Abstract: The paper presents a dynamic model that works with variable internal damping, applicable directly to rigid memory mechanisms. If the problem of elasticity is generally solved, the problem of system damping is not clear and well-established. It is usually considered a constant "c" value for the internal damping of the system and sometimes the same value c and for the damping of the elastic spring supporting the valve. However, the approximation is much forced, as the elastic spring damping is variable and for the conventional cylindrical spring with constant elasticity parameter (k) with linear displacement with force, the damping is small and can be considered zero. It should be specified that damping does not necessarily mean stopping (or opposition) movement, but damping means energy consumption to brake the motion (rubber elastic elements have considerable damping, as are hydraulic dampers). Metal helical springs generally have a low (negligible) damping. The braking effect of these springs increases with the elastic constant (the k-stiffness of the spring) and the force of the spring (P₀ or F₀) of the spring (in other words with the arc static arrow, x₀ = P₀/k). Energy is constantly changing but does not dissipate (for this reason, the yield of these springs is generally higher). The paper presents a dynamic model with a degree of freedom, considering internal damping of the system (c), damping for which it is considered a special function. More precisely, the cushioning coefficient of the system (c) is defined as a variable parameter depending on the reduced mass of the mechanism (m* or J reduced) and the time, i.e., c depends on the derivative of m reduced in time. The equation of the differential movement of the mechanism is written as the movement of the valve as a dynamic response.

Keywords: Robots, Mechatronic Systems, Structure, Dynamics, Dynamics Systems, Machines, Dynamic Models, Rigid Memory Mechanisms

Introduction

Since today's robotics have grown at a rapid pace, it is necessary to better understand the phenomena that occur in robotic and mechatronic systems. Robots have not only penetrated to create microchips in electronics but also in medicine, where it helps to perform difficult operations, especially where precision is needed and the size is small and any human error could be fatal to the patient. Robots assist the doctor in heart, brain, kidney operations, not to mention bone implants and repair of damaged bones, cartilage and muscles. In this area, new materials adapted to the requirements of the human body also play an important role. Robots can usually do things much more accurate than a man. This provides the first motivation for using CAD/CAM systems. Robots can be used successfully if the patient has been radiated (e.g., with X-radiation), thus not endangering the health of the medical team. Since ancient times, the imagination of mankind has been concerned with the idea of making cars equipped with artificial intelligence to execute operations similar to those performed by man. Technicians have been used for many years in various fields other than medical, such as the automotive industry, the underwater environment, the alien space, or the areas at risk of nuclear radiation.

A robot is a mechanic or virtually artificial engineer. The robot is a system composed of several elements: Mechanical, sensors and actuators as well as a steering mechanism. The mechanics determine the appearance of the robot and the possible movements during operation. Sensors and actuators are used when interacting with the system environment. The targeting mechanism ensures that the robot accomplishes its goal.
successfully, for example by evaluating sensor information. This mechanism regulates the engines and plans the movements to be made. Robots with human form are called androids.

The basics of today's robots are far ahead. The first models of cars can be called automated (coming from the automated Greek, moving alone). They could do only one goal, being constrained by construction.

The Greek mathematician, Archytas, has, according to some accounts, built one of these automated primes: A propelled steamed pigeon that could fly alone. This wooden cavern was filled with air under pressure. It had a valve that allowed opening and closing by a counterweight. There have been many models over the centuries. Some made work easier and others served to people's amusement.

With the discovery of the 14th-century mechanical clock, new and complex possibilities have opened up. Not long afterward, the first machines appeared, which resembled the robots today. It was possible, however, that the movements followed one another without the need for manual intervention in that system.

The development of electro-technics in the twentieth century brought with it a development of robotics. Among the first mobile robots are the Elmer and Elsie system built by William Gray Walter in 1948. These tricycles could point to a light source and recognize collisions in the surroundings.

The year 1956 is considered as the birthday of the industrial robot. George Devol has applied this year in the US for a patent for "scheduled article transfer". A few years later he built together with Joseph Engelberger UNIMATE. This robot of approx. two tons was first introduced into the installation of TV iconoscopes and then found its way into the automotive industry. The programs for this robot were saved in the form of directional commands for motors on a magnetic cylinder. Since then, industrial robots as UNIMATE have been introduced in many production areas and are continually being developed to meet the complex demands that are required.

Intelligent robots possess elements of artificial intelligence. They can define their own tasks to solve particular problems by considering information about the environment (organized in the environment model) and can modify their actions according to the information provided by the perception system. Intelligent robots can be completely autonomous, their intelligence depending on the purpose for which they are built. The intelligent robot can be defined as a system able to perform tasks that require certain human qualities: Adaptation, learning, environmental imaging, prediction and planning, etc.

The assembly of the command system, the drive system and the perception system is the driving system. The mechanical system is the driven system. The robot's structure can, therefore, be divided into the mechanical structure and the electronic structure. The robot interacts with the environment by means of the mechanical structure, ensuring the displacement, positioning and orientation of the final effector.

Workspace is the environment in which the robot evolves to accomplish the planned task, populated with physical, fixed or mobile objects.

The useful workspace is described by the movements of all kinematic couplings within the limits defined by the drive motors. Throughout the movement of the robot elements, its effector must be contained within the useful workspace. In the case of a mobile robot, defining and shaping the workspace requires a global approach to the entire robot action zone, so also to the obstacles.

The development and diversification of road vehicles and general vehicles, especially of cars, together with thermal engines, especially internal combustion engines (being more compact, robust, more independent, more reliable, stronger, more dynamic etc.), has also forced the development of devices, mechanisms and component assemblies at an alert pace. The most studied are power and transmission trains.

The four-stroke internal combustion engine (four-stroke, Otto or Diesel) comprises in most cases (with the exception of rotary motors) and one or more camshafts, valves, valves and so on.

The classical distribution mechanisms are robust, reliable, dynamic, fast-response and although they functioned with very low mechanical efficiency, taking much of the engine power and effectively causing additional pollution and increased fuel consumption, they could not be abandoned until the present. Another problem was the low speed from which these mechanisms begin to produce vibrations and very high noises.

Regarding the situation realistically, the mechanisms of cam casting and sticking are those that could have produced more industrial, economic, social revolutions in the development of mankind. They have contributed substantially to the development of internal combustion engines and their spreading to the detriment of external combustion (Steam or Stirling) combustion engines.

The problem of very low yields, high emissions and very high power and fuel consumption has been greatly improved and regulated over the past 20-30 years by developing and introducing modern distribution mechanisms that, besides higher yields immediately deliver a high fuel economy also performs optimal noise-free, vibration-free, no-smoky operation, as the maximum possible engine speed has increased from 6000 to 30000 [rpm].

The paper tries to provide additional support to the development of distribution mechanisms so that their performance and the engines they will be able to further enhance.
Particular performance is the further increase in the mechanical efficiency of distribution systems, up to unprecedented quotas so far, which will bring a major fuel economy.

The current oil and energy reserves of mankind are limited. Until the implementation of new energy sources (to take real control over fossil fuels), a real alternative source of energy and fuel is even "the reduction in fuel consumption of a motor vehicle", whether we burn oil, gas and petroleum derivatives, whether we will implement biofuels first and later hydrogen (extracted from water).

The drop in fuel consumption for a given vehicle type over a hundred kilometers traveled has been consistently since 1980 and has continued to continue in the future.

