Abstract: Mechatronic robotic systems are today widely used worldwide to ease human work, but especially where work is dangerous, in toxic, radioactive, chemical, explosive atmospheres, without air such as underwater or in the cosmos, or in places hard to reach the man. Robots can take the tedious repetitive work under any circumstances and they can perform a difficult operation for a long time, with no meal or rest breaks. Serial mobile mechanical systems are generally the most used mechatronic systems because they have good dynamics, high reliability and lower manufacturing cost with modest technologies. In general, anthropomorphic robotic structures are generally used in serial mechanical systems as they are more versatile, more economical, more reliable, more penetrating, faster and generally have a beautiful and innovative design. Anthropomorphic structures have been used for the first time in the automotive industry to facilitate human work, but also to replace it with repetitive, tiring, or toxic work. For this reason, the first anthropomorphic robots were manipulators and the following were dyeing robots in toxic environments, so that welding anthropomorphic, assemblies, those who checked technological lines and so on would still appear. Almost all operations in the automotive industry were automated based on anthropomorphic robots. For this reason, their study is today as necessary as ever for their continuous improvement. Anthropomorphic robots work at high speeds and therefore their dynamics is an extremely important issue. In this paper, we aim to present an original method of scientific, analytical study of the dynamics of the anthropomorphic mobile mechanical structures. Dynamics is the discipline that studies the real movement of a point, object, or a body, mechanical system ... The dynamic study attempts to capture the real movement of the studied object, as it is in reality. The movement of a body is derailed by the kinematic equations, the movement being generally studied by the kinematics, but when we are interested in the actual movements of a binding object, a dynamic motion study must be introduced. The dynamics besides the kinematics constrain the influence of the masses and forces on the movement of a body, as well as the elastic deformations, the inertial forces, or other external forces capable of influencing the movement of the body, including those caused by the bonds of the body, its object of that mechanism.

Keywords: Dynamic, Cinematic of the MP-3R Systems, Geometry, Kinematic Parameters, Dynamics of MP3R

Introduction

Serial mobile mechanical systems are generally the most used mechatronic systems because they have good dynamics, high reliability and lower manufacturing cost with modest technologies. In
general, anthropomorphic robotic structures are generally used in serial mechanical systems as they are more versatile, more economical, more reliable, more penetrating, faster and generally have a beautiful and innovative design.

Anthropomorphic structures have been used for the first time in the automotive industry to facilitate human work, but also to replace it with repetitive, tiring, or toxic work. For this reason, the first anthropomorphic robots were manipulators and the following were dyeing robots in toxic environments, so that welding anthropomorphic, assemblies, those who checked technological lines and so on would still appear. Almost all operations in the automotive industry were automated based on anthropomorphic robots. For this reason, their study is today as necessary as ever for their continuous improvement. Anthropomorphic robots work at high speeds and therefore their dynamics is an extremely important issue. In this paper, we aim to present an original method of scientific, analytical study of the dynamics of the anthropomorphic mobile mechanical structures.

Dynamics is the discipline that studies the real movement of a point, object, or body, mechanical system ... The dynamic study attempts to capture the real movement of the studied object, as it is in reality. The movement of a body is derailed by the kinematic equations, the movement being generally studied by the kinematics, but when we are interested in the actual movements of a binding object, a dynamic motion study must be introduced. The dynamics besides the kinematics constrain the influence of the masses and forces on the movement of a body, as well as the elastic deformations, the inertial forces, or other external forces capable of influencing the movement of the body, including those caused by the bonds of the body, its object of that mechanism (Fig. 1).

Antonescu and Petrescu (1985; 1989; Antonescu et al., 1985a-b; 1986-1988; 1994; 1997; 2000a-b; 2001; Aversa et al., 2017a-e; 2016a-o; Berto et al., 2016a-d; Cao et al., 2013; Dong et al., 2013; Comanescu et al., 2010; Franklin, 1930; He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013; Mirsayar et al., 2017; Padula and Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu, 2011; 2015a-b; Petrescu and Petrescu, 1995a-b; 1997a-c; 2000a-b; 2002a-b; 2003; 2005a-e; 2011; 2012a-b; 2013a-b; 2016a-c; Petrescu et al., 2009; 2016; 2017a-l).

