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Abstract: A collection of new algorithms for accelerating the convergence of sequence of functions
was described. The definitions and connections of these new algerithms with the improved functicnal
epsilon algorithms are given. The effectiveness of these new algorithms was examined, namely the

-algorithms, the -algorithms, the -algorithms, the -algorithms and the improved functicnal epsilen
algorithms, for approximating sclutions of a given power series. The estimates derived using the

-algorithms are found to be substantially more accurate than other similar algorithms.
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INTRODUCTION

In this study, four new algorithms for accelerating the
convergence of sequence of functions are introduced.
We examine the effectiveness of these new algorithms
by approximating the solutions of a given power series.
These new algorithms are designed differently to the
improved functional epsilon algerithm introduced in
[1]. Basically, we express these new metheds as a
rational form. The elements of the numerator and the
denominator are varied from algorithm to algorithm.
Hence we shall see which algorithm produces a better
approximation. The four algorithms described in this
study are the most consistent algorithms found in our
investigation. We have introduced the appropriate
names for these new algorithms, namely the -
algorithm, the -algorithm, the -algorithm and the -
algorithm. The -algorithm was the first of the kind and
this was further improved by the -algorithm and then

-algorithm. Finally the -algorithm was developed and
this is shown o be a good alternative to the improved
functional epsilon algorithm. The prime motive for
developing these new algorithms was to accelerate the
convergence of sequence of functions and to find a
better accelerator than the improved functional epsilon
algorithm. In order to construct these new methods a
similar procedure was used as to the improved
functional epsilon algorithm, thus the following
proposition is essential.

Proposition: The functional sequence used in each of
the algorithms is based on the generating function
I{x, A}, which is a series of functions expressed as:

15

fx M=% C(x)A,

i=0

(1

in which Cy(x) € L,[a, b] are given and [a, b] is the
domain of definition of Ci(x} in some natural sense. We
also suppose that f(x, A} is holemorphic as a function of
A atthe origin A = 0. Then (1) converges for values
of ‘ﬂ‘ which are sufficiently small. In this study, we
illustrate how these new algorithms can be used (o
accelerate the convergence of a series having the form
(1) for A=1.

The -algorithm: We define the € -algorithm of type
(n, k) as:

Y (1) {on +i + Lk 1-,x))(j: Avn +ik —1x) dx)_1
ankx) =2

(2

Zk:(—l)'(j:Au(n kL) d}i)_1

i=0

provided that the denominator of (2) is not equal to zero

and the initial estimate given as:

Ot(n,();x):i C, (x}, for n,ke x.
i=0

and in sequel, on the variable n, for example:

The  operates, now

Ao{n-1k}=a(n k) -an-1k). 3

The -algorithm: The -algorithm is actually an
improvement of the & -algorithm. Simply, we

introduce the elements of [kJ and (n+k+i)k'1 in the
i

numerator and dencominator of (2} and we find that the

precision is increased substantially. We define the -

algorithm of type {(n, k) as:
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(-1 [ﬂ(mkﬂ}“(ﬁ(mn Lk X))(J.:Aﬁ(nﬂ,kfl;x} dx)

Sy [FJ(mkH)“ (EAE;(H fik-Lx dx)fl

4

provided that the dencminator of {4) is not equal to zero and the initial estimate given by pp o X):Zn: C(x), for

i=0

nke .

The -algorithm: We explore further to express an algorithm, which shall produce a better estimate than the
improved functional epsilon algorithm. Therefore we define the ) -algorithm of type {1, k} as:

Z(—l)i {v(n +i +1,k—1;x))(j: Ay(n +k,k =1 x3Ay(n +i,k —1;x) dx)_l

vnkix) == ko b = (5
(-1) “ Ay(n+k+i,k—Lx)Ay(n +i,k-1x) dx)
—0 2

1

provided that the dencminator of (5) is not equal to zero and the initial estimate given by 0= € (x)

forn,ke ®. In this particular algerithm two different types of difference component are used to improve the
accuracy of the approximate sclution.

