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Abstract: Inverse kinematics has always been a major subject of extensive 

research filled with redundancy. A need for meticulous functioning and fast 

computation is always high in any mechatronic system and is growing with 

new advances and human requirements. In this paper, a T4R (T-Twisting, 

R-Rotary) robot with constrained motion and joint precision of 1 degree is 

analyzed for its workspace and kinematics. While the redundant inverse 

kinematic solution is being optimized for precision and limiting errors, further 

can be used for programming and motion planning a Robotic Manipulator or 

Arm. The strategies developed in this paper could also be useful for solving the 

inverse kinematics problems of other similar types of robotic arms. 
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Introduction  

Robotic arm actions are executed in the joint angles 
while robot motions are specified in the Cartesian 
coordinates. Conversion of the position and orientation 
of a robot manipulator end-effector from Cartesian space 
to joint angles called as inverse kinematics problem, 
which is of fundamental importance in calculating 
desired joint configurations for robot manipulator design 
and control. For robotic manipulators that are redundant 
or with high degrees of freedom (dof), an analytical 
solution to the inverse kinematics is very difficult or 
impossible as there may be more than one solutions 
being possible. There is no effective solution to its 
inverse kinematics to date (Gan et al., 2005). For a 
manipulator with n degree of freedom, at any instant of time 
joint variables is denoted by θi = θ(t), i = 1, 2, 3,..., n and 
position variables xj = x(t), j = 1, 2, 3,...,m. The relations 
between the end-effector position x(t) and joint angle θ(t) 
can be represented by a forward kinematic equation: 

 

x(t) = f(θ(t))     (1) 

 

where, f is a nonlinear, continuous and differentiable 

function. 

On the other hand, with the given desired end-effector 

position, the problem of finding the values of the joint 

variables is inverse kinematics. This can be solved by: 

 

θ(t) = f ′ (x(t))     (2) 

The different techniques used for solving inverse 

kinematics can be classified as algebraic (Craig, 1989), 

geometric (Lee, 1982) and iterative (Korein et al., 1982). 

The algebraic methods do not guarantee closed form 

solutions. In the case of geometric methods, closed form 

solutions for the first three joints of the manipulator must 

exist geometrically. The iterative methods converge to 

only a single solution or multiple solutions depending on 

the end-effector criterions (Alavandar and Nigam, 2008). 

In this paper, an iterative method is used in the 

computation of inverse kinematics and the solution is 

optimized for errors in result, this type of strategies can be 

used for motion planning and programming robots 

efficiently. This method is also developed for faster 

computation and further optimized for compatibility. 

Kinematic Description of the Arm 

Model 

Consider the robot configuration as shown in Figs. 

1, 2. 

 

Where: 

θ1,θ2,θ3,θ4,θ5 Are the Angles of links relative to 

horizontal (Degree) 

L1,L2,L3,L4,L5 Are Link lengths (cm) 

(x1,y1,z1) is the point of origin of the chain 

(x5,y5,z5) is the end-effector point 
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Fig. 1: Side view of the planar kinematic chain 

 

 
 

Fig. 2: Top view of the planar kinematic chain 
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The side view of the planar kinematic chain is shown 

above in Fig. 1 with vertical Z-axis and horizontal X-

axis where we can observe angles θ2,θ3,θ4,θ5 which are 

taken with respect to the X-Y plane. 

The top view of the planar kinematic chain is shown 

above in Fig. 2 with vertical Y-axis and horizontal X-

axis where we can observe angle θ1 which are taken with 

respect to X-Z plane. Angles taken in an anti-clockwise 

direction are taken as positive and clockwise directions 

are taken as negative. 

Degrees of Freedom 

AT4R robot has 5 degrees of freedom i.e., it requires 

five parameters to specify a particular position of the 

chain. To control a robot the input parameters required 

are in the form of angles to drive servo motors and the 

output being the positioning of end-effector in 3D space. 

