
Journal of Mathematics and Statistics 1 (2): 165-167, 2005 
ISSN 1549-3644 
© Science Publications, 2005 

165 

 

Korovkin and Weierstrass Approximation via Lacunary Statistical Sequences 
 

1Richard F. Patterson and 2Ekrem Sava� 
1Department of Mathematics and Statistics,  

University of North Florida Jacksonville, Florida, 32224, USA 
2Department of Mathematics, Faculty of Yüzüncü Yil University Education, Van, Turkey 

 
Abstract: In this study we shall extended Korovkin and Weierstrass approximation theorem to 
lacunary statistical convergent sequences. In addition, to these approximation theorems, we established 
also introduced lacunary statistically convergent of degree � and establish a corresponding Korovkin 
type theorem namely the following:  
If the sequence of positive linear operators Pn: CM [a, b] →  B[a, b] satisfies the conditions: 
 

* ||Pn(1, x)-1||�→ 0(S 1β
θ ) as r → ∞ , 

* ||Pn(t, x)-x||B → 0(S 2β
θ )  as r → ∞  and  

* ||Pn(t
2, x)-x2||B → 0(S 3β

θ )  as r → ∞ , then for any function f ∈  CM [a, b], we have ||Pn (f, x)-

(x)||B → 0(S β
θ )  as r → ∞  and � =min{�1, � 2, � 3}. 

 
Key words: Double Lacunary Sequence, P-Convergent  

 
INTRODUCTION 

 
The concept of statistical convergence was introduced 
by Fast in 1951. A complex number sequence x is said 
to be statistically convergent to the number L if for 
every ε >0 

                        
1

{k<n: |x -L| }|=0
n

Lim
n

ε≥  

where by k ≤ n we mean that k=0,1,2,...,n and the 
vertical bars indicate the number of elements in the 
enclosed set. In this case we write st1- Lim x=L or 
xk →  L (st1).  By a lacunary �= (kr); r=0, 1, 2,..... 
where k0=0, we shall mean an increasing sequence of 
non-negative integers with kr- kr-1 ∞→ as r ∞→ . 
The  intervals  determined  by   �  will   be  denoted by 
Ir = (kr-1, kr] and hr = kr- kr-1. The ratio 1/r rk k −  will be 
denoted by qr. 
The following concept was presented by Fridy and 
Orhan. Let � be a lacunary sequence; the number 
sequence x is S�- convergent to L provided that for 
every ε >0 

                      1
| {k |x -L| }|=0rr

r

Lim I
h

ε∈ ≥  

in this case we write S�- Lim  x=L or xk →  L(S�). It is 
knownc that every convergaent sequence is statistical 
convergent, but not very statistical convergent sequence 
is convergent. The space of all functions that are 
continuous on [a, b] and bounded by the number M, 
shall be denoted by CM [a, b]. Also, B [a, b] is the space 
of all bounded function with norm ||f||B= supa � x � b|f(x)|. 

In 1960 Korovkin presented the following 
approximation theorem: 
 
Theorem 2.1: If the sequence of positive linear 
operators Pn: CM [a, b] →  B[a, b] satisfies the 
conditions: 
* ||P n (1, x)-1|| B → 0 as n → ∞ , 

* ||P n (t, x)-x|| B → 0 as n → ∞  and  

* ||P n (t 2 , x)-x 2 || B → 0 as n → ∞ , 

 
then for any function f ∈  CM [a, b], we have  
 
                     ||Pn (f, x)-f(x)||B → 0 as n → ∞ . 
 
This type of approximation was first introduced to 
statistical convergent by Gadjiev and Orhan in 2002. 
This introduction was accomplished by the presentation 
of a statistical analog of Korovkin theorem. In addition 
to this extension Gadjiev and Orhan observes that these 
theorem can be viewed as a Weierstrass approximation 
theorem via statistical convergent. The goal of this 
study is to extends Gadjiev and Orhan results to 
lacunary statistical convergent and observes that we 
have similar Weierstrass type approximation for 
lacunary statistical convergent sequences. 

 
RESULTS 

 
Theorem 2.1: If the sequence of positive linear 
operators Pn: CM [a, b]�B[a, b] satisfies the conditions: 
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* ||P n (1, x)-1|| B → 0(S θ ) as r → ∞ , 

* ||P n (t, x)-x|| B → 0(S θ )  as r → ∞  and  

* ||P n (t 2 , x)-x 2 || B → 0(S θ )  as r → ∞  

then   for   any   function   f   ∈    C M [a, b], we have  
                 ||Pn (f, x)-f(x)||B → 0(S�)  as r → ∞ . 
 
