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Abstract: The analytic expression is given for the chord length distribution density (7,5} along the

edge of an infinitely long rectangular wedge and for a quadratic red, both of constant breadth 4. The
general result is: A constant behaviour for 0 <1 <k and a finite jump of size 2/5 at [ =p is an intrinsic

feature of a rectangular edge.
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INTRODUCTION

This article considers a particular problem in gecmetric
probability, the solution of which is useful in pattern
recognition of three-dimensiconal geometric figures.

The automatic recognition of the particle shape of
geometric objects on a length scale from the nm-region
up to some meters is of immense interest in many
fields. Chord length distributions can be obtained
experimentally via special procedures from image
material [1]. Thus, analytic expressions of chord length
distributions possess stereological applications in the
field of pattern recognition of geometric figures from
digital image analysis [2]. So, particle shape and size
can be recognized experimentally. It is useful to
approximate more complicated particle shapes by
simple gecmetric figures. This strategy is also
particularly useful for those cases, where microparticles
cannot be inspected by a microscope or by any other
image generating methoed. For example, this is the case
if scattering metheds are applied for particle
characterization.

A far-reaching particle characterization is possible by
the use of smooth particle shape models, considering
random chords [ with an Isotropic Uniform Randem
(IUR) crientation in space. Chord length distribution
densities f(/y are fingerprints of three-dimensional
particles [3].

If a particle possesses sharp edges, {as in the case of a
parallelepiped, tetrahedron, tiangular rod, quadratic rod
or hemisphere}, the properties of these edges will be
reflected into ¢y for small chord lengths. Based on

this behaviour it seems to be useful to establish an
"edge - pattern”. Such a patiern is defined and analyzed
in this study. A straight infinitely long rectangular edge
exists in two basic modifications, wedge (Fig. 1) and
quadratic rod. The analysis eof f¢y will allow for

detecting the existence of an edge.
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It is well-known that Fi0) functions are sensitive

indicators of the geometric shape. For example, this
was reported by Stovan ef al. [4], Enns and Ehlers [5]
and Gille [6]. This was a subject of previcus articles
and textbooks [7-2]. There are connections with more
general papers and textbooks [10, 11].

Obvicusly, the existence of a sharp edge leads to many
small chord segments. Consequently, the relation
1[1151 f(ly>0 allows a clear distinction between a smooth

face possessing no swrface singularities {e. g. ellipsoid}
and an angular one. In order to study this phenomencn
in more detail, the characteristic of y(/y fer a pure
wedge is investigated in this work, independent of the
detailed shape of the whole geometric figure, which this
wedge is part of.

Peculiarities of the Chord Length Distribution
Along a Wedge: Let [ be a random variable, the
random chord length, 0 < <o, which results whenever
a fixed convex bedy is intersected by an [UR field of
straight lines. An IUR chord length distribution F (i)
results. The function F() and the distribution density
FO=F depend on shape and size of the (actual}

geometric figure.
For a convex body, the geomefric covariogram K/}

and iy are connected by

K1)

K'(0)

f= (1

Operating with the geometric covariegram K () [7, 12],
Eg. (1) has been investigated in more detail by Enns
and Ehlers [5].

The diversity of 77} functions is immense. All details
of the shape of a geometric bedy influence the
behavieur of f¢y. However, without special
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assumptions about the shape of the body, f¢/) does not

define a geometric object.

The wedge is defined (Fig. 1) by the following: Two
planar stripes, each of infinite length and width 5, are
joined at a right angle to form the shape which
resembles an "angle iron". This shape is involved in a
wide class of geometric figures. Because an edge is a
non-compact and non-convex set, Eq. (1} cannot be
applied and the determination has to go back to
elementary geometric principles.
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Fig. 1: A Random Line Enters the Wedge at A, Travels
through the Space between both Planar Stripes
and Hits the Boundary again at Point B. The
Chord Possesses the Length /= AB and its
Direction in Space is Defined by the Angles ¢

and . Because of ¢, without any
Restriction, the Chord Position along the
Wedge is Arbitrary. Without Changing the
Angles ¢ and ¢, the Points A and B can be

Shifted to any Position along the Wedge

The straight edge considered possesses two
modifications: On the one hand, it can be a part of any
rectangular solid, especially of a quadratic rod. On the
other hand, it can be part of a wedge. However, a
wedge is not a trivial special case of a quadratic rod,
which represents a compact convex set. The wedge
cannot be analyzed via Eq. (1). So it is not a trivial
question to investigate differences and common
properties of wedge and rod.

