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Abstract: The anthropomorphic robots are part of the classical series of 

mechatronic systems, being in the form of arms and having at least three 

space rotation, to which other components may eventually be added, thus 

lengthening the entire kinematic chain. You can also add all the planetary 

or spatial rotating arms or others that are translating. At the end we 

always have the end effector element that can be a manipulator, that is, a 

hand to grasp the objects, in which case one can speak of a prehensive 

device, that is a gripping device that today imitates very well a human 

hand even if it is one mechanical, may also be a painting, cutting or 

welding device, or one for machining. The base support and schematics 

of all anthropomorphic robots remain the 3R space system. It has been 

presented in other works and studied matrix spatially, or more simply in a 

plan, but in this case, it is necessary to move from the working plane to 

the real space, or vice versa, passage that we will present in this study. 

Projections of point M on planar axes will be marked with the higher P 

(Plan) index to distinguish them from the corresponding space axes. Due 

to the fact that the vertical projection plane is removed from the Oρ axis 

with a constant distance a2 + a3, (the vertical working plane does not 

project directly on the Oρ axis, but on an axis parallel to it distal to the 

length a2 + a3) the projection of the M point on the horizontal plane of the 

space will not fall in M 'but at the point M''. Therefore, the projections of 

M on the axes Ox and Oy will not be those of point M' but those of point 

M'', according to the relations given by the system (2). We want to 

remove the angle of 90°C from the relations (2), which had an important 

explanatory role in the understanding of the phenomenon, to see how the 

equation of transition from plane to spatial axes is written, here (in the 

horizontal plane of space) about a rotation, whose relations should not be 

automatically detained, but deduced logically, which is why we will 

immediately move from the logically determined system (2) to the 

convenient system (3), which will now be obtained from (2) the angle of 

90°C from the trigonometric relations. Perhaps the method used may 

seem rather difficult, but compared to spatial matrix methods, it is 

extremely straightforward and direct, contributing to transforming the 

space movement into a flat, much easier to understand and studied 

movement. In the system (4) we centralize all the transition relations from 

the plane to the spatial movement. 

 

Keywords: Anthropomorphic Mechatronic Systems, Robots, Geometry, 

Kinematics, Switching from Flat to Spatial Motion 
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Introduction 

Anthropomorphic mechatronic systems are the most 

widely used robotics systems worldwide today in 

industry and in all automated environments. These 

systems are best suited to the modern automation and 

mechatronisation needs of the modern world, being 

mobile, dynamic, light, robust, complex, technologically 

simple, easy to design and manufactured, implemented, 

maintained and used in almost any industrial site, both in 

machine building and in special environments, such as 

chemical, toxic, dyeing, underwater, nuclear, in space.... 

Anthropomorphic robots are flexible, dynamic, stable, 

lightweight, fast, fast, inexpensive, easy-to-install, 

mechanical, mechanical, mechanical and mechanical 

systems with a pleasant appearance, modern industrial 

design and easy to design and implement in any 

workplace, imposed. The anthropomorphic robots are 

part of the classical series of mechatronic systems, being 

in the form of arms and having at least three space 

rotation, to which other components may eventually be 

added, thus lengthening the entire kinematic chain. You 

can also add all the planetary or spatial rotating arms or 

others that are translating. At the end we always have 

the end effector element that can be a manipulator, that 

is, a hand to grasp the objects, in which case one can 

speak of a prehensive device, that is a gripping device 

that today imitates very well a human hand even if it is 

one mechanical, may also be a painting, cutting or 

welding device, or one for machining. The base support 

and schematics of all anthropomorphic robots remain 

the 3R space system. It has been presented in other 

works and studied matrix spatially, or more simply in a 

plan, but in this case, it is necessary to move from the 

working plane to the real space, or vice versa, passage 

that we will present in this study (Antonescu and 

Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 

1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001; 

Aversa et al., 2017a; 2017b; 2017c; 2017d; 2017e; 

2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 2016g; 

2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 2016n; 

2016o; Berto et al., 2016a; 2016b; 2016c; 2016d; Cao et al., 

2013; Dong et al., 2013; Comanescu, 2010; Franklin, 

1930; He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 

2013; Mirsayar et al., 2017; Padula and Perdereau, 2013; 

Perumaal and Jawahar, 2013; Petrescu, 2011; 2015a; 

2015b; Petrescu and Petrescu, 1995a; 1995b; 1997a; 

1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 

2005a; 2005b; 2005c; 2005d; 2005e; 2011; 2012a; 

2012b; 2013a; 2013b; 2016a; 2016; 2016c; Petrescu et al., 

2009; 2016; ; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 

2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 

2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 

2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 

2017ac; 2017ad; 2017ae). 