The -algorithm: The -algerithm is actvally an improvement of the -algorithm. As before, we multiply the

integral compenent by {kJ and (n+k+11)k'1 in the numerator and denominator of (3) and we find that the precision is
i

better than previous three algorithms. We define the ¢ -algorithm of type {n, k) as:

-1

zk:(—l}i (k (n+k+i) (6(u+1+1,k—1;x))(j:A6(n+k,k—l;x)A&(nH,k—l;x) dx)

8{nkx)= = ! {6)

(-1 [?](IHk+i)k_I(EAB(n+k,k—l;x}AS(n+i,k—1;x) dx)fl

i=0 L

provided that the denominator of (6} is not equal to zero and the initial estimate given by zq q, X):Z": C (x). for

i=0
n,ke .
These new algorithms of type (n, k; x} can be laid cut in a table:

LLxy {Lzxy {,3x)
(ZLxy (2%} (2.3x) - {7
(B.Lxy (3,2x) (33x) -

where, n is the row sequence and k represents the column sequence.
The improved functional epsilon algorithm { ): The improved functional epsilon algorithm is actually based on
the integral Padé approximant [1-6]. The -algorithm is very efficient as an algorithm and is a successor of the

classical functional epsilon algorithm [1, 5, 6].
We shall state the essential formula used in calculating the approximate scluticn

Ae{n, k-1, x)jb Ae{n,k—1x)Ae(n -1,k —1;x)dx

en-Lk;x}=¢e(nk-1x)— {8)

[* Ae(n k—108%(m -1k~ L x)dx
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provided that the denominator of (8} is not equal te zere and the initial estimate given by E(n,[};x)=i c X},for
i=0

nke .

Equivalence of the Estimates: Here we shall demonstrate the similarities of two groups. First of the similarity is
between the three algorithms, namely, the -algorithm, the -algorithm and the -algorithm. We shall observe how

these three algorithms produce similar expression of the approximating solution. The second group of similarity is
between the -algorithm and the -algorithm. For this particular case we shall justify that the -algorithm reduces to
the -algorithm, hence both algorithms are identical. In both of the groups we shall demonstrate the formula of each
of the algorithms produce identical equations for a particular type of row sequence.

First we begin by expanding (4}, the formula of the ¥ -algerithm of type (n, 1)

v(n+1,0;x) v(n+2,0:x)

ijy(n+1,0;x)Ay(n,0;x)dx jb(Ay(n+l,O;x))2dx
7{nLx)== I £ I 9

j.bAy(n+1,0;x)Ay(n,O;x)dx Ib(Ay(n+1,0;x))2dx
Multiplying the numerator and denominator of (9) by:
LbAy(n+ 1,0y x)Ay(n, 0y x )dx J'ab[Ay(n +1, O;x}]2 dx {(10)
we obtain,

b 7 b
¥ +1,0-,x)j (Ay(n+1,0:x)) dx «y(n +2,0; x)j Ay(n +1,0; x)Ay(n, 0; X )dx

Y Lx)= 3 - (11)

E(A'Y{ﬂ +1, 0;);))2 dx — Lb Av(n +1,0; x)Ay(n, 0; x)dx

To simplify the expression (11} further we must insert a component of Wn+1, O;X)J.bA’Y(H+L 0; x3AY(n,0;x)dx in

the numerator of {11), we get,

b 2
v(n,l;X):[v(nﬂ,O;X)j (Ay(n+1,0;x))" dx
) t}-,x)jb Ay(n +1,0;x)A¥(n, 0;x)dx

+y(n+1,0; x)Lb Ay(n +1,0;x3AY(n, 0; x)dx

(12)
—pn+2, G;x)ijy(n +1,0; x3AY(n, O x)dx } +
b 7 b
U {A¥(n +1,0;x)) dxfj Ayin +1,0;x)Ay(n, 0 x)dx }
Collecting appropriate terms in the numerator of (12}, we get,
v = | 1000 (A +1,050) d = [ aven 1,001, 0550 |
+HY(n+2,0;x)—y(n+1,0; x))IbAy{n +1,0;X)Ay(n, 0;x)dx } = {13)

U:(Ay(n +1,0;0)) dx — j: Ay(n+1,0;x)Ay(n, 0; x)dx }

Simplifyving the expression {13} we cobtain the similar formula
17
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Ay(n +1,0; X}ijy(n 1,0;x)AY(D, ;X ydx )