Even if hybrids and electric motor cars are to be multiplied, let us not forget that they have to be charged with electricity, which is generally obtained by burning fossil fuels, especially oil and gas, in a current planetary proportion of about 60%. Can burn oil in large heat plants to warm up, have domestic hot water and electricity to consume and some of that energy is extra and we add it to electric cars (electric vehicles), but the global energy problem is not resolved, the crisis even deepens. This was the case when was electrified the railroad for trains, when it were generalized trams, trolleybuses and subways, consuming more electric power produced mainly from oil; oil consumption has grown a lot, its price has had a huge leap and now one looks at how the reserves disappear quickly.

Generally, generalizing electric cars (though it is not really ready for this), one will give a new blow to oil and gas reserves.

Fortunately, biofuels, biomass and nuclear power have developed very much lately (currently based on the nuclear fission reaction). These together with the hydroelectric power plants have managed to produce about 40% of the total energy consumed globally. Only about 2-3% of global energy resources are produced by various other alternative methods (despite the efforts made so far).

This should not disarm us and abandon the implementation of solar, wind, etc.

However, as a first necessity to further reduce the share of global energy from oil and gas, the first vigorous measures that will need to be pursued will be to increase biomass and biofuels production along with the widening of the number of nuclear power plants (despite some undesirable events, which only show that nuclear fission power plants must be built with a high degree of safety and in no way eliminated from now on and they are still the one that has been so far "a bad evil ").

Alternative sources will take them on an unprecedented scale, but it expects the energy they provide to be more consistent in global percentages so that can rely on them in a real way (otherwise, one risks that all these alternative energies remain a sort of "fairy tale").

Hydrogen fuel energy "when it starts when it stops" so there is no real time now to save energy through them, so they can no longer be priority, but the trucks and buses could even be implemented now that the storage problems have been partially solved. The bigger problem with hydrogen is no longer the safe storage, but the high amount of energy needed to extract it and especially for its bottling. The huge amount of electricity consumed for bottling hydrogen will have to be obtained entirely through alternative energy sources, otherwise hydrogen programs will not be profitable for humanity at least for the time being. The authors thinking the immediate use of hydrogen extracted from the water with alternative energies would be more appropriate for seagoing vessels.

Maybe just to say that due to his energy crisis (and not just energy, from 1970 until today), the production of cars has increased at an alert pace (but naturally) instead of falling and they have and were marketed and used. The world's energy crisis (in the 1970s) began to rise from around 200 million vehicles worldwide, to about 350 million in 1980 (when the world's energy and global fuel crisis was declared), about 500 million vehicles worldwide and in 1997 the number of world-registered vehicles exceeded 600 million (Rulkov et al., 2016; Agarwala, 2016; Babayemi, 2016; Gusti and Semin, 2016; Mohamed et al., 2016; Wessels and Raad, 2016; Maraveas et al., 2015; Khalil, 2015; Rhode-Barbarigos et al., 2015; Takeuchi et al., 2015; Li et al., 2015; Vernardos and Gantes, 2015; Bourahla and Blakeborough, 2015; Stavridou et al., 2015; Ong et al., 2015; Dixit and Pal, 2015; Rajput et al., 2016; Rea and Ottaviano, 2016; Zarfi and Zhang, 2016a; 2016b; Zheng and Li, 2016; Buonomano et al., 2016a; 2016b; Faizal et al., 2016; Cataldo, 2006; Ascione et al., 2016; Elmeddahi et al., 2016; Calise et al., 2016; Morse et al., 2016; Abouoaida, 2016; Rohit and Dixit, 2016; Kazakov et al., 2016; Alwetaishi, 2016; Riccio et al., 2016a; 2016b; Iqbal, 2016; Hasan and El-Naas, 2016; Al-Hasan and Al-Ghamdi, 2016; Jiang et al., 2016; Sepúlveda, 2016; Martins et al., 2016; Pisello et al., 2016; Jarahi, 2016; Mondal et al., 2016; Mansour, 2016; Al Qadi et al., 2016b; Campo et al., 2016; Samantaray et al., 2016; Malomar et al., 2016; Rich and Badar, 2016; Hirun, 2016; Bucinell, 2016; Nabilou, 2016b; Barone et al., 2016; Chisari and Bedon, 2016; Bedon and Louter, 2016; Santos and Bedon, 2016; Minghini et al., 2016; Bedon, 2016; Jafari et al., 2016; Chiozzi et al., 2016; Orlando and Benvenuti, 2016; Wang and Yagi, 2016; Obaiys et al., 2016; Ahmed et al., 2016; Jauhari et al., 2016; Sjahruddah and Sinaga, 2016; Shannugam, 2016; Jaber and Bicker, 2016; Wang et al., 2016; Moubarek and Gharsallah, 2016; Amani, 2016;
Shruti, 2016; Pérez-de León et al., 2016; Mohseni and Tsavdaridis, 2016; Abu-Lebdeh et al., 2016; Serebrennikov et al., 2016; Budak et al., 2016; Augustine et al., 2016; Jarahi and Seifilealeh, 2016; Nabiliou, 2016a; You et al. 2016; Al Qadi et al., 2016a; Rama et al., 2016; Sallami et al., 2016; Huang et al., 2016; Ali et al., 2016; Kamble and Kumar, 2016; Saikia and Karak, 2016; Zeferino et al., 2016; Pravettoni et al., 2016; Bedon and Amadio, 2016; Chen and Xu, 2016; Mavukkandy et al., 2016; Gruener, 2006; Yargin et al., 2016; Madani and Dadabneh, 2016; Alhasanat et al., 2016; Elliott et al., 2016; Suarez et al., 2016; Kuli et al., 2016; Waters et al., 2016; Montgomery et al., 2016; Lamarre et al., 2016; Daud et al., 2008; Taher et al., 2008; Zulkifli et al., 2008; Pourmahmoud, 2008; Pannirselvam et al., 2008; Ng et al., 2008; El-Tous, 2008; Akhsheme et al., 2008; Nachiengtai et al., 2008; Moezzi et al., 2008; Boucetta, 2008; Darabi et al., 2008; Semin and Bakar, 2008; Al-Abbas, 2009; Abdullah et al., 2009; Abu-Ein, 2009; Opafunso et al., 2009; Semin et al., 2009a; 2009b; 2009c; Zulkifli et al., 2009; Marzuki et al., 2015; Bier and Mostafavi, 2015; Monta et al., 2015; Farokhi and Gordini, 2015; Khalilif et al., 2015; Yang and Lin, 2015; Chang et al., 2015; Demetriou et al., 2015; Rajupillai et al., 2015; Sylvester et al., 2015; Ab-Rahman et al., 2009; Abdullah and Halim, 2009; Zotos and Costopoulos, 2009; Feraga et al., 2009; Bakar et al., 2009; Cardu et al., 2009; Bolonkin, 1930; He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013; Padula and Perdue, 2013; Perumal and Jawahir, 2013; Petrescu, 2011, 2015a; 2015b; Petrescu and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e; 2011a; 2011b; 2012a; 2012b; 2013a; 2013b; 2013c; 2013d; 2013e; 2016a; 2016b; 2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; 2018a; 2018b; 2018c; 2018d; 2018e; 2018f; 2018g; 2018h; 2018i; 2018j; 2018k; 2018l; 2018m; 2018n).

Materials and Methods

The Peugeot Citroën Group in 2006 built a 4-valve hybrid engine with 4 cylinders the first cam opens the normal valve and the second with the phase shift. Almost all current models have stabilized at four valves per cylinder to achieve a variable distribution. In 1971, K. Hain proposes a method of optimizing the cam mechanism to obtain an optimal (maximum) transmission angle and a minimum acceleration at the output. In 1979, F. Giordano investigates the influence of measurement errors in the kinematic analysis of the camel.