Materials and Methods 

Figure 1 shows the kinematic diagram of the planar 

chain and Fig. 2 shows the kinematic scheme of the 

space chain. 

The transition from the plane to the space movement 

will then be continued. 

The x2Oy2 plane dimensions will be projected onto 

the zOρ axes. Thus, the length on the horizontal vertical 

axis Oy will be projected onto the spatial vertical axis Oz 

by adding the constant a1 ϕ  and the length of the 

horizontal plan axis Ox will be projected on the 

horizontal spatial axis Oρ by adding the constant d1, 

according to the relations given by the system (1): 

 

' 1

1

P

M M

P

M M

d x

z a y

ρ = +


= +
 (1) 

 

Projections of point M on planar axes will be marked 

with the higher P (Plan) index to distinguish them from 

the corresponding space axes. 

Due to the fact that the vertical projection plane is 

removed from the Oρ axis with a constant distance a2 + 

a3, (the vertical working plane does not project directly 

on the Oρ axis, but on an axis parallel to it distal to the 

length a2 + a3) the projection of the M point on the 

horizontal plane of the space will not fall in M 'but at the 

point M'' (Fig. 2). 

Therefore, the projections of M on the axes Ox and 

Oy will not be those of point M' but those of point M'', 

according to the relations given by the system (2): 

 

' 10 2 3 10

' 10 2 3 10

cos ( ) cos
2

sin ( ) sin
2

M M

M M

x a a

y a a

π
ρ ϕ ϕ

π
ρ ϕ ϕ

  
= ⋅ + + ⋅ + 

  


  = ⋅ + + ⋅ +   

 (2) 

 

We want to remove the angle of 90°C from the 

relations (2), which had an important explanatory role 

in the understanding of the phenomenon, to see how 

the equation of transition from plane to spatial axes is 

written, here (in the horizontal plane of space) about a 

rotation, whose relations should not be automatically 

detained, but deduced logically, which is why we will 

immediately move from the logically determined 

system (2) to the convenient system (3), which will 

now be obtained from (2) the angle of 90°C from the 

trigonometric relations: 

 

' 10 2 3 10

' 10 2 3 10

cos ( ) sin

sin ( ) cos

M M

M M

x a a

y a a

ρ ϕ ϕ

ρ ϕ ϕ

= ⋅ − + ⋅


= ⋅ + + ⋅
 (3) 
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Fig. 1: The kinematic scheme of the plan chain 
 

    
 

Fig. 2: The kinematic scheme of the spatial chain 
 

Perhaps the method used may seem rather difficult, 
but compared to spatial matrix methods, it is extremely 
straightforward and direct, contributing to transforming 
the space movement into a flat, much easier to 
understand and studied movement. 

In the system (4) we centralize all the transition 

relations from the plane to the spatial movement: 

 

( )

( )

1 10 2 3 10

1 10 2 3 10

1

cos ( ) sin

sin ( ) cos

P

M M

P

M M

P

M M

x d x a a

y d x a a

z a y

ϕ ϕ

ϕ ϕ

 = + ⋅ − + ⋅



= + ⋅ + + ⋅


= +

 (4) 

Replacing in (4) the values of P

M
x  and P

M
y  obtaining 

the system of absolute spatial Equation 5: 

 

( )

( )

1 2 20 3 30 10 2 3 10

1 2 20 3 30 10 2 3 10

1 2 20 3 30

cos cos cos ( ) sin

cos cos sin ( ) cos

sin sin

M

M

M

x d d d a a

y d d d a a

z a d d

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

 = + ⋅ + ⋅ ⋅ − + ⋅


= + ⋅ + ⋅ ⋅ + + ⋅
 = + ⋅ + ⋅

(5) 

 