Yo, Lx)=yn+1L0x}—— ) 5
j (Av(n +l,0;x)) dx—J. Ay(n +1,0; x)Ay(n, 0; x )dx

To verify that the above equation of the -algorithm of type (n, 1} is identical to the -algorithm of type {(n, 1) we
must use the additive principle of integral in the denominator of (14}, thus {14} becomes

Ay(n+1,0; x)jb AY(n+1,0, )AYD, 0;x)dx

W, LX) =y(n+1,0; %) —— - {15)
_[ [(m{(n +L0;x}} — Ay(n+1, O;X)A’Y{H,O;X)} dx

Simplifying (15}, we get,

AY(n 1,0, Avn +1,0;%0A¥(n, 0; x)dx

W, 1ix)y =y +1,0;x}—— : (16)
[ [ Avn+1,0:){ Avn +1,0;x) - Ay(n, 6 %3} | dx

Finally the -algorithm of type {1, 1) is expressed as:
A +1,0:x)] AY(n+1,05x) A0, 0 x)dlx

W0, 1ix) =y +1,0;x3 - £ {17)

Lb [Av(n +1,0;x)A(n, 0; x)} dx

Similarly we obtain the expression of the € -algorithm of type (n, 1) by simply inserting k=1 and n=n+1 in {8). We
find that the -algorithm is identical to the £ -algorithm, given {17) and (8}, respectively, for k=1.

Furthermere, it is relatively simple to show that the -algorithm of type {n, 1} is identical to the -algorithm of type
(n, 1) and the -algorithm of type {(n, 1}. It can be seen that the formula of the -algerithm reduces to the formula of

the algorithm when k=1. The reason for this is that the factors, {kJ and (n+k+i¥?, reduce to unity when k=1.
1

Hence,
k k-1

U(mkﬂ} i (18)
1

for ne R and 1e[o,x=1].

Mathematically, we have demonstrated the fact that the three algorithms namely, the -algorithm of type (n, 1}, the -
algorithm of type (n, 1} and the -algorithm of type (n, 1) produce identical equaticns, that is

¥(n,1;xy=8{n,1;x)=e{n,1;x} {19)

for ne ¥ when k=1. Similarifies between these methods is shown in Table 1 and 4.

The second greup of similarity is between the -algorithm of type (n, 1} and the -algorithm of type (n, 1). It
appears that the -algorithm of type (n, 1} reduces to the -algorithm of type (n, 1} for the same reason given by (16).
Hence,

o(n,1;8) = B(n,1;5) {20)
for ne ® when k=1. These similarities are demonstrated in the Table 1 and 4.

Applications of the New Algorithms: Tc demonstrate the performance of each of the new algorithms we take two
familiar linear Fredholm integral equations of the second kind. We determine the consistency and stability of the
results by examining the convergence of each of the algorithms for three particular types of row sequence. The
findings are generalised by illustrating the effectiveness of these algorithms for approximating solution of a given

18
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power series solution. Consequently, we shall demonstrate the efficiency of these new algerithms and the

-algorithm by showing the error obtained by each of the algorithms. We illustrate the convergence of the algorithms
described by making three distinct comparisons of the estimates based on three particular types of row sequence.
The first row sequence shows the similarities of the appropriate algorithms. Further two-row sequence illustrates the
efficiency of each of the algorithms. In each case, the comparisons with other algerithms were made using a similar
amount of data, that is using the same number of terms of the Neumann series. Also the errors listed in the tables are
of absolute value.

Numerical Example 1: We investigate the convergence of functional sequences of the Neumann series solution of
the linear integral equation. We shall consider the linear Fredholm integral equation of the form

FOOA = g0+ [ k(x,y) Fy, A dy @n
where:

(y=3¥1+x) G=y=x=<l
gxy=x and ki(x,vi=

(x-3){1+v) 0<x<y <l

This integral equation is a linear inhomogeneous Fredholm of the second kind with a non-degenerate kernel. The
analytic solution of (21} is given by

3[sinh{®x} + ®cosh{ox } |+ sinh{®x — o) — 2Zocosh (Ox — o)

f{x,a)= o (22)
{1+ 2w )sinh{w)— 3mcosh{m}

where, ®= Zﬁ .