In 1985, P. Antonescu presented an analytical method for the synthesis of the cam mechanism and the flat barbed wire and the rocker mechanism. In 1988, J. Angeles and C. Lopez-Cajun presented the optimal synthesis of the cam mechanism and oscillating plate stick. In 2001 Dinu Taraza analyzes the influence of the cam profile, the variation of the angular speed of the distribution shaft and the power, load, consumption and emission parameters of the internal combustion engine. In 2005, Petrescu and Petrescu, present a method of synthesis of the rotating camshaft profile with rotary or rotatable tappet, flat or roller, in order to obtain high yields at the exit.

In the paper (Wiederrich and Roth, 1974), there is presented a basic, single-degree, dual-spring model with double internal damping for simulating the motion of the cam and punch mechanism. In the paper (Fawcett and Fawcett, 1974) is presented the basic dynamic model of a cam mechanism, stick and valve, with two degrees of freedom, without internal damping. A dynamic model with both damping in the system,
external (valve spring) and internal one is the one presented in the paper (Jones and Reeve, 1974).

A dynamic model with a degree of freedom, generalized, is presented in the paper (Tesar and Matthew, 1974), in which there is also presented a two-degree model with double damping.

In the paper (Sava, 1970) is proposed a dynamic model with 4 degrees of freedom, obtained as follows: The model has two moving masses these by vertical vibration each impose a degree of freedom one mass is thought to vibrate and transverse, generating yet another degree of freedom and the last degree of freedom is generated by the torsion of the camshaft. Also in the paper (Sava, 1970) is presented a simplified dynamic model, amortized. In (Sava, 1970) there is also showed a dynamic model, which takes into account the torsional vibrations of the camshaft.

In the paper (Koster, 1974) a four-degree dynamic model with a single oscillating motion mass is presented, representing one of four degrees of freedom. The other three freedoms result from a torsional deformation of the camshaft, a vertical bending (z), camshaft and a bending strain of the same shaft, horizontally (y), all three deformations, in a plane perpendicular to the axis of rotation. The sum of the momentary efficiency and the momentary losing coefficient is 1. The work is especially interesting in how it manages to transform the four degrees of freedom into one, ultimately using a single equation of motion along the main axis. The dynamic model presented can be used wholly or only partially, so that on another classical or new dynamic model, the idea of using deformations on different axes with their cumulative effect on a single axis is inserted.

In works (Antonescu et al., 1987; Petrescu and Petrescu, 2005a) there is presented a dynamic model with a degree of freedom, considering the internal damping of the system (c), the damping for which is considered a special function. More precisely, the damping coefficient of the system (c) is defined as a variable parameter depending on the reduced mass of the mechanism \(m^r \) or \(J^r \) and time, i.e., \(c \), depends on the time derivative of \(m^r \). The equation of differential movement of the mechanism is written as the movement of the valve as a dynamic response.

Starting from the kinematic scheme of the classical distribution mechanism (Fig. 1), the dynamic, monodynamic (single degree), translatable, variable damping model (Fig. 2) is constructed, the motion equation of which is:

\[
M \ddot{x} = K \dot{y} - k \cdot x - c \cdot \dot{x} - F_0
\]

Equation (1) is nothing else than the equation of Newton, in which the sum of forces on an element in a certain direction (x) is equal to zero.

The notations in formula (1) are as follows:

- \(M \) - mass of the reduced valve mechanism
- \(K \) - reduced elastic constants of the kinematic chain (rigidity of the kinematic chain)
- \(k \) - elastic spring valve constant
- \(c \) - the damping coefficient of the entire kinematic chain (internal damping of the system)
- \(F, F_t \) - the elastic spring force of the valve spring
- \(x \) - actual valve displacement (the cam profile) reduced to the axis of the valve

Fig. 1: The kinematic scheme of the classic distribution mechanism
The Newton Equation (1) is ordered as follows:

\[M \ddot{x} + c \dot{x} = F(t) - F_0 - k \dot{x} \]

(2)

At the same time the differential equation of the mechanism is also written as Lagrange, (3), (Lagrange equation):

\[M \ddot{x} + \frac{1}{2} \frac{dM}{dt} \ddot{x} = F_a - F \]

(3)

Equation (3), which is nothing other than the Lagrange differential equation, allows for the low strength of the valve (4) to be obtained by the polynomial coefficients with those of the Newtonian polynomial (2), the reduced drive force at the valve (5), as well as the expression of c, i.e., the expression of the internal damping coefficient, of the system (6):

\[F_a = F_0 + k \dot{x} = k \cdot x_0 + k \cdot \dot{x} = k \cdot (x_0 + x) \]

(4)

\[F_a = K \cdot (y - x) = K \cdot (s - x) \]

(5)

\[c = \frac{1}{2} \frac{dM}{dt} \]

(6)

Thus a new formula (6) is obtained, in which the internal damping coefficient (of a dynamic system) is equal to half the derivative with the time of the reduced mass of the dynamic system.

The Newton motion Equation (1, or 2), by replacing it with c takes the form (7):

\[M \ddot{x} + \frac{1}{2} \frac{dM}{dt} \ddot{x} + (K + k) \cdot \dot{x} = K \cdot y - F_0 \]

(7)

In the case of the classical distribution mechanism (in Figure 1), the reduced mass, M, is calculated by the formula (8):

\[M = m_2 + \left(m_3 + m_5 \right) \left(\frac{\dot{y}_2}{x} \right)^2 + J_1 \left(\frac{\omega_1}{\dot{x}} \right)^2 + J_4 \left(\frac{\omega_4}{\dot{x}} \right)^2 \]

(8)

Formula in which or used the following notations:

- \(m_2 \) = Stick weight
- \(m_3 \) = The mass of the pushing rod
- \(m_5 \) = Mass of the valve
- \(J_1 \) = Moment of mechanical inertia of the cam
- \(J_4 \) = Moment of mechanical inertia of the culbutor
- \(\dot{y}_2 \) = Velocity of stroke imposed by cam law
- \(x \) = Valve speed

If \(i = i_{25} \), the valve-to-valve ratio (made by the crank lever), the theoretical velocity of the valve (imposed by the motion law given by the cam profile) is calculated by the formula (9):

\[y = \frac{\dot{y}_1}{i} \]

(9)

where:

\[i = \frac{CC_0}{C_0 D} \]

(10)

is the ratio of the crank arms.

The following relationships are written (11-16):

\[\ddot{x} = \omega_1 \cdot x \]

(11)
\[x = \alpha^2 \cdot x^* \]
(12)

\[y_z = \eta_1 y_z' = \eta_1 \dot{y} \]
(13)

\[\frac{\partial y}{\partial x} \]
(14)

\[\eta_4 = \frac{\dot{y}_z}{C_0} = \frac{\eta_0 y_z' C_0}{C_0 C_0 D} = \frac{\eta_0 y_z'}{C_0 D} \]
(15)

\[\frac{\partial y}{\partial x} \]
(16)

where, \(y' \) is the reduced velocity imposed by the camshaft (by the law of camshaft movement), reduced to the valve axis.

