(A) and S be s-semiprime ideal of
K containing A. We first prove that ae S. If a¢ S, then
[x,]ZS, where x,=a. There exists Xle[xo]2 such that
xS since [XO]ZCZS.

By continuing in this manner we obtain an s-
sequence {X,, Xj, ..., Xp, ...} Of the element a such that
X,& S for all n. But this is a contradiction since every s-
sequence of the element a meets A. Thus aeS and
aer’(A) since S is any semiprime ideal containing A.
Hence n(A)cr’(A)cr”(A)cR(A).

Now we prove that R(A)=n(A). If n(A)=K then
n(A)=r(A)=r"(A)=R(A)=K. Let n(A)=K. Hence there
exists be K such that b¢ n(A). Then there exists an s-
sequence X={X,, X{, ..., Xp, ...} Oof the element b such
that XNnA=. Denote by X the set of ideals M in K
such that XM=, MDA. ¥ is not empty since A€ X.

We can apply Zorn’s lemma to the set X so there
exists a maximal element P of £. We show that P is
prime.

First, P is proper since bg P. Let B, Ce Id(K), B&P,
CzP. Then PUB#P and PUC#P. By the maximality of
P in X. We have PUB¢X and PUCg¢ZX. Hence there
exist xpe X, Xq€ X such that x,e PUB, x,€ PUC. Then
[XalSPUB, [xJcPUC. Hence X € [xml’'CPUB,
Xq+1€ [xq]nguC. By continuing in this manner we find
Xm+1€ PUB, X4,1€ PUC for all t. Put n=max(m, q). Then
x,€PUB, x,6PUC. Hence, xu€[x,)* <(PUB)
(PuC)c PUB-C by the Proposition 3.4. But x,,;¢P.
Hence B-CzP. Therefore P is prime. Thus there exists a
prime ideal P  such that bgP.  Thus
n(A)=r*(A)=r"(A)=R(A). From the Theorem 3.8,
we obtain that every s-semiprime ideal of K is
radical.

The ideal R(<) will be called the prime radical of
the hypergroupoid K and will be denoted by Pr. rad(K).

Corollary 3.9: For any ideal A of K the following
conditions are equivalent:

1. R(A)=A;

2. 1f B"cA, BeId(K), for some n then BCA.

3. If B’cA, BelId(K), then BCA.
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Proof: (1)=(2)=(3) is clear. (3)=(2): Let B™CA,
Beld(K), for some n. Then B™=B")’cA implies
that B(“"l);A. By induction on n we obtain BCA.
(2)=(1): The condition (2) implies that r’(A)=A. By the
Theorem 3.8 we see R(A)=r’(A)=A.

Corollary 3.10: For a hypergropoid K the following
conditions are equivalent:

1. Every ideal of K is radical;

2. A-B=ANB for all A, BeId(K);

3. [a]’=[a] for all ac K.

Proof: We use the following lemma:

Lemma 3.11: R(A-B)=R(AnB)=R(A)NR(B) for any
A, Beld(K).

The proof of this lemma follows from the
Proposition 1.6,
()=(2): If every ideal of K is radical then using the
lemma we obtain
A-B=R(A-B)=R(A)nR(B)=ANB. 2)=03): Let
A-B=ANB for all A, Beld(K). Then A=A for all
Aeld(K). (3)=(1): We prove that every ideal of K is s-
semiprime. Let A be an ideal of K. Then A= Y [a].

Using the Proposition 34 we have
A=( U [a])’=(u [a]®) uU(u [a][b])=u [a]=A since
ae A acA acA acA

[a]-[blc[a]lN[b] for any a, be A. Thus A’=A for all
Aeld(K). Assume that B?cA, Beld(K). Then
B:Bng. Therefore A is s-semiprime. From the
Theorem 3.8 we obtain that A is radical.

Remark: This corollary is an analog of the similar

.. f 8
theorem for associative rings"".

Definition 3.12: Let AcId(K). An ideal B of K is A.-
nilpotent if B®™cA for some n.

Proposition 3.13: Let K be hypergroupoid and A,
Beld(K). If C is Bs-nilpotent and B is As-nilpotent then
C is As-nilpotent.

Proof: Since C is B¢-nilpotent then C(“)QB for some n.
Hence C™™=(C™)™ =B™ A for some m.

Theorem 3.14: Let K be a hypergroupoid satisfying the
ascending chain condition for ideals. Then for any
ideals A of K, R(A) is As-nilpotent.

Proof: Let AcId(K). Denote by ¥ the set of all As-
nilpotent ideals H of K such that HDA. ¥ is not empty
since A€ X. There exists a maximal element P in £. We
prove that P is s-semiprime. Let B®cP. Then
(BUP)’=B*UBPUPBUP’CP. By Proposition 3.13 the
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ideal BUP is Ag-nilpotent. By the maximality of P we
have BUP=P. Hence BcP. This means that P is s-
semiprime. Since PDA then R(A)cP by Theorem 3.8.
But P”CACR(A) for some n. Since R(A) is s-
semiprime then PER(A). Thus P=R(A)

Remark: This theorem is similar to the proposition for

associative rings'”’.

Corollary 3.15: Let K be hypergroupoid satisfying the
ascending chain condition for ideals. Then the
following conditions are equivalent:

1. K=& for some n.

2. K doesn’t have a prime ideal;

3. K doesn’t have a s-semiprime ideal.

A proof follows from Theorem 3.14 and the
definition of Pr. rad(K). Denote by 1d,(K) the set of all
radical ideals of K. Id,(K) is a complete lattice with
respect to the inclusion relation. Denote by v and A the
lattice operations in 1d,(K).