For a particular value =1 the analytic solution {22) in power series is,

f(x,1) = —0.229569 + 0.770431x — 0.459138x" + 0.513621x" — 0.153046x" - (23)

[t is familiar that the Neumann series of (21) converges [7] and the first few terms of this series are,

FoG R =D Cx) A = x+ (3’ —Ix =Dt (B3 -3 — Do + Lo x + L2 4 (24)

i=0

In Table 1, we show the errors incurred by the @ -algorithm of type {2, 1) with corresponding estimates derived from
the -algorithm of type (2, 1}, the -algorithm of type (2, 1), the -algerithm of type {2, 1) and the -algerithm of type
(2, 1y for x=0{0.25}1. We observe the similarities of the two groups and find that there is ne significant difference
in the precision of the approximate sclutions between the two groups.

Table 1: Errors Occurring in the Solution of (21) by the Five Algorithms Described

X (2,1x)= (2,1;x} (2,1:x)= (2, I')x)= (2,1;:x)
0.0 0.001564 0.001732
0.25 0.001268 0.001471
0.50 (0.000099 0.000122
0.75 0.001540 0.001318
1.0 0.001988 0.001784

For the five algorithms described we list the following approximate soluticns used in calculating the errors displayed
in Table 1:

o2, 1-,x)} _ 0.00017214x" +0.0090835x " —0.025304x° +0.10502x° —0.14156x*

= 25
P2, 1Lx) +0.51001x° —0.46996x” +0.77199x — 0.22801 23

19



J. Math. & Srar., 1 (1): 15-23, 2005

V2,1Lx) . , . . )

5(2.1:x) _0.00017214x" + 0.0090835x” —0.025305x° +0.10502x" —0.14155x 6
T +0.50998x° —0.47007x% +0.77216x — 0.22784

(2, 1;x)

In Table 2, we show the errors incurred by the @ -algorithm of type {1, 2) with corresponding estimates derived from
the -algorithm of type (1, 2}, the -algorithm of type (1, 2), the -algorithm of type {1, 2) and the -algerithm of type
(2, 2) for x=0(0.25}1. We find that the precision of the -algorithm is similar to the -algerithm and is better than
the other algorithms.

For the five algorithms described we list the following approximate soluticns used in calculating the errors displayed
in Table 2:

o(1,2:x) = 0.11323(—6)x" + 0.14345(—h)x" — 0.56672(-4)x" + 0.51703(-3)x’
—0.13550(=2)x" + 0.97335(-2)x’ —0.020754x" +0.10289x’ 2n
—0.15223x" +0.51336x° —0.45991x” + 0.77054x — 0.22946

B(1,2:x) = 0.10241(—6)x" +0.13733(=4)x" — 0.51254{—4)x"" +0.52439(=3)x°
—0.14447(=2)x% +0.97828(=2)x" — 0.020409%° +0.10272x° (28)
—0.15305x" +0.51362x° —0.45914x> + 0.77043x — 0.22957

Y(1,2:x) = 0.11331—=6)x" + 0.14353(—d)x"" — 0.56710(—4)x"* +0.51717(=3)x"
—0.13554(=2)x% + 0.97337{-2)x" —0.020753x° + 0.10289x%° (29)
—0.15223x* +0.51336x° —0.45991x” + 0.77055x — (1.22945

3(1,2;x) =0.10247(-63x" +0.13739(—41x" — 0.56710(—4)x" +0.52447(-3)x"
—0.14449(=2)x" + 0.97829(—2)x" —0.020409x° +0.10272x’ (30)
—0.15305x" +0.51362x" —0.45914x* + 0.77043x — 0.22957

£(2,2:x) = 0.12192(—6)x"? +0.15444(~4)x" — 0.61023(—4)x"° +0.54341(~3)x°
—0.14585(=2)x +0.97832(=2)x" —0.020407x° +0.10272x° (31)
—0.15305%" +0.51362x° —0.45914x% + (0.77043x — 0.22957

Table 2: Errors Occurring in the Solution of (21) by the Five Algorithms Described