With the previous relationships (10), (13), (14), (16), the relationship (8) becomes (17-19):

\[M = m_i + (m_z + m_0) \left(\frac{1}{x} \right) + J_i \left(\frac{1}{x} \right) + J_1 \left(\frac{1}{C_0 D x} \right) \]
(17)

Or:

\[M = m_i + \left[\frac{i^2 \cdot (m_z + m_0)}{C_0 D x} \right] \left(\frac{y'}{x} \right)^2 + J_1 \left(\frac{1}{x} \right) \]
(18)

Or:

\[M = m_i + m_0 \left(\frac{y'}{x} \right)^2 + J_1 \left(\frac{1}{x} \right) \]
(19)

One makes the derivative \(dM/d\varphi \) and result the following relationships:

\[\frac{d}{d\varphi} \left(\frac{y'}{x} \right)^2 = \frac{2y' \cdot \left(y'' \cdot x - x' \cdot y' \right)}{x^2} \]
(20)

\[= \frac{2y'}{x^2} \left(\frac{y'' \cdot x - y' \cdot x'}{x} \right) = 2 \left(\frac{y'}{x} \right)^2 \left(\frac{y'' \cdot x - y' \cdot x'}{x} \right) \]

\[\frac{d}{d\varphi} \left(\frac{1}{x} \right)^2 = \frac{2}{x^2} \cdot \frac{x'}{x^2} = \frac{x'}{x^3} \]
(21)

\[\frac{dM}{d\varphi} = 2 \cdot m_0 \left(\frac{y'}{x} \right)^2 \left(\frac{y'' \cdot x - y' \cdot x'}{x} \right) - 2 \cdot J_1 \cdot \frac{x'}{x^5} \]
(22)

Write the relationship (6) as (23):

\[c = \frac{\omega}{2} \cdot \frac{dM}{d\varphi} \]
(23)

With (22), relation (23) becomes (24-25):

\[c = \omega \cdot \left[\frac{i^2 \cdot (m_z + m_0) + J_1}{C_0 D x} \right] \]
(24)

Where was noted:

\[m^* = i^2 \cdot (m_z + m_0) + \frac{J_1}{C_0 D x} \]
(26)

With relations (19), (12), (25) and (11), Equation (2) is written first in the form (27), which develops in forms (28), (29) and (30):

\[M \cdot \omega^2 \cdot x^* + c \cdot \omega \cdot x^* + (K + k) \cdot x = K \cdot y - F_0 \]
(27)

Or:

\[M \cdot \omega^2 \cdot x^* + c \cdot \omega \cdot x^* + m^* \cdot \left(\frac{y'}{x} \right)^2 \cdot x^* \]
(28)

Meaning:

\[\omega^2 \cdot m_1 \cdot x^* + \omega^2 \cdot m^* \cdot x^* \left(\frac{y'}{x} \right)^2 \cdot x^* \]
(29)

And final form:

\[\omega^2 \cdot m_i \cdot x^* + (K + k) \cdot x = K \cdot y - F_0 \]
(30)

which can also be written in another form:

\[\omega^2 \left(m_i \cdot x^* + m^* \cdot y^* \cdot \frac{y'}{x} \right) + (K + k) \cdot x = K \cdot y - F_0 \]
(31)
Equation (31) can be approximated to form (32) if we consider the theoretical input velocity y imposed by the camshaft profile (reduced to the valve axis) approximately equal to the velocity of the valve, x:

$$\omega^2 \cdot (m_1 \cdot x' + m_2 \cdot y') + (K + k) \cdot x = K \cdot y - F_0$$ \hspace{1cm} (32)$$

If the laws of entry with s, s' (low speed), s'' (low acceleration), Equation (32) takes the form (33) and the more complete Equation (31) takes the complex form (34):

$$\omega^2 \cdot (m_1 \cdot x' + m_2 \cdot y') + (K + k) \cdot x = K \cdot s - F_0$$ \hspace{1cm} (33)$$

$$\omega^2 \cdot \left(m_1 \cdot x' + m_2 \cdot y' \cdot \frac{x'}{x} \right) + (K + k) \cdot x = K \cdot s - F_0$$ \hspace{1cm} (34)$$

In the paper (Antonescu et al., 1985a) there is presented a dynamic damping model variable as in the previous paragraph, but with four degrees of mobility.

The hypothesis of the existence of four masses in translational motion is made at the same time (Fig. 3). Figure 3a shows the kinematic diagram of the classic distribution mechanism and in Fig. 3b is shown the corresponding dynamic pattern, with four moving masses, thus with four degrees of freedom.

The way in which the four dynamic masses and the corresponding elastic constants, as well as the corresponding damping, are deduced will be presented in the following paragraph. The dynamic model with four degrees of freedom (Fig. 3) is considered, where the four reduced masses of the driven element (valve) are calculated with the formulas (35).

The mass m_1* is calculated as the mass m_1 (mass of the camshaft) that reduces to the valve axis, that is, this mass m_1, multiplies by the theoretical input speed \dot{y}_1, square and is divided by the square of the valve speed \dot{x}, the ratio between the cam entry speed \dot{x}_1 and valve velocity \dot{x} and rises to square and this square ratio multiplies by the mass m_1.

As the input speed \dot{y}_1 must also be reduced to the axis of the valve, instead of it write down the reduced input velocity to the valve axis \dot{y}_1', multiplied by the coulter transmission ratio, i, that is, we have the relation $\dot{x}_1' = i \cdot \dot{y}_1$ and the square velocity $\dot{x}_1'^2$, will be replaced with $i^2 \dot{y}_1'^2$ and will be written down i^2 multiplied to the mass m_1 with m_1'. For mass m_2*, consider the weight of the tappet, m_2, plus one third of the weight of the pushing rod, m_3, and the corresponding speed \dot{y}_2 is practically the dynamic velocity of the tappet reduced to the axis of the valve.

The mass m_3* corresponds to the pusher rod and consists of two remaining thirds of the pushing rod weight, m_3, plus half of the mass of the stem, m_4; velocity \dot{y}_3 is the actual average speed with which the pushing rod moves on the vertical axis reduced to the valve axis, or the speed of the stopper at the point C reduced to the valve axis.

Figure 3: Dynamic model with four degrees of freedom with internal system damping - variable
The mass \(m_* \) is obtained from all the summaries on the side of the valve, i.e., half the mass of the valve, plus the mass \(m_i \) (which in turn represents the sum of the valve mass and the mass of the valve pan) plus a third of the mass of the valve spring. The speed of the valve (obviously at its axis) was marked with \(\dot{v} \):

\[
\begin{align*}
 m_i' & = m_i \cdot \dot{y}_i \left(\frac{\dot{v}_i}{x} \right)^2 \left(\frac{y_i}{x} \right)^2 + m_i', \\
 m_i' & = \left(\frac{2}{3} \cdot m_i + \frac{1}{2} \cdot m_i \right) \cdot \dot{v}_i \left(\frac{\dot{v}_i}{x} \right)^2 \left(\frac{y_i}{x} \right)^2, \\
 m_i' & = \left(\frac{1}{2} \cdot m_i + \frac{1}{5} \cdot m_i = m_*' \right)
\end{align*}
\]