Materials and Methods

In Fig. 1, the weight centers of the MP-3R system were represented. For each element, two elements were considered to be able to perform the calculations separately for the different directions of the parts of each element.
Thus element 1 was separated into two parts \(O_1O_1\) with the center of gravity in \(G_1\) and \(O_2A_1\) with the center of gravity in \(G_1\). Element two was divided into two sub-elements: \(AO_2\) with the center of gravity in \(G_2\) and \(O_2B\) with the center of gravity in \(G_2\). The last element (MP-3R’s third element) was also reconsidered and divided into two sub-elements: \(BO_3\) with the center of gravity in \(G_3\) and \(O_3M\) with the center of gravity in \(G_3\). All the centers of gravity positioned in the middle of the respective elements were considered to be the calculations, the elements being of the bar type (cylindrical or other shapes).

The dynamics of any system requires knowledge of the mechanical kinetic energy of the system. It is the starting point for the number one of determining dynamic calculations and relationships of any mechanical system. The problem with MP-3R systems is that they work spatially, so the kinetic energy of the system includes spatial elements (it can't fit only in a plan).

The Lagrange equation used has the known classical form (1):

\[
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_k}\right) - \frac{\partial T}{\partial q_k} = Q_k
\]

With \(k = 1, 2, 3\).

The most normal dynamic determination of a system is made using the Lagrange equations. From system (1) three different equations will be written. For this it is necessary to determine the kinetic energy equation of the considered system beforehand \((V = V(q, \dot{q}))\).

In space, kinetic energy has six components (in the most general case) for each element: Three for linear velocities and three for angular velocities. In the case of linear velocities, rather than writing three kinetic energies (the same mass of the halved element and multiplied separately with the square of each scalar velocity component in the center of the mass), it is simpler to write only one resultant equation, i.e., to multiply half of the mass of the element respectively (in this case, each sub-item will be quoted as an element so that three elements will result in six) with the square of the absolute velocity of the considered element, determined (absolute velocity), in the center of the element. Thus, we will determine the absolute velocities in the mass centers of the elements and the squares of the absolute velocities, then together with the mechanical inertial moments and the squares of the angular velocities of the element determined on three movable axes (movable element) in rectangular shape (virtually a mobile, rectangular, solidarity coordinate system with each element is chosen). In the most general case for each of the six resulting elements, we will have maximum four expressions for the kinetic (mechanical) energy of the system.

Next, the absolute velocities (and their squares) for each of the six system outputs (MP-3R) will be determined.

In the center of gravity \(G_1\), the absolute speed is null (2):

\[
v_{G_1} = 0 \cdot \omega_1 = 0 \theta
\]

In the center of gravity \(G_1\), the absolute speed has the value (3):

\[
v_{G_1} = \frac{d_1}{2} \cdot \omega_1 \quad v_{G_1} = \frac{1}{4} \cdot d_1^2 \cdot \omega_1^2
\]

In the center of gravity \(G_2\), the absolute speed gets the expression (4):

\[
\begin{align*}
O_G G_2 &= \sqrt{d_1^2 + \left(\frac{d_2}{2}\right)^2} \\
\dot{v}_{G_2} &= O_G G_2 \cdot \dot{\omega}_1 \\
v_{G_2} &= \left(\dot{O}_G G_2 \right)^2 \cdot \omega_1^2 = \left[d_1^2 + \left(\frac{d_2}{2}\right)^2 \right] \cdot \omega_1^2
\end{align*}
\]

