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A General Probability Distribution Using Biirmann Power Series
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Abstract: The goal of this study is to present a general power series distribution that exhibits the
properties of some well known distributions. To accomplish this goal we examine an infinite sequence
of independent random variables having a Biirmann’s power series distribution. Consequently, we
derive moment generating function of the distribution and establish the maximum likelihood estimate
of the component that can be attributed to the parameter of the distribution. Using the results
mentioned above we verify our conjecture on two known parametric discrete distributions, the Poisson

and the Binomial.
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INTRODUCTION

In 1927 Whittaker and Watson presented a
definition for the Biirmann series in their study of
analytic function theory as a general power series. The
formal definition and basic results are given int". It
should be noted that in the definition of the series there

is a general function sequence /,(Xx) which can be

uniformly estimated to be Xx. This reduces to the
traditional methods using power series of x|
Researchers such as Awad and Alawneh?),
Kyriakoussis and Vamvakari™ and Shanmugam'”
developed continuous and discrete distributions based
on power series of Xx. However none has developed
methods using the Biirmann series. Other researchers
such as King[él and Patterson, et. al” developed
methods of summability theory using this series. The
strength of the Biirmann series lies in the flexibility of

selecting /2, (x) . In this article we derive moment

generating functions and maximum likelihood
estimators for parameter of distributions based on the
Biirmann series. We will illustrate our result using
Binomial and Poisson distributions.

Definition 1: A Biirmann-series is a series of this form:
c k

.fn (x) = Z bk (hn (x))
k=0

where f and A are given functions.

Additional results can also be found in®. This notion
was extended to Probability Theory by J. P. King in!®
by considering the following definition.

Definition 2: A random variable X, with range

{0,1,2,...} has a Biirmann-series distribution if there
exists a Blirmann-series

5,(x)=_b,,(h,(x))"
k=0

which is convergent on some set [  with
b,,20,s,(x)#0 for xe [ and
b, (h (x))
P(X, =k)=M,k=0,l,2,....
s, (x)
RESULTS

Section 2.1: Moment generating function is one of the
most useful instrument use to derive moments for a
probability density function. We use the implicit
definition of the probability function for the Biirmann’s
power series to derive its moment generating function.
The derivation requires expansion of the infinite series
and regrouping of the terms as shown in the proof of
the following theorem.

Theorem 1: Let {X, } be an infinite sequence of

random variables, each having range {0,1,2,...} and
with the following Biirmann-series distribution

b, (h,(x))"

P(X,=k)= k=012 ... (1)
5, (x)
where
5,(x)= b, (h(x))",n=0,1,2,3,...
k=0

Suppose eachh (x), n=0,1,2,3,... is infinitely
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differentiable, then the moment generating function of

o k'(h ¢
X, has the subsequent form t' Z" = "k( () () :
A im0 1! s, (x
My =SB, ®
U(h,(x))

1 |b,o+b,,eh,(x)
s,(x) +b, " I} (x) + b, " B (x) + -

where U(x) = Z:=0 bn'kxk. The p -th moment is

generated by the following expression

b kp h x k [bNO +0+--
M7 (0) = D o bk (B, (x)) ' Sn( x)

5, (X) i
Proof: Let {X,} be defined as in Definition 1.2 and bu by () + b, B, ()1 4B, 1, (x)z!-

consider E(e*), which is denoted by M, (). Note

” ”(x)
that M, (¢) has the following expansion. l
2t)
x)+b h2x2t+b h2 (
Mk([)zE(e’k) n2 n( ) n,2 ( ) n,2 ( )
3 2t
nke’k(h (x)) +bn2h2( )( )
k:
1+tk+(tk) -
L3, I +b, W0 (x) + b, b (x) pt + b, bt (x) 2 ”)
sn (x)k=0 ' (tk)3
+—3'—+... ( t)
' +b,, Y ()
_ 1 bn.O nle h (x) .
5, (x)| +b, €™ B2 (x) + b, €™ by (x) +-+- : ]
by = +t b,, —
S (x [:b"o +0+ ‘sn(x) {; ! ' ZO - Z ¢ .
[ +o4+t" > b
nl n(x)+ n,l n(x)t+ hn(x)zl ; "k p.

b, h, (x) - Z [Z b, k' (h, (x))"]

Sn(x) i=0
+b h’ (x)+b h? (x)pt

np n np-'n Z Z . "kk(h”(X))k
b 1LY b, e S s
Now consider the p -th derivative of Equation 2,
o0 o0 k
b, —+t By d’ 1 dr 1
1 kz(; 0! ,,ZO u -M, (1) =————U(e'h,(x)).
=53l ca dt’ U(h (x)) di’
" Z i ? Using the definition of U we obtain the expression for
w=D : the p -th derivative as
0 kl’
e fP — 5 d’ 1 ,
e gy ] ZoM, (0 = ———U(ke'h,(x))
dr’ U(h,(x))
= 1 Z [ankk’ (h, (x)* ] Consequently, the p -th moment of the probability
8, (x) i2

function in Equation 2.1 is
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1
Uh,(x))’
Z - ,NJC"(h,,(JC))/c
5, () .