\(i = O_x C / O_y D \) (Fig. 3) represents the transmission ratio of the culbutor; \(m_i, m_j, m_k, m_l, m_m, m_n \) are in order: The mass of the cam, the stick, the pusher rod, the stem, the valve (with the roller) and the valve spring respectively. The following equivalent elastic constants (Fig. 3) are reduced to the valve (36):

\[
K_i' = \frac{K_i \cdot K_i}{K_i + K_2} \cdot \dot{y}_i, K_j' = \frac{K_j \cdot K_j}{K_j + K_2} \cdot \dot{y}_j, K_k' = K_k, K_l' = K_l, K_m' = K_m
\]

where, \(k_1, k_2, k_3, k_4, k_5 \) are the stiffnesses (elastic constants) of the corresponding elements. The elastic valve constant is not in question. It is noted that \(F_0 \) is the external force, known as the spring force of the valve spring and \(F_x \) is the balancing force at the valve, basically the driving force. The influence of moments of mechanical inertia (mass), weight forces and friction forces will be neglected. Following the dynamic equilibrium for each reduced mass in part are written four equations of the form (37-40):

\[
\begin{align*}
 K_i' \cdot (y_i - y_j) & = F_x + m_*' \cdot \dot{y}_i + c_i \cdot \ddot{y}_i = 0, \\
 K_j' \cdot (y_j - y_i) & = K_i' \cdot (y_i - y_j) + m_*' \cdot \dot{y}_j + c_i \cdot \ddot{y}_j = 0, \\
 K_k' \cdot (y_k - y_j) & = (y_j - y_i) + m_*' \cdot \dot{y}_k + c_i \cdot \ddot{y}_k = 0, \\
 K_m' \cdot (y_m - y_k) & = (y_k - y_j) + m_*' \cdot \dot{y}_m + c_i \cdot \ddot{y}_m = 0
\end{align*}
\]

The linear displacements \(y_1, y_2, y_3, y_4, y_5 = x \) correspond to the reduced masses \(m_*', m_*', m_*', m_*', m_*'. \)

Assuming that the movement \(y_1 \) is known from the motion law \(y_1 = y_1(\phi) \) imposed on the camshaft at the cam design, the displacements \(y_2, y_3, y_4, y_5 \) and the balance force \(F_0 \), i.e., the motor force \(F_m \), remain unknown.

In this case it is observed that Equations (38), (39) and (40) form a system of three equations with three unknowns \(y_2, y_3, y_4, x \). After calculating the three displacements from (37), the equilibrium force \(F_0 \) is obtained.

Basically, the system is not linear because, in addition to the unknowns given by the three displacements, we have as extra unknown the speeds and accelerations derived from unknown movements, i.e., practically unknown will be ten and only four of the system’s equations:

\[
c = \frac{1}{2} \frac{dM}{dt} \cdot \frac{dM}{\phi}
\]

For the actual solution of the equation system (37) - (40), the damping coefficients \(c_1, c_2, c_3, c_4 \) of formula (41), already known from the system with a degree of freedom and the mass system (35), as follows (42-45):

\[
\begin{align*}
 c_1 & = \frac{1}{2} \frac{dM}{dt} = m_*' \left(\frac{\dot{y}_1 \cdot \dot{y}_1}{x} - \frac{\dot{y}_1 \cdot \dot{y}_1}{x^2} \right), \\
 c_2 & = \frac{1}{2} \frac{dM}{dt} = m_*' \left(\frac{\dot{y}_2 \cdot \dot{y}_2}{x} - \frac{\dot{y}_2 \cdot \dot{y}_2}{x^2} \right), \\
 c_3 & = \frac{1}{2} \frac{dM}{dt} = m_*' \left(\frac{\dot{y}_3 \cdot \dot{y}_3}{x} - \frac{\dot{y}_3 \cdot \dot{y}_3}{x^2} \right), \\
 c_4 & = \frac{1}{2} \frac{dM}{dt} = m_*' \left(\frac{\dot{y}_4 \cdot \dot{y}_4}{x} - \frac{\dot{y}_4 \cdot \dot{y}_4}{x^2} \right), \\
 c_5 & = \frac{1}{2} \frac{dM}{dt} = m_*' \left(\frac{\dot{y}_5 \cdot \dot{y}_5}{x} - \frac{\dot{y}_5 \cdot \dot{y}_5}{x^2} \right)
\end{align*}
\]

which can also be written in the form (46-49):

\[
\begin{align*}
 c_1 & = m_* \left(\frac{\dot{y}_1 \cdot \dot{y}_1}{x} \right), \\
 c_2 & = m_* \left(\frac{\dot{y}_2 \cdot \dot{y}_2}{x} \right), \\
 c_3 & = m_* \left(\frac{\dot{y}_3 \cdot \dot{y}_3}{x} \right), \\
 c_4 & = m_* \left(\frac{\dot{y}_4 \cdot \dot{y}_4}{x} \right), \\
 c_5 & = m_* \left(\frac{\dot{y}_5 \cdot \dot{y}_5}{x} \right)
\end{align*}
\]

Using Relationships (46-49) and System (35), Relationships (50-53) can be obtained immediately:

\[
\begin{align*}
 c_1 \cdot \dot{y}_1 & = m_* \left(\frac{\dot{y}_1 \cdot \dot{y}_1}{x} \right), \\
 c_2 \cdot \dot{y}_2 & = m_* \left(\frac{\dot{y}_2 \cdot \dot{y}_2}{x} \right)
\end{align*}
\]
\[\dot{x}_1 = m_2 \left(\frac{\ddot{y}_3}{x} \right)^2 \left(\ddot{y}_1 - \frac{\ddot{y}_3}{x} \right) = m_2 \left(\ddot{v}_3 - \frac{\ddot{y}_3}{x} \right) \] (52)

\[\dot{c}_e \dot{z}_1 = c_e \dot{x} = 0 \] (53)

Taking into account relations (50-53), Equations (37-40) are rewritten as follows (54-57):

\[K'_1 \cdot y_1 - K'_3 \cdot y_3 - F_e + 2m'_1 \left(\frac{\ddot{y}_3}{x} \right)^2 \ddot{y}_1 - m'_1 \left(\frac{\ddot{y}_3}{x} \right)^2 \ddot{x} = 0 \] (54)

\[-K'_1 \cdot y_1 + (K'_3 + K'_1) \cdot y_3 - K'_3 \cdot y_3
+ 2m'_1 \left(\frac{\ddot{y}_3}{x} \right)^2 \ddot{y}_1 - m'_1 \left(\frac{\ddot{y}_3}{x} \right)^2 \ddot{x} = 0 \] (55)

\[-K'_1 \cdot y_1 + (K'_3 + K'_1) \cdot y_3 - K'_3 \cdot x
+ 2m'_1 \left(\frac{\ddot{y}_3}{x} \right)^2 \ddot{y}_1 - m'_1 \left(\frac{\ddot{y}_3}{x} \right)^2 \ddot{x} = 0 \] (56)

\[-K'_1 \cdot y_1 + (K'_3 + K'_1) \cdot x + m'_1 \ddot{x} + F_e = 0 \] (57)

With the system of Equations (54-57), the dynamic model shown in Fig. 3 is solved, given that the system is nonlinear and besides the four main unknowns, \(y_2, y_3, x, F_e \), six more unknown \(y_2, y_3, y_3, x, \ddot{x} \) occur, but dependent on each other and also depend on linear displacements, \(y_2, y_3 \) and \(x \) respectively.