In the center of gravity \(G_2\), the square of the absolute velocity takes the form (5):

\[
\begin{align*}
x_{G_2} &= d_1 \cdot \cos \phi_{10} - a_2 \cdot \sin \phi_{10} + \frac{1}{2} \cdot d_2 \cdot \cos \phi_{20} \cdot \cos \phi_{10} \\
y_{G_2} &= d_1 \cdot \sin \phi_{10} + a_2 \cdot \cos \phi_{10} + \frac{1}{2} \cdot d_2 \cdot \cos \phi_{20} \cdot \sin \phi_{10} \\
z_{G_2} &= a_1 + \frac{1}{2} \cdot d_2 \cdot \sin \phi_{20} \\
\dot{x}_{G_2} &= -d_1 \cdot \sin \phi_{10} \cdot \dot{\phi}_{10} - a_2 \cdot \cos \phi_{10} \cdot \dot{\phi}_{10} - \\
&- \frac{1}{2} \cdot d_2 \cdot \sin \phi_{20} \cdot \dot{\phi}_{20} \cdot \cos \phi_{10} - \frac{1}{2} \cdot d_2 \cdot \cos \phi_{20} \cdot \dot{\phi}_{10} \cdot \sin \phi_{10} \\
\dot{y}_{G_2} &= d_1 \cdot \cos \phi_{10} \cdot \dot{\phi}_{10} - a_2 \cdot \sin \phi_{10} \cdot \dot{\phi}_{10} - \\
&- \frac{1}{2} \cdot d_2 \cdot \sin \phi_{20} \cdot \dot{\phi}_{20} \cdot \sin \phi_{10} + \frac{1}{2} \cdot d_2 \cdot \cos \phi_{20} \cdot \dot{\phi}_{10} - \\
\dot{z}_{G_2} &= \frac{1}{2} \cdot d_2 \cdot \dot{\phi}_{20} \\
v_{G_2} &= d_1^2 \cdot \omega_{10}^2 + a_2^2 \cdot \dot{\omega}_{10} + \frac{1}{4} \cdot d_2^2 \cdot \dot{\phi}_{20}^2 + \frac{1}{4} \cdot d_2^2 \cdot \sin^2 \phi_{20} + \\
&+ d_1 \cdot d_2 \cdot \sin \phi_{10} \cdot \cos \phi_{20} + a_2 \cdot d_2 \cdot \dot{\phi}_{10} \cdot \cos \phi_{20} + \sin \phi_{20}
\end{align*}
\]

In the center of gravity \(G_3\), the scalar scoring coordinates take the form (6) and the square of the absolute velocity takes the form (7):

\[
\begin{align*}
x_{G_3} &= d_1 \cdot \cos \phi_{10} - a_2 \cdot \sin \phi_{10} + \frac{1}{2} \cdot d_2 \cdot \sin \phi_{10} + \\
&+ d_2 \cdot \cos \phi_{20} \cdot \cos \phi_{10} \\
y_{G_3} &= d_1 \cdot \sin \phi_{10} + a_2 \cdot \cos \phi_{10} + \frac{1}{2} \cdot d_2 \cdot \cos \phi_{20} \cdot \sin \phi_{10} + \\
&+ d_2 \cdot \sin \phi_{10} \cdot \cos \phi_{20} \\
z_{G_3} &= a_1 + d_2 \cdot \sin \phi_{20}
\end{align*}
\]
\[
\begin{align*}
\dot{x}_{10} &= -d_1 \cdot \sin \phi_{10} \cdot \omega_{10} - \left(a_1 + \frac{1}{2} a_2 \right) \cdot \cos \phi_{10} \cdot \omega_{10} + d_2 \cdot \cos \phi_{10} \cdot \omega_{10} - \left(a_1 + \frac{1}{2} a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + a_1 \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} \\
\dot{y}_{10} &= d_1 \cdot \cos \phi_{10} \cdot \omega_{10} - \left(a_1 + \frac{1}{2} a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + a_1 \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + \left(a_1 + \frac{1}{2} a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + a_1 \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} \\
\dot{z}_{10} &= d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + d_2 \cdot \cos \phi_{10} \cdot \omega_{10} \\
\end{align*}
\]