For simpler determination of speeds and 

accelerations in the system (4) from which it departs, 

it is denoted a2 + a3 by a, so that (4) acquires the 

simplified aspect (6): 
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( )

( )

1 10 10

1 10 10

1

cos sin

sin cos

P

M M

P

M M

P

M M

x d x a

y d x a

z a y

ϕ ϕ

ϕ ϕ

 = + ⋅ − ⋅



= + ⋅ + ⋅


= +

 (6) 

 

The spatial positioning system (6) is derived from 

time and the spatial velocity system (7) is obtained: 

 

( )

( )

10 1 10 10 10 10

10 1 10 10 10 10

cos sin cos

sin cos sin

P P

M M M

P P

M M M

P

M M

x x d x a

y x d x a

z y

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

 = ⋅ − + ⋅ ⋅ − ⋅ ⋅



= ⋅ + + ⋅ ⋅ − ⋅ ⋅


=

ɺ ɺɺ ɺ

ɺ ɺɺ ɺ

ɺɺ

 (7) 

 

The space velocity system (7) derives from time and 

the spatial acceleration system (8) is obtained, which is 

restricted to the shape (9): 

 

( )

( )

10 10 10 10 10

2 2

1 10 10 10 10

10 10 10 10 10

2 2

1 10 10 10 10

cos sin sin

cos sin

sin cos cos

sin cos

P P P

M M M M

P

M

P P P

M M M M

P

M

P

M M

x x x x

d x a

y x x x

d x a

z y

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 = ⋅ − ⋅ ⋅ − ⋅ ⋅

− + ⋅ ⋅ + ⋅ ⋅


= ⋅ + ⋅ ⋅ + ⋅ ⋅


− + ⋅ ⋅ − ⋅ ⋅


=

ɺ ɺɺɺ ɺɺ ɺ ɺ

ɺ ɺ

ɺ ɺɺɺ ɺɺ ɺ ɺ

ɺ ɺ

ɺɺɺɺ

 (8) 
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( )

( )

2

1 10 10

10 10 10

2

1 10 10

10 10 10
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2 sin

sin

2 cos

P P

M M M

P

M

P P

M M M

P

M

P

M M

x x d x

x a

y x d x

x a

z y

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

  = − + ⋅ ⋅ 
− ⋅ − ⋅ ⋅ ⋅

  = − + ⋅ ⋅  

+ ⋅ − ⋅ ⋅ ⋅


=



ɺɺɺ ɺɺ

ɺ ɺɺ

ɺɺɺ ɺɺ

ɺ ɺɺ

ɺɺɺɺ

 (9) 

 

The space velocity system (7) is restricted to the 

shape (10), which by using the notations u and v is 

rewritten in the simplified form (11) and the acceleration 

system (9) can be restricted to the shape (12), with the 

notations w, t: 

 

( ) ( )

( ) ( )

10 10 1 10 10

10 10 1 10 10

cos sin

sin cos

P P

M M M

P P

M M M

P

M M

x x a d x

y x a d x

z y

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 = − ⋅ ⋅ − + ⋅ ⋅



= − ⋅ ⋅ + + ⋅ ⋅


=

ɺ ɺɺ ɺ

ɺ ɺɺ ɺ

ɺɺ

 (10) 

 

( )

10 10

10 10

10 1 10

cos sin

sin cos

;

M

M

P

M M

P P

M M

x u v

y u v

z y

u x a v d x

ϕ ϕ

ϕ ϕ

ϕ ϕ

= ⋅ − ⋅


= ⋅ + ⋅
 =
 = − ⋅ = + ⋅

ɺ

ɺ

ɺɺ

ɺ ɺɺ

 (11)  

( ) ( )

10 10

10 10

2

1 10 10 10

cos sin

sin cos

; 2

M

M

P

M M

P P P

M M M

x w t

y w t

z y

w x d x t x a

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ
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

= ⋅ + ⋅
 =
 = − + ⋅ = ⋅ − ⋅ ⋅

ɺɺ

ɺɺ

ɺɺɺɺ

ɺ ɺ ɺɺɺ ɺ

 (12) 

 

Next, we will present the positions, velocities and spatial 

accelerations, all written down within the system (13): 

 

( )

10 10

10 10

1

1 2 3

10 10

10 10

10 1 10

10

:

cos sin

sin cos

;