Proof: We shall follow the proof of Gadjiev and Orhan 
of [3] through the first stages for this proof.  Since f is 
bounded by a real number M, we have the following  
 
                                     |f(t) − f(x)| ≤ 2M 
 
for all t and x. Also, since f is continuous on [a, b] then 
for given ε > 0 
                                     |f(t) − f(x)| <ε  
 
for all t and x satisfying |t − x|<δ .  For x ∈  [a, b] let 
us consider gx (t) = (t − x)2, for |t − x| ≤ �.  This implies 
that ||gx (t)|| ≤ � where � is a fixed real number.  Since Pn 

is a sequence of linear operators we obtain the 
following: 
Pn (f(t), x) − f(x) = Pn (f(t) − f(x), x) + f(x)(Pn (1, x), x). 
 
As stated in [3] we are granted the following: 

|| Pn (f(t), x) − f(x)||BZ≤ (
2

2M
Mε

δ
+ + ) 

                                 ×  ||P n (1, x)-1|| B  

                                 + 
2

4Mb
δ

||P n (t, x)-x|| B  

                                 + 
2

2M
δ

||P n (t 2 , x)-x 2 || B  

                                 ≤ K 1 (||P n (1, x)-1|| B  

                                 + ||P n (t, x)-x|| B ) 

                                 + K 1 ||P n (t 2 , x)-x 2 || B  
where  

              
1 2 2

2 4
K  =max ,

M Mb
Mε

δ δ
� �+ +� �
� �

 

For 'ε >0 the last inequality implies the following: 

              |{n rI∈ : ||Pn (f, x)-f(x)|| B  ≥ 'ε }| 

                   ≤ |{||Pn (1, x)-1|| B ≥
'

1K
ε

 

                    +||Pn (t, x)-x|| B ≥
'

1K
ε

 

                    + ||Pn (t
2 , x)-x 2 || B  ≥

'

1K
ε

}|. 

Now let us consider the following sets 
    D=: | {n rI∈ : ||P n (1, x)-1)|| B  + ||P n (t, x)-x|| B  

                +||P n (t 2 , x)-x 2 || B ≥
'

1K
ε

}|, 

    D 1 =: | {n rI∈ : ||P n (1, x)-1)|| B ≥
'

13K
ε

 }|, 

    D 2 =: | {n rI∈ : ||P n (t, x)-x)|| B ≥
'

13K
ε

 }| and  

    D 3 =: | {n rI∈ : ||P n (t 2 , x)-x 2 )|| B ≥
'

13K
ε

 }|. 

It is also clear that D ⊂ D 1 ∪ D 2 ∪ D 3 . This grants 

us the following inequality 

                |{n rI∈ : ||P n (f, x)-f(x)|| B  ≥ 'ε }| 

                               ≤ |{||P n (1, x)-1|| B ≥ 
'

13K
ε

  

                              + ||P n (t, x)-x|| B ≥
'

13K
ε

 

                              + ||P n (t 2 , x)-x 2 || B ≥
'

13K
ε

}|. 

Therefore (1), (2) and (3) implies ||Pn (f, x)-
f(x)||�→ 0(S�)  as r → ∞ . This completes the proof. 
 
Theorem 2.2: If the sequence of positive linear 
operators P n : C M [a, b] →  B[a, b] satisfies the 

conditions: 
* ||Pn (1, x)-1||B → 0(S�) as r → ∞ , 
* ||Pn (t, x)-x|| B → 0(S�)  as r → ∞  and  
* ||Pn (1, x)-1|| B → 0  as n → ∞ ,  
then for any function f ∈  CM [a, b], we are granted the 
following:  

                     
N

B
n 1

1
lim ||P (f(t), x)-f(x)|| 0

N N =

=� . 

 
Proof: Since ||Pn (1, x)-1||�→ 0  as n → ∞ , there exists 
M1 such  that  for all n, ||Pn (1, x)||�≤  M1. Thus for any 
f ∈CM [a, b] and n = 1, 2, 3,... we have the following: 
 
                   ||Pn (f, x)-f(x)||B ≤ ||f||C ||Pn (1, x)||B   
                                            +||f||C|M(M1  + 1). 
 