Constraints and Limits 

Considering that joints actions are performed using 

servo motors which have a precision of 1 degree, 5 such 

kinds of joints are present in T4R robot and each servo 

motor has 180 degrees of constrained motion only, this 

limits can be mathematically represented in the range of 

angles as: 

 

θ1
o
 [0 180] 

θ2
o
 [0 180] 

θ3
o
 [θ2

o
-90 θ2

o
+90] 

θ4
o
 [θ3

o
-90 θ3

o
+90] 

θ5
o
 [θ4

o
-90 θ4

o
+90] 

Methodology 

The methodology process is as follows: 

 

a. Defining a virtual model of the robot. 

b. Computing inverse kinematics using iterations in 

Matlab for different end-effector positions. 

c. Plotting the results and observing the errors for 

optimizing. 

Computation Process 

The inputs for the program are three coordinates of 
end-effector along with the angle made by fourth link 
θ5

o
with horizontal and the limit of error in cm. The 

process begins with calculating the coordinates of joint 4 
in the three-dimensional system with θ1

o
 using X5, Y5 

coordinates and tangent rule. Then the joint 4 is rotated 
through the Z-axis through an angle θ1

o
 to place the 

kinematic chain in the plane of X-Z axis. In the next step 
an array locus of points tracing the path of the circle with 
L1 as radius and X1,Z1 as the center, then another array 
locus of points tracing the path of joint 3 i.e., the circle 
with L3 as radius and rotated point of joint 4 as the center 
are computed. Then the distance between points on the 

circles with each other is iterated and when the distance 
is equal to L2 with a precision of 0.1 cm there forms a 
feasible position of the chain. This precision is required 
as the mathematical results are not always accurate to 
higher decimal points and rounded off to 6 decimal 
places in Matlab. Thus joint angles made by links in this 
position are calculated using the points on circles and the 
values are floored to the nearest integer as our consideration 
constraint, the servos accept only integer angles. The 
floored angles undergo forward kinematics using 
trigonometric equations on sine and cosine rules and the 
error in 3D point obtained to the required end-effector point 
is calculated if the distance is less than or equal to the error 
limit defined at the starting of the program then it is plotted 
and the link angles are printed in the command window. 
This data can be further used for motion planning. 

This type of process is adapted to decrease the time 

for computation so that the algorithm can be used for 

real-time programming of a robot control unit. 

Computation Program 

The program is written using trigonometric relations 

in Matlab software and additional user-defined functions 

are also given below, they are:  
 

a. compute_circle 

b. compute_circle_360 

c. F_KIN_Angles 
 

For computation, taking link lengths to be L1=9 cm, 

L2=9 cm, L3=9 cm, L4=13.5 cm and (x1,y1,z1) being the 

origin (0, 0, 0). Input parameters for the program are 

end-effector coordinates and angle of the fourth link 

along with the limiting amount of error. The output 

consists of remaining four angles of the all possible 

positions of the chain which satisfy the error limit and 

end-effector criterion. The code is given below in Matlab 

programming language. 
 
%% Input: End effector coordinates and 
Q5

o 
X5=15; Y5=15; Z5s=20; Q5=45; 
Precision=0.1; Error=0.2;%% Error 
Limit 
L1=9;L2=9;L3=9;L4=13.5; 
figure(1); drawnow; hold on; grid on; 
grid minor; axis([X5-0.21 X5+0.21 Y5-
0.21 Y5+0.21]); 
viscircles([X5 
Y5],0.01,'lineWidth',1); 
viscircles([X5 
Y5],0.05,'lineWidth',1); 
viscircles([X5 Y5],0.1,'lineWidth',1); 
viscircles([X5 
Y5],0.15,'lineWidth',1); 
viscircles([X5 Y5],0.2,'lineWidth',1); 
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plot(X5,Y5,'r*'); xlabel('X 
Coordinate'); ylabel('Y Coordinate');  
legend('(X5,Y5)'); 
figure(2); drawnow; hold on; grid on; 
grid minor;  axis([X5-0.21 X5+0.21 Z5-
0.21 Z5+0.21]); 
viscircles([X5 
Z5],0.01,'lineWidth',1); 
viscircles([X5 
Z5],0.05,'lineWidth',1); 
viscircles([X5 Z5],0.1,'lineWidth',1); 
viscircles([X5 
Z5],0.15,'lineWidth',1); 
viscircles([X5 Z5],0.2,'lineWidth',1); 
plot(X5,Z5,'r*'); xlabel('X 
Coordinate'); ylabel('Z Coordinate'); 
legend('(X5,Z5)'); 
figure(3); drawnow; hold on; grid on; 
grid minor;  axis([Z5-0.21 Z5+0.21 Y5-
0.21 Y5+0.21]); 
viscircles([Z5 
Y5],0.01,'lineWidth',1); 
viscircles([Z5 
Y5],0.05,'lineWidth',1); 
viscircles([Z5 Y5],0.1,'lineWidth',1); 
viscircles([Z5 
Y5],0.15,'lineWidth',1); 
viscircles([Z5 Y5],0.2,'lineWidth',1); 
plot(Z5,Y5,'r*'); xlabel('Z 
Coordinate'); ylabel('Y Coordinate'); 
legend('(Z5,Y5)'); 
%% Rotation of chain to X-Z Axis 
Dis5=sqrt(X5^2+Y5^2+Z5^2); 
if(Dis5>40.5) 
fprintf('Cannot reach point 5\n'); 
end 
Q1=atand(Y5/X5); 
Q1=floor(Q1); 
Q1=Angle_Convert( Q1,Y5,X5 ); 
X5p=X5*cosd(-Q1)-Y5*sind(-Q1); 
Y5p=X5*sind(-Q1)+Y5*cosd(-Q1); 
Z5p=Z5; 
X4p=X5p-L4*cosd(Q5); 
Z4p=Z5p-L4*sind(Q5); 
%%Converting to 2D analysis 
x4=X4p; z4=Z4p; a=1; 
if (sqrt(x4^2+z4^2)>27)  