:

cos sin

sin cos

;

:

cos sin

M

M

P

M M

P

M

M

M

P
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P P

M M

M

Positions

x s a

y s a
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cu s d x a a a
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x u v
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cu u x a v d x
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x w t

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ
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=
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ϕ

ϕ ϕ

ϕ ϕ ϕ
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


















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
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
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 (13) 

 

Results 

The spatial position vector module of the end effector 

point M in the fixed Cartesian space system is given by 

the relation (14): 

 

( )
2

2 2 2 2 2

1

P

M M M M M
r x y z s a a y= + + = + + +  (14) 

 

The modulus of the absolute speed vector of point M 

is obtained with the relation (15): 

 
2 2 2 2 2 2P

M M M M M
v x y z u v y= + + = + +ɺ ɺ ɺɺ  (15) 

 

The M-point absolute acceleration vector module is 

obtained with relation (16): 

 
2 2 2 2 2 2P

M M M M M
a x y z w t y= + + = + +ɺɺ ɺɺ ɺɺɺɺ  (16) 

 

In the system (17) a recapitulation of the three 

absolute spatial parameters of the M point: Absolute 

displacement (or absolute position), absolute speed, 

absolute acceleration is made: 
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( )
2

2 2 2 2 2

1

2 2 2 2 2 2

2 2 2 2 2 2

P

M M M M M

P

M M M M M

P

M M M M M

r x y z s a a y

v x y z u v y

a x y z w t y


= + + = + + +


= + + = + +


= + + = + +



ɺ ɺ ɺɺ

ɺɺ ɺɺ ɺɺɺɺ

 (17) 

 

Discussion  

Simple transition from plan to spatial computing can 

help us modify our work so that instead of performing all 

spatial matrices, let's study the planar system, then add the 

equation of transition from plane to spatial mode and so 

the same results will be obtained as if we had all the 

difficult spatial calculations done, practically just in plan, 

simplified. Man is accustomed to seeing the plan better 

than space, but especially to judge and reason more easily 

the plane phenomena than the spatial phenomena. 

Conclusion 

The anthropomorphic robots are part of the classical 

series of mechatronic systems, being in the form of arms 

and having at least three space rotation, to which other 

components may eventually be added, thus lengthening the 

entire kinematic chain. You can also add all the planetary or 

spatial rotating arms or others that are translating.  

At the end we always have the end effector element that 

can be a manipulator, that is, a hand to grasp the objects, in 

which case one can speak of a prehensive device, that is a 

gripping device that today imitates very well a human hand 

even if it is one mechanical, may also be a painting, cutting 

or welding device, or one for machining.  

The base support and schematics of all anthropomorphic 

robots remain the 3R space system. It has been presented in 

other works and studied matrix spatially, or more simply in 

a plan, but in this case, it is necessary to move from the 

working plane to the real space, or vice versa, passage that 

we will present in this study.  

Projections of point M on planar axes will be marked 

with the higher P (Plan) index to distinguish them from 

the corresponding space axes.  

Due to the fact that the vertical projection plane is 

removed from the Oρ axis with a constant distance a2 

+ a3, (the vertical working plane does not project 

directly on the Oρ axis, but on an axis parallel to it 

distal to the length a2 + a3) the projection of the M 

point on the horizontal plane of the space will not fall 

in M 'but at the point M''.  

Therefore, the projections of M on the axes Ox and 

Oy will not be those of point M' but those of point M'', 

according to the relations given by the system (2).  

We want to remove the angle of 90°C from the 

relations (2), which had an important explanatory role in 

the understanding of the phenomenon, to see how the 

equation of transition from plane to spatial axes is 

written, here (in the horizontal plane of space) about a 

rotation, whose relations should not be automatically 

detained, but deduced logically, which is why we will 

immediately move from the logically determined system 

(2) to the convenient system (3), which will now be 

obtained from (2) the angle of 90°C from the 

trigonometric relations.  

Perhaps the method used may seem rather difficult, 

but compared to spatial matrix methods, it is extremely 

straightforward and direct, contributing to transforming 

the space movement into a flat, much easier to 

understand and studied movement. In the system (4) we 

centralize all the transition relations from the plane to the 

spatial movement. 
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