We also know that 
Pn (1, x)-1||B → 0  as n →  ∞  implies 
||Pn (1, x)-1||B → 0(S�) as r → ∞ . 
Thus by Theorem 2.1||Pn (f, x)-f(x)||B → 0(S�)  as 
r → ∞ . 
In [2] Theorem 4 assures us that if a sequence is 
bounded and is S�-convergent then it is (C, 1) 
summable to the same limit.  Thus 
 

                   
N

B
n 1

1
||P (f(t), x)-f(x)|| 0

N
Lim

N =

=�  
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This completes the proof. 
The Weierstrass approximation theorem state the 
following: If f is a continuous function on [a, b] then 
there is a sequence of polynomials (PLn) such that 
 
                          

[ , ] ||PL -f|| 0C a bn
Lim =  

 
In this case we have ||Pn (f, x)-f(x)||�→ 0(S�)  as 
n → ∞ . This can be interpreted as follows: 
 
Theorem 2.3: If f is a continuous function on [a, b] 
then there is a sequence of polynomials which are 
lacunary statistically convergent to f on this interval but 
not uniformly convergent. 
 
Definition 2.1: The number sequence x=xk is lacunary 
statistically convergent to the number L with degree 
0<�<1, if for each ε >0  
 

                
1

1
| {k I |x -L| }|=0

( )r
r

Lim
h β ε− ≥  

 

which we shall denote by xk-L → 0(S β
θ ). 

 
Theorem 2.4: If the sequence of positive linear 
operators Pn: CM [a, b] →  B[a, b] satisfies the 
conditions: 
 

* ||Pn (1, x)-1||B → 0(S 1β
θ ) as r → ∞ , 

* ||Pn (t, x)-x|| B → 0(S 2β
θ )  as r → ∞  and  

* ||Pn (t
2, x)-x2||B → 0(S 3β

θ )  as r → ∞    

then     for     any     function   f   ∈    C M [a, b],   we   

have  ||Pn (f, x)-f(x)|| B → 0(S β
θ )  as r → ∞  and 

�=min{ �1, �2, �3}. 
 
Proof: We are granted the following results as in 
Theorem 2.1: 
 

       

1

1

2

2

3

3

'

1

'

1
1

1 1

'

1
1

1 1

'

1
1

1 1

| { :|| ( ( ), ) ( ) || } |
( )

| { :|| (1, ) 1|| } |
3

( )

|{ :|| ( , ) || } |
3

( )

|{ :|| ( , ) || } |
3

( )

r n B

r

r n B
r

rr

r n B
r

rr

r n B
r

rr

n I P f t x f x
h

n I P x
K h

hh

n I P t x x
K h

hh

n I P t x x
K h

hh

β

β

β β

β

β β

β

β β

ε

ε

ε

ε

−

−

− −

−

− −

−

− −

∈ − ≥

∈ − ≥
≤

∈ − ≥
+

∈ − ≥
+

 

This   inequality   implies   the  desired results. This 
completes the proof 
Finally we conclude this study by stating a theorem 
which characterizes Korovkin type theorem for 
lacunary statistical convergent sequences. To 
accomplish this we consider positive linear operations 
Pn from Lp [a, b] to Lp [a, b]. We omit the proof since it 
involves known arguments which are used in Theorem 
7 of [3]. 
 
Theorem 1.2: If the sequence of positive linear 
operators Pn: Lp [a, b] →  Lp [a, b] such that {||Pn||} is 
uniformly bounded and satisfy the following conditions 
 
* ||Pn (1, x)-1||

pL → 0(S�) as r → ∞ , 

* ||Pn (t, x)-x||
pL → 0(S�)  as r → ∞  and  

* ||Pn (t
2, x)-x2||

pL → 0(S�)  as r → ∞ , then for any 

function f ∈Lp [a, b], we are granted the following: 
 
               ||Pn (f, x)-f(x)||

pL → 0(S�) as r → ∞ . 

 
CONCLUSION 

 
The results in this study add new ideas to the 
underlining theory of approximation. This was 
accomplished by presenting a series of extensions to the 
Korovkin theorem using lacunary sequences. There are 
many possible directions for these ideas to go, not the 
least of which is by using general summability 
methods.  In  addition,  other  important  approximation  
theorems can be extended to lacunary sequence spaces. 
The methods incorporated throughout this study are 
classical summability methods, however modern 
analysis method may also shine light on these ideas. 
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