X (1,2;%) {1,2;x) {1,2;x) (1,2;%) {2,2;%)

0.0 (0.111{-3) (0.109{-6) 0.122{-3} 0.759(-8} (0.168(-7}
0.25 (.899(-4) 0.963{-7) 0.104{-3} 0.258%(-8} 0.111(-8}
0.50 G.701(-5) 0.142(-7) 0.863(-5} (0.234(-7} 0.211(-7}
075 (3.109(-3) (0.109{-6) (0.931{-4} 0.918{-8} 00.222(-8}
1.¢ (.141(-3) 0.165(-6) 0.126{-3} 0.137{-7} 0.191(-7}

[tis tedicus to list the approximate selutions of the five algorithms of type (1, 3}. Consequently, in Table 3, we show
the errors incurred by the -algorithm of type (1, 3} with corresponding estimates derived from the -algorithm of
type (1, 3}, the -algorithm of type (1, 3}, the -algorithm of type (1, 3) and the -algorithm of type (4, 3) for
x=0(0.25)1. We find that the precision of the ¢ algorithm is similar to the & -algorithm and is better than the other
algerithms.

Table 3: Errors Occurring in the Solution of {21) by the Five Algorithms Described

X (1,3;x) {1,3:x) {1,3:x) (1,3;x) {4,3;x)

0.0 (1.238(-9) 0.103(-12} 0.923(-10) 0.667(-14) 0.731(-14)
0.25 (.117(-9) 0.881(-13} 0.597(-11}) 0.792(-14) 0.147(-135)
0.50 (.153(-9) 0.161{-13} 0.118{-9} 0.110{-13) 0.302(-14)
075 (3.199(-9) (0.986(-13}) 0.133(-10} 0.104(-13) 0.662(-14)
1.0 (.126(-9) 0.160¢-12) 0.105¢-9} 0.591¢-14) 0.163(-14)
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Numerical Example 2: We investigate the convergence of functional sequences of the Neumann series solution of
the linear integral equation. We shall consider the linear Fredholm integral equation of the form

F(x ) =g00+2 [ k(xy) £(y.0) dy 32)
where:

v(2—X) 0<y<x <],
g(x)=x" and kix,y)=

X(2 -y} G=x=y=<l.

This integral equation is also linear inhemegeneous Fredholm of the second kind with a non-degenerate kernel. The
analytic solution of (32} is given by

E(xA) = %_ cosiux) ~ [1- cosf:f:;;i}nii)ﬁ(;zﬂjin(px) (33)
where: U= NG

For a particular value A =1 the analytic solution {33} in power series is,

f{x,1) =-0.229569 +0.770431x — 0.459138x” +0.513621x" - 0.153046x" - (34)
The first few terms of the Neumann series solution for {34), given by iteration of {32}, are,

f(x, A= i C (x}N =x" +[%X—%X4Jl+[%x—%x3 +%X6}7@ +oo (35)

i=0

In Table 4, we show the errors incurred by the @ -algorithm of type {1, 1) with corresponding estimates derived from
the -algorithm of type (1, 1}, the -algorithm of type {1, 1), the -algorithm of type {1, 1) and the -algorithm of type
(1, 13 for x=0{0.25}1. We observe the similarities of the two groups and find that there is ne significant difference
in the precision of the approximate sclutions between the two groups.

For the five algerithms described we list the following approximate solutions used in calculating the errors displayed
in Table 4:

ol,;x)|  —-0.77388(-3)x* +0.011111x" +0.027086x’ — 0.16667x " 36)

P11 %) —0.29418x%% + x* +0.88837x

v(1,1;x} ; ] s .

S(LLx) = —0.77190(-3)x" + 0.011111x° +0.027017x" — 0.16667x a7)
o —0.29378x° +x* +0.88777x

e(l,L;x)

Table 4: Errors Occurring in the Solution of (33} by the Five Algorithms Described

X (L2x)= (1.2x) (1,2x)= (1,2x)= (L,2x)

0.0 0 0

0.25 0.000024 0.000118

0.50 0.000166 0.000084

0.75 0.000357 0.000062

1.0 0.000390 0.000124

[n Table 5, we show the errors incurred by the & -algerithm of type (1, 2) with corresponding estimates derived from
the -algorithm of type (1, 2}, the -algorithm of type (1, 2}, the -algorithm of type (1, 2} and the -algerithm of
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type (2, 2} for x=0(0.25}1. We find that the precision of the algorithm is similar to the algorithm and is better
than the other algorithms.