The system is greatly simplified if we consider the three speeds approximately equal to each other and equal to the known entry speed; In this case, the equation system (54-57) is considerably simplified, taking the form (58-61):

\[K'_1 \cdot y_1 - K'_3 \cdot y_3 - F_e + 2 \cdot m'_1 \cdot \ddot{y}_1 - m'_1 \cdot \ddot{x} = 0 \] (58)

\[-K'_1 \cdot y_1 + (K'_3 + K'_1) \cdot y_3 - K'_3 \cdot y_3 - K'_1 \cdot \ddot{y}_1 + 2 \cdot m'_1 \cdot \ddot{y}_1 - m'_1 \cdot \ddot{x} = 0 \] (59)

\[-K'_1 \cdot y_1 + (K'_3 + K'_1) \cdot y_3 - K'_3 \cdot x - 2 \cdot m'_1 \cdot \ddot{y}_1 - m'_1 \cdot \ddot{x} = 0 \] (60)

\[-K'_1 \cdot y_1 + (K'_3 + K'_1) \cdot x + m'_1 \ddot{x} + F_e = 0 \] (61)

Results and Discussion; SOLVING THE DIFFERENTIAL EQUATION

In the paper was presented a dynamic model with a degree of mobility, internal damping of the variable system, which finally leads to the Equation (54), which can be written in the form (62) and the simplified Equation (53), arranged now in form (63):

\[(K + k) \cdot x = \dot{K} \cdot y - k \cdot x_0 - \omega^3 \cdot m_3 \cdot X'' - \omega^3 \cdot m_1 \cdot y'' \cdot \frac{y'}{X'} \] (62)

\[(K + k) \cdot x = \dot{K} \cdot y - k \cdot x_0 - \omega^3 \cdot m_3 \cdot X'' - \omega^3 \cdot m_1 \cdot y'' \] (63)

Differential Equation (63), i.e., the simplified form (in which the reduced input velocity imposed by the cam profile \(\dot{y} \) is equal to the low dynamic velocity, \(\dot{x} \), both reduced to the valve axis) is used.

Solving the Differential Equation, Through a Particular Solution

Equation (63) is written as (64):

\[m_3 \cdot \ddot{X} + (K + k) \cdot X = K \cdot \dot{y} - k \cdot x_0 - m_3 \cdot \dot{y} \] (64)

One divides Equation (64) with \(m_3 \) and amplify the straight term with \(\cos \omega t \), thus obtaining the form (65):

\[\ddot{X} + \frac{K + k}{m_3} \cdot X = \frac{K \cdot \dot{y} - k \cdot x_0 - m_3 \cdot \dot{y}}{m_3 \cdot \cos \omega t} \cdot \cos (\omega t) \] (65)

The following notations (66-67) are used:

\[p^3 = \frac{K + k}{m_3} \] (66)

\[q = \frac{K \cdot \dot{y} - k \cdot x_0 - m_3 \cdot \dot{y}}{m_3 \cdot \cos (\omega t)} \] (67)

Equation (65) is written in simplified form (68):

\[\ddot{X} + p^2 \cdot X = q \cdot \cos (\omega t) \] (68)

The particular solution of Equation (68) is of the form (69):

\[X = a \cdot \cos (\omega t) \] (69)

Derivatives 1 and 2 of solution (69) are denoted by (70-71):

\[\dot{X} = -a \cdot \omega \cdot \sin (\omega t) \] (70)

\[\ddot{X} = -a \cdot \omega^2 \cdot \cos (\omega t) \] (71)

By replacing values (69) and (71) in Equation (68), form (72) is obtained:

\[-a \cdot \omega^2 \cdot \cos (\omega t) + p^2 \cdot a \cdot \cos (\omega t) = q \cdot \cos (\omega t) \] (72)

The characteristic equation is written as (73):
\[a(p^2 - \omega^2) = q \] (73)

It is explicit \(a \) in the form (74):

\[a = \frac{q}{p^2 - \omega^2} \] (74)

Now write the solution \(X \), under the forms (75), (76):

\[X = \frac{q}{p^2 - \omega^2} \cos(\omega t) \] (75)

\[X = \frac{K y - k x_0 - m_1 \dot{y}}{m_2 \cos(\omega t)} \cos(\omega t) = \frac{K y - k x_0 - m_1 \dot{y}}{K + k - m_2 \omega^2} \] (76)

For a more exact solution, we approximate directly in Equation (74), \(X'' = c u y'' \), i.e., \(\ddot{X} = \ddot{y} \) and one arrives at the linear Equation (77):

\[X = \frac{K x - k x_0 - (m_1 + m_2) \ddot{y}}{K + k} \] (77)

Solving the Differential Equation, Through a Complete Private Solution

Equation (64) can be written as (78), taking into account coefficients \(D \) and \(D' \):

\[m_2 \omega^2 D x'' + m_1 \omega^2 D' x'' + (K + k) x = K x - k x_0 - m_1 \omega^2 (D s' + D' s') \] (78)

One divides Equation (78) with \(m_2 \omega^2 D \) and obtain the form (79):

\[x'' + \frac{m_1 \omega^2 D'}{m_2 \omega^2 D} x' + \frac{K + k}{m_2 \omega^2 D} x = \frac{K x - k x_0 - m_1 \omega^2 (D s' + D' s')}{m_2 \omega^2 D} \] (79)

The right term is amplified with \((\cos \phi + \sin \phi)\) and Equation (79) is written as (80):

\[x'' + \frac{m_1 \omega^2 D'}{m_2 \omega^2 D} x' + \frac{K + k}{m_2 \omega^2 D} x = \frac{K x - k x_0 - m_1 \omega^2 (D s' + D' s')}{m_2 \omega^2 D (\cos \phi + \sin \phi)} (\cos \phi + \sin \phi) \] (80)

Note the corresponding coefficients (81-83):

\[a = \frac{D'}{D} \] (81)

\[b = \frac{K + k}{m_2 \omega^2 D} \] (82)

\[c = \frac{K s - k x_0 - m_1 \omega^2 (D s' + D' s')}{m_2 \omega^2 D (\cos \phi + \sin \phi)} \] (83)

Equation (80) can now be written as (84):

\[x'' + a x' + b x = c (\cos \phi + \sin \phi) \] (84)

The complete particular solution of Equation (84) is of the form (85) and its derivatives according to the angle \(\phi \), the derivatives I and II, take the forms (86), respectively (87):

\[x = A \cos \phi + B \sin \phi \] (85)

\[x' = -A \sin \phi + B \cos \phi \] (86)

\[x'' = -A \cos \phi - B \sin \phi \] (87)

Introducing solutions (85-87) in (84) one obtains Equation (88):

\[-A \cos \phi - B \sin \phi = -a A \sin \phi + a B \cos \phi + b A \cos \phi + b B \sin \phi = C \cos \phi + C \sin \phi \] (88)

One identifies the coefficients in the cosine and those in the sin and one obtains a linear system of two equations with two unknown, \(A \) and \(B \) respectively:

\[
\begin{align*}
(b - 1) A + a B &= c \\
-a A + (b - 1) B &= c
\end{align*}
\] (89)

For the operative solving of the system (89) the first equation increases with \(a \) and the second with \((b - 1)\), after which \(B \) is collected and then determined by \(A \), multiplying the first equation with \((b - 1)\) and the second one with \(-a\), after which it collects and obtains the system (90):

\[
\begin{align*}
A &= \frac{c}{a^2 + (b - 1)^2} (b - 1 - a) \\
B &= \frac{c}{a^2 + (b - 1)^2} (b - 1 + a)
\end{align*}
\] (90)

The solution can now be written as (91), where the coefficients \(a, b, c \) are known (81-83):

\[x = \frac{c}{a^2 + (b - 1)^2} [(b - 1 - a) \cos \phi + (b - 1 + a) \sin \phi] \] (91)
Solving the Differential Equation, with the Help of Taylor Series Developments