Theorem 3.16: Let K be a hypergroupoid. Then the
lattice 1Id(K) satisfies the infinite A-distributive
condition:

AA (vB)=V(ArB) for any A, B Id,(K)

Proof: The proof follows from Theorem 1.3,

Theorem 3.17: Let K be a hypergroupoid satisfying the
ascending chain candition for ideals. Then any radical
ideal of K is an intersection of finite prime ideals and a
such representation is unique.

Proof: First we prove the following lemma.

Lemma: HeId,(K) is prime ideal if and only if H is an
A-indecomposable element of the lattice 1d,(K).

Proof: Let A be a prime ideal of K and A=A AA,, Ay,
A,e1d,(K). Then'.

A1 ACAINACR(AINAY)=AAA=A. Hence
A|cA or A,cA. Then A=A, or A=A, Let A be an A-
indecomposable element in Id(K) and BCcA, B,
Celd(K). Then R(B-C)cA. By the lemma 1.6 we
have R(B)AR(C)=R(B-C)cA. By the distributivity
Id(K) we obtain A=Av(R(B)A R(C))=(AvR (B))A
(AVR(C)). Then A=AVR(B) or A=AVR(C) since A is
A-indecomposable. This means that BER(B)cA or
CcR(O)cA.

Thus A is prime. The lemma is proved. By the
lemma and the Corollary!"! we obtain that every radical
ideal of K is an intersection of finite prime ideals and a
such represantation is unique.

4. The Right Prime Radical of an Ideal
Definition 4.1: A right ideal H of K is maximal if H#K
and HEBcK, Be1d,(K), implies that H=B or B=K.
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Proposition 4.2: Let K be a hypergroupoid such that
AcK-A for all AeId,(K). Then any maximal right ideal
of K is prime element of 1d,(K).

Proof: Let M be a maximal right ideal of K and
A-BcM, A, Beld,(K). If AzM then MUA=K. By
Proposition 3.4 we have BCK-B=(MUA)-B=MBUAB cM.

Definition 4.3: An element 1€ K is called identity of K
if I-a=a-1=a for all ac K.

Remark: The conditions of Proposition 4.2 are
satisfied for groupoids with 1. Thus there exists a prime
right ideal in such groupoids.

For an element ac K denote by [a], the intersection
of all right ideals containing a. Every sequence {X,, ...,

2 .
Xp, .-}, Where Xg=a, Xmui€[Xmly, is called an s,-
sequence of the element a.

Definition 4.4: Let Aeld.(K). An element aeK is
strongly A.-nilpotent if every its s,-sequence meets A.

Denote by n,(A) the set of all strongly A,-nilpotent
elements of K.

Proposition 4.5: Let K be a hypergroupoid. For any
right ideal A of K are satisfied the following
inequalities:

R(A)en.(A)cr} (A)cr ) (A)SRL(A).

Proof: A proof of nJ,(A)gr_SIr (A) is similar to the proof

of n(A)cr’(A) as in the Theorem 3.8. The inequality

R(A)cn,(A) immediately follows from the equality
R(A)=n(A) and definitions of n(A) and n.(A).

Theorem 4.6: Let K be a hypergroupoid satisfying the
following conditions:
(K-A)-B=K:(A-B),
Beld,(K). Then

R(A)=n,(A)=r3 (A)=r} (A)=R,(A) for any AcId(K).

(AK)B=A-(K-B) for all A,

Proof: By Proposition 4.5 it is enough to prove that
R.(A)SR(A).

Denote by P(K) the set of all prime ideals of K and
by P,(K) the set of all prime right ideals of K. We prove
that P(K)cP,.(K). Let QeP(K) and B-CcQ, B,
Celd,(K). Then, (BUK-B) (CUK-C)= (B-C)u (B-(KC))
U((K-B)-C)u(K-B)-(K-C)c=Q.

Note that BUKB and CUKC are ideals of K.
Indeed K-(BUKB)=K-BU(K-(K-B))cBUKB.

From (BUKB) (CUKC)cQ we  obtain
BcBUKBCQ or CcCUKCcQ since Q is prime. This
means Qe P,(K).
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Thus P(K)cP.(K). Therefore we have R.(A)cR(A).

Remark: The conditions of this theorem are satisfied
for hypersemigroup. Therefore the same theorem is
given for nonasociative hypergroupoid K and AeId(K)
such that R(A)=R,(A) and R(A)#R_(A).

Let Ae1d,(K). For be K put b®=b, b™=(b™)*,

Definition 4.7: An element beK is Ag-nilpotent if
b™cA for some n. An element be K is A,-nilpotent if
f(b)cA for some f(b)c<b>.

Denote by nf) (A) (ngv (A)) the set of all A,-

nilpotent (respectively, A,-nilpotent) elements of K.
Proposition 4.8: For any ideal A of K are hold the
following inequalities:

R(A)Sn,(A)cn g (A)Cr g (A)SRA(A)

R(A)Cn(A)Sn o (A)cr gy (A)eRy(A)

The proof is smilar to the proof of Proposition 4.5.

Theorem 4.9: Let K be a hypersemigroup satisfying
the condition K-a=a-K for all aeK. Then
R(A)=n,(A)=r1,(A)=R,(A) for all AcId(K).

The proof is smilar to the proof of Theorem 4.6.
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