E(X?)=

n

3)

Uk, (x)) =

This completes the proof of the theorem.

We use the results in Theorem 2.1 to illustrate the
moment generating functions of two special cases for
Biirmann-series distribution as in'®.

Example 1: Given the conditions in Theorem 2.1 with

Ux)=Y." b

"I i k<n,
b,, =1\k
0 if  otherwise.

We are granted the following moment generating
function

P I C)
s, (x)
and if A, (x)=1%, then s, (x)—— This yields

the Binomial moment generating function.

Example 2: Given the conditions in Theorem 2.1 with

U(x)= z:::O b, X, and
bmk = *t

We are granted the following moment generating
function

Mk(t)zm

ee’h" (x) )

If h(x)=nx thens,(x)=e"
Poisson moment generating function.

This yields the

Section 2.2: Using the moment generating function in
Sections 2.1 we prove the following results of regular

moments for{X,}, which is similar to the results
established by King in!.

Theorem 2: Let {X,} be defined as in Theorem 2.1 and
2 h (x)#0.Let E and V denote, respectively, the

expectation operator and the variance operator. Also let
= E(X,). Then, for each n=0, 1, 2, 3,...
m=1,23, ..

and each

191

\-”'(x)
5, ()2

(E(X,))

E(X,)="%

h (x)

hy(x) d
hy (x) dx

E(X:wl) —
+E(X,)E(X,),

and
h, (x) d

V(X,) =22 LEX,).
Proof: Equation 3 yields the following,
&
Ex )= LA
U (h,,(X))

TG )Zkbnkw (x))*

BXCI MR R SR
T (x); i (AL, (X))E A, (x)

_h()s,()
h, (x) 5,(x)

Thus part (1) of this theorem is established. Using
Equation 3 again we obtain the m -th moment as

£y = UK BG)
U(h,(x))

- z k", (h, ()"
Aot
: ((’;))L ix)‘z;k'”*'bn,‘(h ()", ()
i(()gs zxn el

4% 5 lx) z k"b, , (h, (x)
_%%%M;"(OﬁMk(O)M;T(O)-

Thus part (2) of the theorem is completed. Note
that part (3) is a special case of part (2) whenm = 1.
The assumption/, (x)# 0, allows the moments
derived above to be expressed in closed forms, however
the assumption is not necessary.
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Section 2.3: The maximum likelihood is one of the
most important characteristics of an estimator for a
given probability distribution function. We shall use
this probability distribution to establish the maximum
likelihood estimators for the parameters in the
underlying probability function for the Biirmann

probability distribution. Let L(k,h,(x)) denote the
likelihood function for Equation 2. The maximum
likelihood estimate of /,(x) can be derived as shown
in the following theorem.

X, =k1’X2
X, =k,

sequence of random variables defined for the Biirmann-

—L7 .
2 be

Theorem 3: Let a

series distribution function then the maximum
likelihood estimator of A, (x) is given by

5 h (x)s,(x) <&

OB W @

Sn'(x) i=1

Proof: For Equation 2 the likelihood function is given
by

- bn,kh:‘ (x)

Lk ) =T ] e

k=1
After taking the first derivative we obtain

J S0, @
g LR ) == ) 4

e

Thus equating the right hand side of the expression
to zero, we get Equation 2.4. This completes the proof
of Theorem 2.3.

We apply the result obtained here to derive the
maximum likelihood estimators for parameters of the
same two special cases described in Section 2.1.

Example 3: In the first case let, /1, (x)=nx and

s, (x)=e",
h(x) = z ks
i=l

which is a sufficient statistic for the parameter involved
in the Poisson distribution!”.

thus Equation 4 gives

X

= and

h (x)=

Example 4: In the second case let,

S (x)—

thus Equation 4 gives

u’

Zi:l k"
n—zn Kk’

i=1 !

ha(X) =
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which is a sufficient statistic for the parameter involved
in the Binomial distribution'” and is consistent with the

definition of 4,(x) .

CONCLUSION

In this study we have established some useful
results on Biirmann power series distribution. The
discrete nature on the probability function of the series
enables us to illustrate the results for the known
parametric discrete distributions. We are able to impose

conditions on b, , and 4, (x) to generate the moments

and estimates of the parameters for the Poisson and the
Binomial functions.

The results in this study add new ideas to the
underlying theory of probability. ~This  was
accomplished by presenting moment generating
function and maximum likelihood estimators of the
power series. There are many possible directions for
these ideas to venture, not the least of which is to
consider its connection with testing of hypotheses. The
analysis here is based on Biirmann power series
distribution, but we can consider any other general
power series.

The advantage of this generalized distribution lies

in its flexibility of selection of /4, (x) . Because of this

property the general probability distribution can be
viewed as continuous or discrete. The method presented
here is classical in nature. Feller presented in® one
general class of power series distribution and here we
presented a class that includes his results.
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