    fprintf('Cannot reach point 4\n');               

end 

X2=0;Z2=0;X3=0;Z3=0;                                     

[X2,Z2]=compute_circle_360(L1,0,0,X2,Z

2); 

[X3,Z3]=compute_circle(L2,x4,z4,X3,Z3)

; 

 Xo=0; Yo=0; Zo=0; 
for i=1:1:180  

for j=1:1:2000 
Length=sqrt((X2(i)-X3(j))^2+((Z2(i)-
Z3(j))^2)); 
if((Length>=(L2-Precision))&& 
(Length<=(L2+Precision))) 
              x2(a)=X2(i); 
z2(a)=Z2(i);               
              x3(a)=X3(j); 
z3(a)=Z3(j);                
Q2(a)=atand(z2(a) / x2(a)); 
Q2(a)=Angle_Convert(Q2(a),z2(a),x2(a) 
); 
Q3(a)=atand( (z3(a) - z2(a))/(x3(a) - 
x2(a)) );    
Q3(a)=Angle_Convert( Q3(a), (z3(a) - 
z2(a)),(x3(a) - x2(a)) ); 
Q4(a)=atand( (z4-z3(a))/(x4-x3(a)) ); 
Q4(a)=Angle_Convert(Q4(a),(z4-
z3(a)),(x4-x3(a)) );   
q2=floor(Q2(a)); q3=floor(Q3(a)); 
q4=floor(Q4(a)); 
if (q3<=q2+90)&&(q3>=q2-
90)&&(q4<=q3+90)&&(q4>=q3-
90)&&(Q5<=q4+90) &&(Q5>=q4-90) 
Xp=L1*cosd(q2)+L2*cosd(q3)+L3*cosd(q4)
; 
Zp=L1*sind(q2)+L2*sind(q3)+L3*sind(q4)
;  
[X,Y,Z]=F_KIN_Angles(Q1,q2,q3,q4,Q5); 
if (Xo~=X)&&(Yo~=Y)&&(Zo~=Z) 
       Xe=abs(X-X5); 
       Ye=abs(Y-Y5); 
       Ze=abs(Z-Z5);  
if(sqrt(Xe^2+Ye^2+Ze^2)<=Error) 
       a=a+1; 
fprintf(['Angles 
',num2str(Q1),',',num2str(q2), 
',',num2str(q3),',',num2str(q4),',',nu
m2str(Q5),' | ']) 
fprintf(['Point 
(',num2str(X),',',num2str(Y 
,',',num2str(Z),') ']); 
fprintf(['Error in X=',num2str(Xe),' , 
Y=',num2str(Ye),', 
Z=',num2str(Ze),'\n']);      
%%Plotting points 
figure(1); hold on; 
plot(X,Y,'b.','markersize',8);  
figure(2); hold on; 

plot(X,Z,'b.','markersize',8);  
figure(3); hold on; 

plot(Z,Y,'b.','markersize',8);  
end 

Xo=X; Yo=Y; Zo=Z;  

end 

end 
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end 
end 
end 
figure(1); 
title(['(',num2str(X5),',',num2str(Y5)
,',',num2str(Z5),')']); 

saveas(gcf,['(',num2str(X5),',',num2st

r(Y5),',',num2str(Z5),') XY.jpg']); 

figure(2); 

title(['(',num2str(X5),',',num2str(Y5)