For the five algerithms described we list the following approximate solutions used in calculating the errors displayed
in Table 5:

o(1,2;x) = 0.30931(-8)x"* —0.12113(-63x" —0.70369(—6x" +0.88825(—35)x"
+0.38845(—4)x" —(0.39683(—3)x" —0.14092(-2)x’ +0.011111x" (38)
+0.029611x° —0.16667x* —0.29613x" + x” + 0.88838x

B(1.2:x) = 0.32818(=8)x"* —0.11351{—6)x"? — 0.74660(—6)x"" — 0.88592(~5)x"
+0.39151(=4)x" —0.39683(=3)x" —0.14101(=2)x” +0.011111x" (39)
+0.029613%° —0.16667x" —0.29613x° +x* +0.88838x

¥(1,2:x) = 0.30910{—8)x"* —0.12129(—6)x" — 0.70320{(—6}x"" + 0.88803(=5)x"
+0.38852(—4)x" —0.39683(-3)x° —0.14092(-2)x" +0.011111x° (40)
+0.029611x° —0.16667x“ —0.29613x° + x” + 0.88838x

8(1,2;x) =0.32770(-8)x" —0.11377(-6)x"" —0.74552(-6)x"" + 0.88577(—-5)x"
+0.39152(—4)x’ —0.39683(-3)x° —0.14101(-2)x’ +0.011111x° (41)
+0.029613x" —0.16667x* —0.29613x” + x* +0.88838x

£(2,2:%) = 0.31141(=8)x" — 0.12220(~6)x" — 0.70846(—6)x"" + 0.88183(=5)x""
+0.39143(=4)x +0.39683(=3)x* —0.14101{=2)x" +0.011111x° (42)
+0.029613x° —0.16667x* —0.29613x° +x* +0.88838x

Table 5: Errors Occurring in the Solution of (33} by the Five Algorithms Described

X (1,2;x) (1,2;x) (1,2;x) (1,2;x) (2,2;x)
0.0 4 4 4 4 4

0.25 0.170(-7} 0.044(-10} 0.731(-7} 0.128(-10} 0.977(-10)
0.50 0.110{-6} 0.672(-10} 0.498(-T} 0.152{-9} 0.131(-9}
0.75 0.230{-6} 0.582(-9} 0.399{-7} 0.145(-9} 0.858(-10)
1.0 0.248{-6} 0.843{-9} 0.765(-T) 0.120{-10} 0.941{-10)

As before, it is tedicus to list the approximate solutions of the five algorithms of type {1, 3}. Censequently, in Table
6 we show the errors incurred by the -algorithm of type (1, 3) with corresponding estimates derived from the -
algorithm of type (1, 3}, the -algorithm of type (1, 3}, the -algorithm of type (1, 3} and the -algorithm of type (4,
3y for x=0(0.25)1. We find that the precision of the -algorithm is better than the other algorithms.

Table 6: Errors Occurring in the Solution of (33} by the Five Algorithms Described
X {13x) {1.3:x) 1.3:x) 1.3:x) {1,3x)
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0.0 0 0 0 0 0
0.25 0.1114-13) 0.194(-16) 0.433(-14) 0.243(-19) 0.128(-17)
0.50 0.352(-13) 0.504(-16) 0.581(-14) 0.645(-18) 0.150(-17)
0.75 0.412(-13) 0.265(-15) 0.383(-14) 0.494(-18) 0.236(-17)
1.0 0.306(-13) 0.361(-15) 0.414(-14) 0.945(-19) 0.188(-17)
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for accelerating the convergence of a sequence of
functiens. The prime motive of the development of
these new algorithms was to accelerate convergence of
sequence of functions. Moreover, the performance of
these new algorithms has been demenstrated and
compared with the -algorithm. Furthermore, we have
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subject of further research.
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