In the center of gravity, the scalar scoring coordinates take the form (8) and the square of the absolute velocity takes the form (9):

\[
\begin{align*}
x_{10p} &= d_1 \cdot \cos \phi_{10} - \left(a_1 + a_2 \right) \cdot \sin \phi_{10} \\
+ d_2 \cdot \cos \phi_{10} \cdot \cos \phi_{20} + \frac{1}{2} d_3 \cdot \cos \phi_{20} \cdot \cos \phi_{30} \\
y_{10p} &= d_1 \cdot \sin \phi_{10} + \left(a_1 + a_2 \right) \cdot \cos \phi_{10} \\
+ d_2 \cdot \sin \phi_{10} \cdot \sin \phi_{20} + \frac{1}{2} d_3 \cdot \sin \phi_{20} \cdot \sin \phi_{30} \\
z_{10p} &= a_1 + d_2 \cdot \sin \phi_{20} + \frac{1}{2} d_3 \cdot \sin \phi_{30} \\
\end{align*}
\]

\[
\begin{align*}
\dot{x}_{10} &= -d_1 \cdot \sin \phi_{10} \cdot \omega_{10} - \left(a_1 + a_2 \right) \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \sin \phi_{10} \cdot \omega_{10} - \left(a_1 + a_2 \right) \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} - \left(a_1 + a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} - a_1 \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} - \left(a_1 + a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + d_2 \cdot \cos \phi_{10} \cdot \omega_{10} - \left(a_1 + a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + \frac{1}{2} d_3 \cdot \cos \phi_{10} \cdot \omega_{10} - \\
\dot{y}_{10} &= d_1 \cdot \cos \phi_{10} \cdot \omega_{10} - \left(a_1 + a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + a_1 \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + \left(a_1 + a_2 \right) \cdot \sin \phi_{10} \cdot \omega_{10} + a_1 \cdot \cos \phi_{10} \cdot \omega_{10} - d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + \frac{1}{2} d_3 \cdot \cos \phi_{10} \cdot \omega_{10} - \\
\dot{z}_{10} &= d_2 \cdot \cos \phi_{10} \cdot \omega_{10} + \frac{1}{2} d_3 \cdot \cos \phi_{10} \cdot \omega_{10} \\
\end{align*}
\]
We can now recap the values of all squares of the determined speeds in the six center of gravity of the system (relationship 10):

\[
\begin{align*}
v_{G_1}^2 &= 0 \\
v_{G_2}^2 &= \frac{1}{4} d_1^2 \cdot \omega_1^2 \\
v_{G_7}^2 &= (G_1G_2)^2 \cdot \omega_2^2 = \left[d_1^2 + \left(\frac{a_2}{2} \right)^2 \right] \cdot \omega_1^2 \\
v_{G_7}^2 &= d_1^2 \cdot \omega_1^2 + d_2^2 \cdot \omega_1^2 + \frac{1}{4} d_1^2 \cdot \omega_1^2 + \frac{1}{4} d_1^2 \cdot \omega_1^2 \cdot \cos^2 \phi_20 + d_1 \cdot d_2 \cdot \omega_1 \cdot \cos \phi_20 + a_2 \cdot d_2 \cdot \omega_1 \cdot \omega_20 \cdot \sin \phi_20 \\
v_{G_7}^2 &= d_1^2 \cdot \omega_1^2 + d_2^2 \cdot \omega_1^2 + 2 \cdot d_1 \cdot d_2 \cdot \omega_1 \cdot \cos \phi_20 + \frac{1}{4} d_2^2 \cdot \omega_1 \cdot \omega_20 \cdot \cos \phi_20 + a_2 \cdot d_2 \cdot \omega_1 \cdot \omega_20 \cdot \sin \phi_20 \\
v_{G_7}^2 &= \left[d_1^2 + \left(a_2 + \frac{a_3}{2} \right)^2 \right] + d_2^2 \cdot \cos^2 \phi_20 + \frac{1}{4} d_2^2 \cdot \cos^2 \phi_20 + 2 \cdot d_1 \cdot d_2 \cdot \cos \phi_20 + \frac{1}{4} d_1^2 \cdot \omega_2^2 + \frac{1}{4} d_1^2 \cdot \omega_2^2 \cdot \cos (\phi_20 - \phi_20) + \\
&+ 2 \cdot d_1 \cdot d_2 \cdot (a_2 + a_3) \cdot \omega_1 \cdot \omega_20 \cdot \sin \phi_20 + d_3 \cdot (a_2 + a_3) \cdot \omega_1 \cdot \omega_20 \cdot \sin \phi_20 \\
\end{align*}
\]

