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Abstract: In this study, we give one instrinsic inequality for Riemannian hypersurfaces in Hessian
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Keywords: Hessian Manifeld, Totally Geodesic

PRELIMINARIES

Let M be a flat affine manifeld with flat affine
connection D. Ameng Riemannian metrics on M there
exists an important class of Riemannian metrics
compatible with the flat affine connection D. A
Riemannian meftric g on M is said to be Hessian metric

if g is locally expressed by g= D’u where u is a local
smeoth function. We call such a pair { 13, ¢} a Hessian
structure on M and a ftriple (M, D, g) a Hessian
manifold. Geemetry of Hessian manifold is deeply
related to Kaehlerian geometry and affine differential
geometry [1].

We use the same notaticns and teriminclogies as [2]
unless otherwise stated.

Let M be a Hessian manifold with Hessian structure (12,
g). We express various geometric concepts for the
Hessian structure (D, g) in ferms of affine coordinate

system {xl 2Ty xnﬂ} with respectto D, i.e Ddx' =0.

i. The Hessian metric;

B 0’u
dx'ax’

8y
ii. Let ¥ be atensor field of the type (1, 2} defined by
¥(X,Y)=V . Y-D,Y

where Vis the Riemannian connection for g. Then we
have

i i 1 & agr‘
V=I5 = Eg ax;:
y 1 dg; 1 d°u

F T oext 2 ox'axioxt
Ve =Vie = Vi

where r;k are the Christoffel’s symbols of V .

iii. Define a tensor 5 of type (1, 3} by
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S =D,

and call it the Hessian curvature tensor for (D, g) . Then

we have
i
5, =
kL axk
g L 9w 1, dw o
il 2 E}xia‘xjaxkaxl 3 g axiaxkaxr ax}'axlaxs

Sijki =S i = Skjil =S jik = Sklij g

iv. The Riemannian curvature tensor for V ;
P LA ¥ i F
Ry =VaVi—VaVn

1
Rz‘jkl = E(Sjikl - S:‘;‘k; ) (L)
Definition 1: For a non-zero contravariant symmetric

tensor & . of degree at x we set

(s&,).E)

(&0

and call it the Hessian sectional curvature in the
direction & .

hE,)

Theorem 1: Let (M, D), g ) be a Hessian manifold of
dimension = 2. If the Hessian sectional curvature

h(c_’,:x)depends only x then (M, D, g ) is of constant

Hessian sectional curvature. (M, [J, g ) is of constant
Hessian sectional curvature ¢ if and only if

~<,

1.2
> (1.2)

i 8u +gilgkj)

) it
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Corollary 1: If a Hessian manifold (M, D, g )is a space
of constant Hessian sectional curvature ¢, then the
Riemannian manifold (3, g) is a space of constant

sectional curvature _ © .
4

2. Local Formulas: Let M " be an n-dimensional

Riemannian manifold immersed in M. M is called a
hypersurface.
‘We choose a local field of Riemannian orthonormal

frames e, ---,e_,, in M such that, restricted to M ',

€,,---,e, are tangent to M Let Wy,---, W, beits

dual frame field such that the Riemannian metric of M
is given by

2
ds® = Z (WA )
Then the structure equations of M are given by

dw , =—ZWAB AWg W +wy =0 (2.1

dwy == W AWg +%ZKABCDWC Aw, (22)
K ipep = %(5ACJB - 5AD5BC‘) (2.3)
We restrict these formto M , then

w,, =0 (2.4)
and the Riemannian metric of M is written as

ds’ = Z (wi )2.

Since U= dwnﬂ,i = —Z W, 4 AW, by Cartan’s
lemma we may write

W =2 h.w. , h, =h,. (2.5)

From these formulas we obtain the structure equation of

M

+w, =0, (2.6)

dwi=—Zwy./\wj , W i

i

1 .
dw; :—Z Wy AWy +EZRW<EWIC Awy, (27
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- c
Rijkl = Z(gilgkj —8i8u )_ (hikhjl - hilhjk ) {2.8)
where R[;sz are the compenents of the curvature tensor
of M.
We call
h=> hw ®w,

the second fundamental form of M . The square length
of his defined by

2
S=> (hu) (2.9)
The mean curvature H of M is defined by
H= & >k (2.10)
n i .

At any point X, € M’ | for symmetry of (hfj), we

can make
hy = A5,
choosing suitable orthonormal frames

1

2 (Siikf - Sijkf)_ /11‘/1;' (5gk§j,z - 5515;7( ) {(2.113

Id
Rijkl =

In [2] , Pang, H. , Xu, S., Dai, S. , gave one instrinsic
inequality for space-like hypersurfaces in De Sitter
space and sufficient and necessary condition for such
hypersurfaces to be totally geodesic.