,',',num2str(Z5),')']); 
saveas(gcf,['(',num2str(X5),',',num2st
r(Y5),',',num2str(Z5),') XZ.jpg']); 
figure(3); 
title(['(',num2str(X5),',',num2str(Y5)
,',',num2str(Z5),')']); 
saveas(gcf,['(',num2str(X5),',',num2st
r(Y5),',',num2str(Z5),') ZY.jpg']); 
 
function [X2,Y2] = 
compute_circle(l,x,y,X2,Y2) 
th = 0:pi/1000:2*pi; 
X2 = l * cos(th)+x; 
Y2 = l * sin(th)+y; 
end 
 
function [X2,Y2] = 
compute_circle_360(l,x,y,X2,Y2) 
th = 1:1:180; 
X2 = l * cosd(th)+x; 
Y2 = l * sind(th)+y; 
end 
 
function[X,Y,Z]=F_KIN_Angles(Q1,Q2,Q3,
Q4,Q5) 
L1=9;L2=9;L3=9;L4=13.5; 
x=L1*(cosd(Q2)) + L2*(cosd(Q3)) + 

L3*(cosd(Q4)) + L4*(cosd(Q5)); 
    z=L1*(sind(Q2)) + L2*(sind(Q3)) + 

L3*(sind(Q4)) + L4*(sind(Q5)); 
    X=x*(cosd(Q1));  
    Y=x*(sind(Q1)); 
    Z=z; 
End 

 

The equations given below convert joint angles which 
are with reference to the horizontal axis to with reference 
to links, these angles can be used as angle inputs to servo 
motors directly for a specific function: 
 

∅5

o
= θ5

o
+90- θ4

o
 (3) 

 

∅4

o
= θ4

o
+90- θ3

o
 (4) 

 

∅3

o
= θ3

o
+90- θ2

o
 (5) 

 

∅2

o
= θ2

o
 (6) 

 

∅1

o
= θ1

o
+90 (7) 

 

where, ⌀1, ⌀2, ⌀3, ⌀4, ⌀5 are angles relative to 

Links(Degree). 

Results 

The circles are plotted in red color with radii of 0.01 
cm, 0.05 cm, 0.1 cm, 0.15 cm, 0.2 cm and center as 
the required end-effector point for reference. The 
study has been divided into 3 cases with different end-
effector positions and computation is done with an 
error limit of 0.2 cm. 

Case Study - I 

Input: X5=15; Y5=15; Z5=20; θ5
o
=45;  

The Figs. 3, 4 and 5 shows the projections of obtained 

end-effector points in three planes of axes obtained for this 

case, which can be used as a reference for observing the 

outcome of the robot being programmed. 
From the figures, we can observe that there are six 

feasible configurations for the robot possible within the 
error limits of 0 to 0.08 cm in this case, with θ1 obtained as 
45

o
 and θ5 also being 45

o
. The feasible link configuration 

with least error is highlighted red color in Table 1. 

Case Study - II 

Input: X5=15; Y5=20; Z5=25; θ5
o
=60;  

The Figs. 6, 7, 8 shows the projections of obtained 

end-effector points in three planes of axes obtained for 

this case. 