Write the relation (92), which expresses the connection between the dynamic displacement of the valve, x, and that imposed by the cam profile, s:

$$x(\varphi) = s(\varphi) + \Delta x(\varphi) \equiv s(\varphi + \Delta \varphi)$$ \hspace{1cm} (92)

The function $s(\varphi + \Delta \varphi)$ was developed in a Taylor series and retains the first 8 terms of development; now find the relationship (93):

$$x = s(\varphi + \Delta \varphi) = s(\varphi) + \frac{1}{0!} s'(\varphi) (\Delta \varphi) + \frac{1}{1!} s''(\varphi) (\Delta \varphi)^2 + \frac{1}{2!} s'''(\varphi) (\Delta \varphi)^3 + \frac{1}{3!} s''''(\varphi) (\Delta \varphi)^4 + \frac{1}{4!} s'''''(\varphi) (\Delta \varphi)^5 + \frac{1}{5!} s''''''(\varphi) (\Delta \varphi)^6 + \frac{1}{6!} s'''''''(\varphi) (\Delta \varphi)^7 + \frac{1}{7!} s''''''''(\varphi) (\Delta \varphi)^8$$ \hspace{1cm} (93)

The relationship (93) is also written in the form (94):

$$x = s + s'(\Delta \varphi) + \frac{1}{2} s''(\Delta \varphi)^2 + \frac{1}{6} s'''(\Delta \varphi)^3 + \frac{1}{24} s''''(\Delta \varphi)^4$$ \hspace{1cm} (94)

By derivation it obtains x' (relation 95):

$$x' = s' + s'' \Delta \varphi + \frac{1}{2} s'''(\Delta \varphi)^2 + \frac{1}{6} s''''(\Delta \varphi)^3 + \frac{1}{24} s'''''(\Delta \varphi)^4$$ \hspace{1cm} (95)

Deriving the second time and get x'', (relation 96):

$$x'' = s''(\Delta \varphi)^2 + \frac{1}{2} s'''(\Delta \varphi)^3 + \frac{1}{6} s''''(\Delta \varphi)^4 + \frac{1}{24} s'''''(\Delta \varphi)^5$$

$$+ \frac{1}{120} s''''''(\Delta \varphi)^6 + \frac{1}{720} s'''''''(\Delta \varphi)^7 + \frac{1}{5040} s'''''''(\Delta \varphi)^8$$ \hspace{1cm} (96)

The differential equation used is (62), i.e., the complete equation, which we write in the form (97), also taking into account the transmission function, D:

$$K \cdot s - k \cdot x - m_1 \cdot (D \cdot x + D' \cdot x') \cdot \omega^2 \cdot 0.001$$

$$x = \frac{-m_1 \cdot (D \cdot x + D' \cdot x') \cdot \omega^2 \cdot 0.001 \cdot \frac{s'}{x}}{K + k}$$ \hspace{1cm} (97)

Dynamic analysis for sinus law, using the relationship (97), based on Taylor series and dynamic-A1 model, with variable internal damping, without considering the mass m1 of the cam.

Using the relation (97) obtained from the differential Equation (62) based on the dynamic damping model of the variable system, without considering the mass m1 of the cam, but using Taylor series calculations with the retention of 8 consecutive terms, dynamic (A1).

For this dynamic model (A1) there is a single dynamic diagram (Fig. 4).

The SINus law is used, the engine speed, $n = 5500$ [rpm], equal ascension and descent angles, $\varphi_u = \varphi_c = 75^\circ$, radius of the base circle, $r_0 = 14$ [mm]. For the maximum stroke of the tappet, h_T, equal to that of the valve, h_S ($i = 1$), the value of $h = 5$ [mm] was taken. A spring elastic constant is adopted, $k = 60$ [N/mm], for a valve spring compression of $x_0 = 30$ [mm].

![Fig. 4: Dynamic analysis using the dynamic A1 model](image-url)
Mechanical yield is low (generally in rotary cam and punch mechanisms, mechanical efficiency has low values and in Module C-classical distribution mechanism these values are even slightly lower), $\eta = 6.9\%$.

The theoretical model presented and used has the advantages of simulating even the fine vibrations of the mechanism.

Conclusion

The development and diversification of road vehicles and vehicles, especially of cars, together with thermal engines, especially internal combustion engines (being more compact, robust, more independent, more reliable, stronger, more dynamic etc.), has also forced the development of devices, mechanisms and component assemblies at an alert pace. The most studied are power and transmission trains.

The four-stroke internal combustion engine (four-stroke, Otto or Diesel) comprises in most cases (with the exception of rotary motors) and one or more camshafts, valves, valves and so on.

The classical distribution mechanisms are robust, reliable, dynamic, fast-response and although they functioned with very low mechanical efficiency, taking much of the engine power and effectively causing additional pollution and increased fuel consumption, they could not be abandoned until the present. Another problem was the low speed from which these mechanisms begin to produce vibrations and very high noises.

Regarding the situation realistically, the mechanisms of cam casting and sticking are those that could have produced more industrial, economic, social revolutions in the development of mankind. They have contributed substantially to the development of internal combustion engines and their spreading to the detriment of external combustion (Steam or Stirling) combustion engines.

The problem of very low yields, high emissions and very high power and fuel consumption has been greatly improved and regulated over the past 20-30 years by developing and introducing modern distribution mechanisms that, besides higher yields immediately deliver a high fuel economy) also performs optimal noise-free, vibration-free, no-smoky operation, as the maximum possible engine speed has increased from 6000 to 30000 [rpm].

The paper tries to provide additional support to the development of distribution mechanisms so that their performance and the engines they will be able to further enhance.

Particular performance is the further increase in the mechanical efficiency of distribution systems, up to unprecedented quotas so far, which will bring a major fuel economy.

The paper presents a dynamic model that works with variable internal damping, applicable directly to rigid memory mechanisms. If the problem of elasticity is generally solved, the problem of system damping is not clear and well-established. It is usually considered a constant "c" value for the internal damping of the system and sometimes the same value c and for the damping of the elastic spring supporting the valve. However, the approximation is much forced, as the elastic spring damping is variable and for the conventional cylindrical spring with constant elasticity parameter (k) with linear displacement with force, the damping is small and can be considered zero. It should be specified that damping does not necessarily mean stopping (or opposition) movement, but damping means energy consumption to brake the motion (rubber elastic elements have considerable damping, as are hydraulic dampers).

Metal helical springs generally have a low (negligible) damping. The braking effect of these springs increases with the elastic constant (the k-stiffness of the spring) and the force of the spring (P_o or P_d) of the spring (in other words with the arc static arrow, $x_0 = P_o/k$). Energy is constantly changing but does not dissipate (for this reason, the yield of these springs is generally higher).

The paper presents a dynamic model with a degree of freedom, considering internal damping of the system (c), damping for which it is considered a special function. More precisely, the cushioning coefficient of the system (c) is defined as a variable parameter depending on the reduced mass of the mechanism (m^* or J reduced) and the time, i.e., c depends on the derivative of m reduced in time.

The equation of the differential movement of the mechanism is written as the movement of the valve as a dynamic response. Dynamic analysis for sinus law, using the relationship (97), based on Taylor series and dynamic-A1 model, with variable internal damping, without considering the mass m_1 of the cam.