In this study we establish a Hessian version of this
problem and obtain a result similar to , Pang, H. , Xu,
S., Dai, S.

Theorem 2.1: Let (M, D, g ) be a Hessian manifold,
(M, g) be an (n+1)-dimensicnal Riemannian manifeld

of constant curvature and M be an n-

4
dimensional hypersurface of M, 7" and p’ are Riccl
curvature tensor and scalar curvature of M ’,

respectively, then

2

)z %p’(l— n)—§—6n(1— n).
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Proof: M is a Hessian manifold then from (2.8) and

(1.2), we write

1

Ry = 2[ z(gl]gkl+gﬂgkj) z(gpgw+gﬂgﬂ() ]7[hlkh_]17hllh_]k)
or

. &
Rijkl =_(gi1gkj _g;lgzk) (h h;z h;zh;-k )

4

At any point X, € M’ | for symmetry of (hij), we

can make

hy = A8,

choosing suitable crthonormal frames then

T :;11;“] :;{—m (8,8, —8,8, )+ (skjsk sljskk}}
== TMA3, + ThAS B+ Zbﬁwﬁﬂ

Zi + 4,48, +Z(l_n)5’f

zz;

Then

2
222 { 1 uza Rk Bij+%(1—n)8u}
i.j

,
T

2
:Z{W‘[Zk: lk} 8 + A N8, +(1:_6(1_n)2 Su}
i,]
—2?\.2?\«81JZ?\, 1 n?\.?\.ﬁ
=[zzj{zzj +Zi‘:+;—6n(l—n}2—zz,{?;j’k
¢ c
_22(1—n)[zijxlfjuzu—n)[zi:gfj
and
2
=2 K, __{Zﬁ’ij + DA +£n(l—n)
80
2
|T"2 =[Z£’i} [Zlk} +Zi + (1 n} _221321

—2%(1—;;)[21,] +2%(1—n)zi:13
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[ZMJ[ZMHM n}- p}rZ?U n{l-n}’ ZZ?GZM

z:(lﬂ[yﬁiﬂm)g}zi@n);zg
z[zf]{zf]{zm i n) }yﬁ

'Z[Zilf] (ij {Z;h —n(l-n)- p}z

+2%(1—n)p'—;—(Szn(l—n)2

1 2
2

fef (aeflme g

> 23(1—n)p'—(1:—6n(1—n)2. (2.12)

4
Using Cauchy-Schwarz inequalityTheorem 1 is proved.

Theorem 2.2: Let (M, D, g ) be a Hessian manifold,
(M, g) be an {n+1)-dimensional Riemannian manifold

, c
with — — constant curvature.
M’
/ . .
p are Ricei curvature tensor and scalar curvature of

M}

is an n- dimensional hypersurface of M, T " and

, respectively, then

2
% = %p'(l —n)— C—6n(1 —n)

if and only if M ”is totally geodesic.

Proof: If M~ is totally gecdesic, i.e.

A =0, i=1--,n then

hy=Al) L k=0, ()=

, c

Riy = (6i o Silajk)

and
¢’ )

7’ |l=—n(l-n) , p'==nll-n
i) . o =nlin)
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ie.

77

2
= 2%,0'(1—.71)—;—6?1(1—1%)2

Inversely, if (2.12} becomes an equality, then all the
inequality of {2.12} will become equality. From Lemma

1 1in [2], there exists a constant A such that

B = A4,
W=,

L i=1-n or

> izl)yn

i=1--k

For simplicity, we assume /L. =4
and ﬂbj =0,

It A=0,then M is obviously totally geodesic.

Now, we assume A =0, so M’ is not totally
geodesic. Because the second inequality of (2.12)
should be equality so

J=k+1-- n+1.

2

=0

[Z’fﬂ‘f[Z’ﬁf[m;nwpf

i.e.

1 1
s - B 8+ S0l =0
Through simple calculation we get

P =(k-1)2 +§n(1 —n)
On the other hand
R!

ifkcl

= _z(ﬁkajl - 8'116Jk )
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50 we have

p’—[zi:&j +§i:1§ +%n(lfn]:(kfk2)12 +%n{17n]

so k=1. By Lemma 2 in[2], M’ is totally gecdesic.
This is a contradiction.

Corollary 2.1: M " is a Binstein hypersurface of M

with Ric:i(l_n)g( g is the Riemannian metric of
4
M )then M’ is totally geodesic.

Proof: In fact, if M~ is a Hinstein hypersurface of M
with Ric= (1_y)g , then ol =L pf1—p) and
4 4

2 2
#2 C 2 _ c C 2
=—nl{l - =2_ 1—-nl——nll- .
T 16 n( n) 4 p( n) 16 n( n)

The corollary follows immidiately from Theorem 2.2.
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