Table 1: Summary of case study - i 

Angles Obtained (Degrees)  Obtained end effect or point coordinates 

--------------------------------------------------------- ----------------------------------------------------------- 

θ2 θ3 θ4 X5 Y5 Z5 Error (cm) 

104 46 -32 15.0281 15.0281 19.9834 0.043127 

107 44 -29 15.0333 15.0333  20.0413 0.062604 

110 42 45 14.9731 14.9731 19.9394 0.071541 

112 40 45 15.0549 15.0549 20.0151 0.079035 

16 37 45 15.0229 15.0229 19.9732 0.041983 

119  35 45 14.9636 14.9636 19.9484 0.072886
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Fig. 3: Projection of case study-i in the Z-Y plane 

 

 
 

Fig. 4: Projection of case study-i in the X-Y plane 
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Fig. 5: Projection of case study-i in the X-Z plane 

 

 
 

Fig. 6: Projection of case study-ii in the Z-Y plane 
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Fig. 7: Projection of case study-ii in the X-Y plane 

 

 
 

Fig. 8: Projection of case study-ii in the X-Z plane

14.8         14.85         14.9        14.95          15           15.05        15.1         15.15        15.2 

X coordinate (cm) 

(15,20,25) 

(X5, Z5) 
25.2 

 
25.15 

 
25.1 

 
25.05 

 
25 

 
24.95 

 
24.9 

 
24.85 

 
24.8 

Z
 c
o
o
rd
in
at
e 
(c
m
) 

14.8         14.85        14.9         14.95           15          15.05         15.1         15.15         15.2 

X coordinate (cm) 

(15,20,25) 

(X5, Y5) 
20.2 

 
20.15 

 
20.1 

 
20.05 

 
20 

 
19.95 

 
19.9 

 
19.85 

 
19.8 

Y
 c
o
o
rd
in
at
e 
(c
m
) 



Shravan Anand Komakula / Journal of Mechatronics and Robotics 2019, Volume 3: 258.268 
10.3844/jmrsp.2019.258.268 

 

266 

From the above figures, we can observe that there are 

five feasible configurations for the robot possible within the 

error limits of 0 to 0.06 cm in this case, with θ1 obtained as 

53
o
 and θ5 being 60

o
. The feasible link configurations with 

least error are highlighted red color in Table 2. 

Case Study - III 

Input: X5=10; Y5=-10; Z5=10; θ5
o
=-45;  

The below Figs. 9, 10, 11 shows the projections of 

obtained end-effector points in three planes of axes 

obtained for this case.  

From the figures, we can observe that there are ten 

feasible configurations for the robot possible within 

the error limits of 0 to 0.06 cm in this case, with θ1 
obtained as 45

o
 and θ5 being -45

o
. The feasible link 

configuration with least error is highlighted red color 

in Table 3. 

 
Table 2: Summary of case study - ii 

Angles Obtained (Degrees)  Obtained end effect or point coordinates 

-------------------------------------------------------- ------------------------------------------------------------- 

θ2 θ3 θ4 X5 Y5 Z5 Error (cm) 

2 82 27 15.0551 19.9788 25.0038 0.059154 

27 82 2 15.0551 19.9788 25.0038 0.059154 

43 72 82 15.0469 19.9679 24.9809 0.059943 

43 -9 72 15.0469 19.9679 24.9809 0.059943 

72 -9 43 15.0469 19.9679 24.9809 0.059943 
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Fig. 10: Projection of case study-iii in the X-Y plane 

 

 
 

Fig. 11: Projection of case study-iii in the X-Z plane 
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Table 3: Summary of case study - iii 

Angles Obtained (Degrees)  Obtained end effect or point coordinates 

--------------------------------------------------------- ----------------------------------------------------------- 

θ2 θ3 θ4 X5 Y5 Z5 Error (cm) 

123 83 20 10.0397 10.0397 10.0132 0.057642 

124 82 21 10.0183 10.0183 10.0531 0.059077 

126 80 22 10.015 10.015 9.9699 0.036799 

130 75 26 10.0263 10.0263 9.9871 0.039396 

131 74 27 9.9993 9.9993 9.9837 0.016312 

137 64 36 10.034 10.034 9.9713 0.056047 

138 62 38 10.0232 10.0232 9.9637 0.048941 

139 59 41 10.0277 10.0277 9.9776 0.045091 

140 56 44 10.0115 10.0115 9.9524 0.050271 

140 55 45 10.0251 10.0251 9.9755 0.043192

Conclusion 

Even if there is no perfect solution to an inverse 

kinematic problem with redundancy, there are methods 

which can be used to compute an effective solution and 

can be optimized for the requirement. These type of 

developments in computation processes contribute to a 

reduction in computation time and also can be adopted in 

high precise robots and program with efficiency. 
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