Using the relation (97) obtained from the differential Equation (62) based on the dynamic damping model of the variable system, without considering the mass m_1 of the cam, but using Taylor series calculations with the retention of 8 consecutive terms, dynamic (A1). For this dynamic model (A1) there is a single dynamic diagram (Fig. 4).

The SINus law is used, the engine speed, $n = 5500$ [rpm], equal ascension and descent angles, $\phi_0 = \phi_s = 75^\circ$, radius of the base circle, $r_0 = 14$ [mm]. For the maximum stroke of the tappet, h_1, equal to that of the valve, h_2 ($i = 1$), the value of $h = 5$ [mm] was taken. A spring elastic constant is adopted, $k = 60$ [N/mm], for a valve spring compression of $x_0 = 30$ [mm].

Mechanical yield is low (generally in rotary cam and punch mechanisms, mechanical efficiency has low values and in Module C-classical distribution mechanism these values are even slightly lower), $\eta = 6.9\%$.

The original theoretical model presented and used has the advantages of simulating even the fine vibrations of the mechanism.
These kind of mechanisms are used and to the robots of today.

Acknowledgement

This text was acknowledged and appreciated by Dr. Veturia CHIROIU Honorific member of Technical Sciences Academy of Romania (ASTR) PhD supervisor in Mechanical Engineering.

Funding Information

2-Contract research integration. 19-91-3 from 29.03.1991; Beneficiary: MIS; TOPIC: Research on designing mechanisms with bars, cams and gears, with application in industrial robots.
3-Contract research. GR 69/10.05.2007: NURC in 2762; theme 8: Dynamic analysis of mechanisms and manipulators with bars and gears.
4-Labor contract, no. 35/22.01.2013, the UPB, "Stand for reading performance parameters of kinematics and dynamic mechanisms, using inductive and incremental encoders, to a Mitsubishi Mechatronic System" "PN-II-IN-CI-2012-1-0389".

Ethics

This article is original and contains unpublished material. Authors declare that are not ethical issues and no conflict of interest that may arise after the publication of this manuscript.

References

DOI: 10.3844/ajeassp.2009.252.259
DOI: 10.3844/ajeassp.2012.35.41
DOI: 10.3844/ajeassp.2012.15.24
DOI: 10.3844/ajeassp.2009.297.303
DOI: 10.3844/ajeassp.2016.894.901
DOI: 10.3844/ajeassp.2009.70.75
DOI: 10.3844/ajeassp.2016.334.349
DOI: 10.3844/ajeassp.2016.985.990
DOI: 10.3844/ajeassp.2010.320.327

DOI: 10.3844/ajeassp.2011.61.65

DOI: 10.3844/ajeassp.2009.388.392

DOI: 10.3844/ajeassp.2015.736.747

Gruener, J.E., 2006. Lunar exploration (Presentation to ITEA Human Exploration Project Authors, November 2006, at Johnson Space Center). Houston, TX.

DOI: 10.3844/ajeassp.2015.702.716

DOI: 10.3844/ajeassp.2016.1046.1053

DOI: 10.3844/ajeassp.2012.89.92

DOI: 10.3844/ajeassp.2010.604.610

DOI: 10.3844/ajeassp.2016.625.634

DOI: 10.5772/54051

DOI: 10.3844/ajeassp.2011.314.320

DOI: 10.3844/ajeassp.2016.251.263

DOI: 10.3844/ajeassp.2016.724.734

DOI: 10.3844/ajeassp.2013.42.56

DOI: 10.3844/ajeassp.2016.520.529
DOI: 10.3844/ajeassp.2016.371.379

DOI: 10.3844/ajeassp.2016.213.221

DOI: 10.3844/ajeassp.2016.466.476

DOI: 10.3844/ajeassp.2011.540.547

DOI: 10.3844/ajeassp.2015.575.581

DOI: 10.3844/ajeassp.2015.434.442

DOI: 10.3844/ajeassp.2016.17.30

DOI: 10.3844/ajeassp.2016.921.927

DOI: 10.3844/ajeassp.2011.390.399

DOI: 10.3844/ajeassp.2016.146.154

DOI: 10.3844/ajeassp.2015.689.701

DOI: 10.3844/ajeassp.2010.342.349

DOI: 10.3844/ajeassp.2010.49.55

DOI: 10.3844/ajeassp.2016.178.186

DOI: 10.3844/ajeassp.2015.465.470

DOI: 10.3844/ajeassp.2009.708.712

DOI: 10.3844/ajeassp.2016.107.118

DOI: 10.3844/ajeassp.2016.591.598

DOI: 10.3844/jmrsp.2019.156.183

DOI: 10.3844/jastsp.2017.224.233

Petrescu, R.V., R. Aversa, A. Apicella and F.I.T. Petrescu, 2018m. Nasa selects concepts for a new mission to titan, the moon of saturn. J. Aircraft Spacecraft Technol., 2: 53-64. DOI: 10.3844/jastsp.2018.53.64

Source of Figures:
Petrescu, 2008

Nomenclature

\[J \] is the moment of inertia (mass or mechanical) reduced to the camshaft

\[J_{\text{max}} \] is the maximum moment of inertia (mass or mechanical) reduced to the camshaft

\[J_{\text{min}} \] is the minimum moment of inertia (mass or mechanical) reduced to the camshaft

\[J_{m} \] is the average moment of inertia (mass or mechanical, reduced to the camshaft)

\[J' \] is the first derivative of the moment of inertia (mass or mechanical, reduced to the camshaft) in relation with the \(\varphi \) angle

\[\eta_i \] is the momentary efficiency of the cam-
pusher mechanism

\[\eta \] is the mechanical yield of the cam-
follower mechanism

\[\tau \] is the transmission angle

\[\delta \] is the pressure angle

\[s \] is the movement of the pusher

\[h \] is the follower stroke \(h = s_{\text{max}} \)

\[s' \] is the first derivative in function of \(\varphi \) of the tappet movement, \(s \)

\[s'' \] is the second derivative in raport of \(\varphi \) angle of the tappet movement, \(s \)

\[s''' \] is the third derivative of the tappet movement \(s \), in raport of the \(\varphi \) angle

\[\chi \] is the real, dynamic, movement of the pusher

\[\chi' \] is the real, dynamic, reduced tappet speed

\[\chi'' \] is the real, dynamic, reduced tappet acceleration

\[v_j = \dot{s} \] is the normal (cinematic) velocity of the tappet

\[a_j = \ddot{s} \] is the normal (cinematic) acceleration of the tappet

\[\varphi \] is the rotation angle of the cam (the position angle)

\[K \] is the elastic constant of the system

\[k \] is the elastic constant of the valve spring

\[\chi_0 \] is the valve spring preload (pretension)

\[m_c \] is the mass of the cam

\[m_t \] is the mass of the tappet

\[\omega_{m} \] is the nominal angular rotation speed of the cam (camshaft)

\[n_t \] is the camshaft speed

\[n = n_m \] is the motor shaft speed \(n_m = 2n_c \)

\[\omega \] is the dynamic angular rotation speed of the cam

\[\epsilon \] is the dynamic angular rotation acceleration of the cam

\[r_0 \] is the radius of the base circle

\[r_0 = \rho \] is the radius of the cam (the position vector radius)

\[\theta \] is the position vector angle

\[x = x_c \text{ and } y = y_c \] are the Cartesian coordinates of the cam

\[D \] is the derivative of \(D \) in function of the time

\[D' \] is the derivative of \(D \) in function of the position angle of the camshaft, \(\varphi \)

\[F_m \] is the motor force

\[F_r \] is the resistant force.