Determination of f, (/,0): A wedge of length e,
¢—co and breadth 5, 0<b <, consisting of two
stripes in the planes ¢ , and ¢, is analyzed. The wedge

is in a fixed position in the x-y-z - coordinate system
(Fig. 1). The plane ¢ , is fixed parallel to the x-z plane

and ¢, lies in the x-y plane. Considering a constant

chord length [ (and all the following considerations
require a well-defined constant chord length 1), the
intersection of the straight line ‘AB, which stretches
between the planes ¢ B and ¢ 5o 18 described by two

direction angles ¢ and #.
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The parallel translation of AB along the edge
(@ =constand  $=const) does neither change the
length { nor the constellation. Thus, it is sufficient to
consider one typical chord of length / at a fixed place
of the infinitely long wedge. Close connections between
{ and the position of the points A, B exist {Appendix).
The detailed calculation is based on the definition of the
distribution function E,()- The following formulas are

exclusively related to the one stripe, which lies in ¢ i

The other one contributes in the same manner.

Based on the spherical polar coordinates adopted for the
definition of the direction of the random straight line
AB, the area element on the unit sphere is proportional
to cos(d)-dedd. IUR chords require: The random
variable ¢ is uniformly distributed in the interval
0<@<z/2 and the variable # possesses the
distribution density cos(s), 0<8<z/2.

However, special restrictions for the variables @ and &
have to be introduced, in order to "guarantee” that AB
does always hit the wedge coming from A in the
direction (g,¢9). Depending on [ and &, certain
limiting angles have to guarantee the existence of point
B on the wedge. The  swface  area
8., =¢-b—e-l-sin(29), which lies in ¢, is a part of the
plane <, and excludes the existence of chords, which
are smaller than / (Fig. 6). Besides the area element of
the unit sphere (2/7z)- cos(#f)-ddde, it must be taken

into account that the plane e, and the chord direction

AR , are not perpendicular to on one another (Fig. 1 and
2). Let ¢, be the plane which is perpendicular to the

chord direction and includes the point B (Fig. 2). Then,
the surface area part,

S, =98, [cos@)-cosi)] =e-b—e-1-sin@)|cos@)- cos@)]
represents the projection of the surface area §_ into the

planeg, .

Fig. 2: The Plane g, Passing through the Point B, is

Perpendicular to the Chord Direction and « is
the Angle between the Planes ¢ ; and < R
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The factor [cos(#}-cos{g)| can be verified in greater

detail (Fig. 2} Point B possesses the coordinates
xp =1-sin{@)cos{dd}y, v, =1[ cos(@cos{dd), z, =1 sin{d}-
Consequently, the plane ¢, is given by
Xp X+ ¥y V+2z,-2—0'=0. The plane €, is
y-bsz =0. The angle between €, and €, is denoted
by . Consequently, S =8_ -cos(a)- The term
cos{ e results from the scalar product of the orientation

vectors of the planes e,

cos(ax) = v, B K- b} = cos(p) cos(4} -
Thus, 5. =5_ -cos(a)-

Exclusively in the limiting case @=¢=0 the factor

ande e

cos(ery equals unity. In all other cases, the whole term

[e-b—e-1-sin(%)] [cos(?} - cos( )] has to be considered.
Altogether, the analysis of the ratic of the measure of
favourable cases to the measure of cases possible at all
for the wedge vields

F,(h=1-

. 2
E{L L‘ le-b—e-1-sin(H)]-[cos( ) cos(;v)]-cos(z?);dz?d;v}

L””f”e- b-[cos(8) - cos(e)] cos(z&‘)%dﬁdgp
{2

The denominator does not depend on . The
denominator term .4 -[cos(#) - cos{g)| represents the

projection of the whole surface area e-% (the whole
upper part of the wedge, which lies in the planee , ) into

the direction perpendicular to the chord direction
(@) It is  averaged by the factor

cos(9)- (2 zy dode - For the measure of the cases

possible ar all, the restrictions of the integration limits
are given by the all-including integration limits,
C<p<g/2 0<d<x/2.