In Fig. 1, the weight centers of the MP-3R system were represented.

Further, the moments of mass (mechanical) inertia and the kinetic energy relations for each considered kinematic element (as already established there are six elements instead of three) will be determined.

For element 1, \(O_1O_1 \), determine the moment of mechanical inertia on the main axis, the only one that allows a rotation of the element (relation 11):

\[
J_{G_1}^2 = \frac{1}{2} m_1 \cdot \eta_1^2
\]

The moment of mechanical inertia (mass) is denoted by \(J \). It must be a special moment of geometric inertia, which is generally (correctly) noted with \(I \). The moments of mass and geometric inertia always bind to each other through a physical-mathematical relationship. If the geometrical inertial moment is mainly used in the calculations of material resistance and machine tool design, mechanical mechanics, mechanics, mechanisms, robotics, motors, transmissions, (etc ...) the dynamic (physiological) study of the mechanisms and the components of the systems are made mandatory by the inertial masses in motion; the usual masses of the elements (denoted by \(m \)) are used in the translational movement and the inertial masses (denoted by \(J \)) have a determinant role in the rotation movement (of the system elements). There are mechanical (mass) inertial moments projected on a point, on an axis, or on a plane. The convention in mechanics and mechanisms is to generally use the moments of mass inertia projected at a point, usually the point being the center of gravity (mass or symmetry) of that element. For element 1, we use the center of gravity \(G_1 \) which, for the main z-axis of the element (which is the main axis of rotation) has the same (mechanical) inertial moment at any point of the axis (relation 11). For two rectangular axes \(x \) and \(y \) the inertial mass moment has the half-value (relation 12), for the most commonly used cases, when we have a cylindrical radial \(r_1 \) body. Another approximate relationship used for these inertial values when the body is long and very thin (when the radius is negligible in relation to the length) is the relation (13), where \(l_t \) would be \(a_1 \) if the radius \(r_1 \) would be negligible relative to the length \(a_1 \). A more precise (general) relationship for this case would be (14):

\[
\begin{align*}
J_{G_1}^2 &= J_{G_1}^2 = \frac{1}{2} \cdot m_1 \cdot \eta_1^2 \\
J_{G_1}^2 &= J_{G_1}^2 = \frac{1}{4} \cdot m_1 \cdot \eta_1^2 \\
J_{G_1}^2 &= J_{G_1}^2 = \frac{1}{4} \cdot m_1 \cdot \eta_1^2 + \frac{1}{12} \cdot m_1 \cdot a_1^2
\end{align*}
\]

Next, we will only use the relation (12) because the systems studied have cylindrical elements with significant diameters (the approximate rays of the cylinders are large enough). If the shape of the element is not cylindrical, it can also be approximated by a cylinder.
For element 1, we have no rotation except for the z-axis. The kinetic energy of element one gets the form (15) (it is considered to be twice the kinetic energy):

\[2 \cdot e_1 = m_1 \cdot v_{G_1r}^2 + J_1^{(z)} \cdot \omega_{10}^2 + \frac{1}{2} m_1 \cdot r_1^2 \cdot \omega_{10}^2 \]

(15)

On element 1*, in the center of gravity \(G_1^* \), the kinetic energy is written (16):

\[2 \cdot e_1^* = m_{1*} \cdot v_{G_1r}^2 + J_1^{(z)} \cdot \omega_{10}^2 + \frac{1}{2} m_{1*} \cdot r_1^2 \cdot \omega_{10}^2 \]