Based on a constant length [, the numerator term in Eg.
(2 involves a sum of several integration regions,
defined by certain integration limits ¢, and ¢,

depending on |/ and %. This is explained in the
Appendix, starting from the simple "angle-case” in R?,
followed by the case of the so-called "one side infinity
wedge" in  R® ending in the wedge case.

At first, the analysis of the geomefric constellation
requires an inferval splitting of the chord length [ as
depending on & . In the wedge case, three different |-
intervals, Il: {o<i<p), 120 fpei<y2.5) I
{ﬁ bl Soc} have to be selected. In these intervals
the integration limits vary in terms of [, » and of the
sum index i. In more detail, in the intervals 11, 2, I3,

the sum terms in Eq. (2) are given by a sequence of
definite integrals.

The integrand is given by the abbreviation g,
g =(e.b,1.8,¢)=
[e-b—e-1-sin(}] [cos(e5) - cos(g} ] cos{ 1) L -

[1: For i=1; There are exclusively the all-including

integration restrictions {o<p<zia},
focv<zrz}
Consequently the sum reduces te the cne term
T2 il
L:o -‘.L‘?:O gdﬁdq) ’
[2: Here, two cases, i=1; {0<¢ <arccos(b/l):

arccos{ b /([ -cos(@))) £ I < aresin(h/f)} and i=12;
farccos(b /<@ <z /2, 0 < < arcsin{ b/1)} must
be selected,

arcoas( B/ 1) parcsing B/1)

j j gddde+
=0 =arceas( Bi([cos( @) .
T2 aresin( /1)

) | gdvdg
@=arcoas( b ) JB=0

[3: Here, two cases, i =1,
{arccos(b/m)Sanarccos(b/E),
arceos{ b /(1 cos(@)}) < ¥ < arcsin{b/[)} and =12}
arccos(b/DN <@ <zi2, (<9< arcsin(h/i)}result,

J-arccus( Bl arcsin( /1)

p=arccos( b/ Y 2_p? P=arceos( b/ lcos( @

'ed g

. gddd g+

xl2 arcsin( B/ 1
J‘(o:a_rccosf bIE)J.L?:O
Operating with the terms I1 and I3, the properties
F (0,b)=0 and F_(x,b)=1 can be confirmed.

The chord length distribution density f, ({,5):

Integration of Hg. (2), fellowed by one differentiation
step with respect to [, vields analytic expressicns at the
intervals I1, I2 and I3. The detailed calculation for 12
and for [3 is elaborate. [t includes features similar to the
case of the parallelepiped [13, 14]. The resultis

Folby=
o
Il 37b
(3)
67h° + 4% —(4b® + 81 WP - b

12 37bl?

37;!3 P+ B+ —207 -
I3

B+ 20— +3b° - arctand %}}

1" —2b

No abbreviation is used in Eq. (3). Most of the terms de
net simplify before the very last step of the calculation
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project, g (Iy=F, '(}y. Connections, given by Camko
etal. [15].
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Fig. 3: [UR Chord Length Distributicn Density £ (1),

0<i<5, for Fixed » (two cases). In the
Limiting Case 5 0, A(}=2-8( - 0yResults.
The Wider the Wedge the Smaller f.0.8

Deciding features of the behaviour of £.0.8) (Fig. 3}

are:
The function possesses the constant value 4/(37%) in I1.

The spike of height £ (b+b)= (4 +67)/(3a)
significantly marks & . The finite jump at /=% equals
2/ . The first moment of £ LB is M, =h. Even in

the case of a superposition

Fua O =c - fulb)+e, - f,db,) [l remains a
constant function if ! < Min(b,,5,).
The behaviour of ¢ for large chord lengths can be

studied via the series development of . (b= const)
at [ — . Considering ¢ ¢/ p) in the interval I3 (Eq.

3}, the first four terms of the asymptotic expansicn of
F.,.{.b) (the function f (i,b) for large I, | — o} arc

4 4 3
o 8502 )
7 ! 3\ 80 W ) (4}
14 11
37(8) olf2
56 \ !
The smaller the ratio 5//, the better y ., given by Eq.
4, approximates f .
Extrapolating f _(/,5) back tc [ =5, an appreximaticn
F..(,b) for £ (1,b)y at 0 <i <o is obtained:

{17, @by=4/Gapy; 12 and I3: f _(1,by=f, . (1,6}
Operating with three terms of (7, 4}, (Eq. 4),
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f..(b,b)=2453/b holds.

Considering a finite edge length e, for example
e¢=10-5 (see the special case of the rectangular bar,
Gille [13]}, a modified distribution density is obtained.
However, a linear decreasing behaviour for small
chords exists. This property of linearity holds true for
the tetrahedron as well.

Moreover, the common properties of the "pure” wedge,
just considered, and the wedge as part of a rectangular
solid, are much farther reaching. This will be touched in
the following section.

Wedge and Quadratic Red: Now, the wedge chord
length distribution density, Eq. (3}, is compared with
that of an infinitely long quadratic rod of edge &,
f.(r.b)- Hereby, the function 1. is a special case of the
density obtained for the infinitely long rectangular rod
with edges &, b, 0 <a <b . Further, the rectangular rod
case has been traced back to that of the general
rectangular solid with edges a, b, ¢, 0 <a<b<c <o,
[13].

The function f.(r.b) 18

4
3b,
frby=1T,(r.b), if b<r<2-b
Ty(r.b), if V2-b<r<eo

F o 0<r<b

2(2 3ir-2dr —Br et + 24 (5)
T,(rby=—| =+ : ;
| 3 3

Tg(r,byzﬁ(mﬁ + 2P 2P 2B+ Y —

i
I

2P = b (BT + 2rY Y= 607 arctan(y Ft — 26 /bY)

Considering the term T,(r,b) (last #-interval,

N2 B<r<o), the first terms of the asymptotic
development of f.(rb) are

1y

()

The leading asymptotic term equals 3% /(m‘d ], compare
with Eq. (4).

In addition to the wedge, this figure possesses twe
times two parallel faces. The corresponding chord
lengths between them, of course, also are reflected into
the chord length distribution.

360 565 1197
S (’”,b):?"‘

—+—
3wt S0mt

+0 (6)
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Fig. 4: Chord Length Distribution Density
f, ("= f(r,p) of an Infinitely Long Quadratic
Rod with b=1

For the quadratic red, f,(r,b)=4/3m), il 0<r<b, is
obtained, followed by a finite jump of size 2/p at
r=>5b. Indeed, there is no difference in the size of the
finite jump at » =p. The functions f, and f, agree in

the interval 0<r<ph.
Furthermeore, a comparison of Fig. 3 and 4 makes clear
that the functicns f.(r, B and f.(r.b) are very similar

for b < r < oo, too. The leading asymptotic terms agree.
In fact, the simultansous existence of the finite jump at
r=b and of the size 2/p of this finite jump and the
agreement of the leading asymptotic terms (no
differences between Egs. 4, 6) are a characteristic
feature of a wedge and of a rod.

CONCLUSION

In the present study the function £ (fp)for an

infinitely long wedge of breadth 5 is added to the set of
known functicns.
The new density 7 (7 p) calculated, (Eq. 3) and plotted

(Fig. 3} is a fingerprint, useful for automatic shape
recognition of long rectangular edges. As expected, the
analytic expression is not simple, see also the remarks
about such projects by Gille [14]. Nevertheless, Eq. (3)
involves an uncomplicated, but profound property, very
useful for the identification of an edge in practice:

The existence of a finite jump in a function 7y at a
certain abscissa /=% is a hint for the existence of a
rectangular edge of width . Moreover, finding a jump
of size 2/ between the lower level {{ » b, f(b—,b)}
and the peak coordinate {,{ s b+,f(b+,b)} is a deciding
hint that an edge was detected. By this way, an
automatic procedure can be established te identify the
width 5. Moreover, the asymptotic development Eq.
{4 allows to estimate the parameter p, too.

In fact, the assumption of a rectangular wedge is a
special case. In the future it should be possible to
analyze the general wedge more systematically,
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considering other fixed wedge angles o, O<a<x,
e¢=min, n=345..). Thetriangular rod (g = 7/3) has
been investigated [16].

Appendix

In order to be prepared for investigating the interval
splitting in the wedge case, Eq. (2) and (Fig. 1), it is
instructive to start in R* with the limiting case of the
right angle (side length % }, followed by the analysis of
the "one side infinity" wedge (Fig. 6}.

The limiting case p=¢ vields a plane figure, the right
angle, where each side equals p, in the v-z plane, see
Fig. 1. Here, the direction angle ;¢ is evenly distributed
in < ¢ <xt2. The largest chord length is 25 Two |
intervals, I1: {0 <l < b} and I2: {b <l <42 -b}, have to be
distinguished, whereas for [2 the ¢ -limits
arccos(b/1) S ¢ <arcsin(b/l) result. Altogether, the
distribution function F.(Lb) of the random cheord

length 7 is defined by

1, Fullby=1-
. [lp—-1 sing] cos(maws [ b cos(der
= =0
o, Flmy=1-

" parcsin(B /1y . e !
L:msm [b—1-sin(»)]-cos(hd | b-cos(idv
The factor cos() transforms the length [bfj.s‘m(a)]
inte a direction, which is perpendicular to that of the
chord. The resulting distribution density O =F D

possesses a pole at / =5 (Fig. 5},

1
0<l<ph 2
b? 1 (7}
fUBy=1b<i<a2bp: 12 1 _p2 20
bl 0

From the analvtic representation, Eq. (7}, the first
moment /4 results.

The one side infinity wedge (Fig. 6) possesses an
infinite length on one side. [n agreement with the right-
angle-case just considered, the maximum angle
possible for any fixed /,¢_ , does not depend on ¢ . If

0<l<b,then B =i, whatevar the chord direction

@
Always

is. II p<i<eo, then o =arcsin(b/l). The

integration limits do not depend on 7.



J Math, & Stat, I(2): 106-112, 2005

0<p<mz/2 holds true. The marked area,
[e-b—e-1-sin{29)]. excludes chord lengths smaller than
f. Two | intervals, I1: {0gg<b} and I2: {bgzgm},

have te be distinguished.

25
= b=1
15
o
1
05

Fig. 5: The Chord Length Distribution Density of the
Right Angle in Cases p=1 and =2

Fig. 6: The "One Side Infinity" Wedge

The formal -calculation vields the chord length
distribution density of the "one side infinity" edge

[ .8y

4
0<i<h —
£ b= 3mb . 8)
o AP+ —BE -1y
bel<
3mbl?

which is plotted in Fig. 7. The first moment of ¢, (/,5)
does not exist.

In the previous two cases (right angle and "one side
infinity wedge")} the integration regions in the first 7
interval, 0 <] < b, are trivial. Here, the angles ¢J and P
are independent of each other without restrictions. This
remains true for the wedge. However, the complete
analysis of the wedge of breadth » (Fig. 1 and 8) is a
more cemplicated matter. The reason is: Here, for all
b < the position of point A is not free (Fig. 6}, but

strictly fixed to be on the x-axis of the coordinate
system (limiting line of the lower plane <, ). The
geometric constellation for determining the limiting
angles is analyzed in Fig. 8.

0.5
04}

0.3 |

fo(l,1)

0.2}

0.1}

|
Fig. 7: Distribution Density £, (LB of the "One Side
Infinity" Wedge with =1

(Pnin and (pZ

Fig. 8: Analysis of Limiting Angles as Depending on a
Constant { for 5 <1
Upper Part: The Angles ¢, and ¢,

Lower Part: The Angles 9, and 3,

111
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For I1 there are no additional restrictions for the angles
@ and . However, for 12 the splitling

C<@<arccos(b/I}<x/2 be  considered.
Depending on these two gp-intervals, there exists the

must

correspending ¢ interval splitting,

¥ =arccos(b /A1 - cos{ey) <8 <arcsin(b/D=4_,
C<o=<d .

In I3, the configuration ¢ = represents a limiting case.

and

A lower integration limit g  exists, which can be

studied operating in a triangle ABC.
Here, the distance AC =b/{cos(g,, ), consequently

.. =arccos(b/v1* —b* . In the special case [=+72 .5,

@ =arccos(b/+/2b* —b* =(0. The maximum angle
=0, results, if AR'=1]. [t is @, = arccos(b /1) - In this
case ¢¥9=0 and the chord [ is a line lying in the lower
plane of the wedge. There is the restriction
g <<, see both triangles in the lower part of
Fig. 8. In order te determine 9, it follows from the
triangle ABC, AC =5/ cos(¢) -

Thus, ¢, = arccos(ﬁ/l]: arccos(b /(1 -cos(g))) - On the

other hand, the limiting angle 9 does not depend on

@, ¥ =arcsindb/1}-
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