(16)

On element 2 in center of gravity \(G_2 \), the kinetic energy takes the form (17):

\[2 \cdot e_2 = m_2 \cdot v_{G_2r}^2 + J_2^{(z)} \cdot \omega_{20}^2 + \frac{1}{2} m_2 \cdot r_2^2 \cdot \omega_{20}^2 \]

(17)

On the element 2* in the center of gravity \(G_2^* \), the kinetic energy takes the form (18 and 20):

\[2 \cdot e_2^* = m_{2*} \cdot v_{G_2r}^2 + J_2^{(z)} \cdot \omega_{20}^2 + \frac{1}{2} m_{2*} \cdot r_2^2 \cdot \omega_{20}^2 \]

(18)

Intermediate relationships (19 and 21) are also used to determine the kinetic energies on the rotating element:

\[
\begin{align*}
J_1^{(z)} \cdot \omega_{10}^2 & = \frac{J_2}{2} \left(1 + \sin^2 \phi_{20} \right) \cdot \omega_{10}^2 \\
J_2^{(z)} \cdot \omega_{20}^2 & = \frac{J_2}{2} \left(1 + \sin^2 \phi_{20} \right) \cdot \omega_{20}^2 \\
J_1^{(z)} \cdot \omega_{20}^2 & = \frac{J_2}{2} \left(1 + \sin^2 \phi_{20} \right) \cdot \omega_{20}^2 \\
J_2^{(z)} \cdot \omega_{10}^2 & = \frac{J_2}{2} \left(1 + \sin^2 \phi_{20} \right) \cdot \omega_{10}^2 \\
J_1^{(z)} \cdot \omega_{10}^2 & = \frac{J_2}{2} \left(1 + \sin^2 \phi_{20} \right) \cdot \omega_{10}^2 \\
J_2^{(z)} \cdot \omega_{20}^2 & = \frac{J_2}{2} \left(1 + \sin^2 \phi_{20} \right) \cdot \omega_{20}^2
\end{align*}
\]

(19)

\[2 \cdot e_{2*} = m_{2*} \cdot v_{G_2r}^2 + J_2^{(z)} \cdot \omega_{20}^2 + \frac{1}{4} m_{2*} \cdot r_2^2 \cdot \omega_{20}^2 \]

(20)

Relationships (21) explain how to get expressions (19); Fig. 2, where you can see the two different rectangular triangles formed by the axes of point \(G_{2*} \). The moments of mechanical inertia \(J_{2*} \) are known on the z*- and x*-axes, the inertial moment \(J_2 \) on the main axis of the element 2* and the inertial moment on the vertical axis y_{2*} but inclined towards the angle element (the element is located along the axis \(G_{2*}y_{2*} \)):

\[
\begin{align*}
\bar{m}_y + \bar{m}_b & = \bar{m}_1 \\
\bar{o}_y + \bar{o}_b & = \bar{o}_1 \\
\bar{o}_d & = \bar{o}_1 \cdot \cos(\phi_{20} - 90) = \bar{o}_1 \cdot \sin \phi_{20} \\
\bar{o}_e & = \bar{o}_1 \cdot \cos(180 - \phi_{20}) = \bar{o}_1 \cdot \sin(\phi_{20} - 90)
\end{align*}
\]

(21)

On element 3, in the center of gravity \(G_3 \), the kinetic energy takes shape (22) and the final expression (26):

\[2 \cdot e_3 = m_3 \cdot v_{G_3r}^2 + J_3^{(z)} \cdot \omega_{30}^2 + J_3^{(z)} \cdot \omega_{30}^2 \]

(22)

where, the double of kinetic energy due to translation has the expression (23):

\[2 \cdot e_{3t} = m_3 \cdot v_{G_3r}^2 \]

(23)

The duplication of the kinetic energies due to the rotation of the element on the two axes is determined by the relations (24 and 25):

\[2 \cdot e_{3ry} = J_3^{(z)} \cdot \omega_{30}^2 = \frac{1}{4} m_3 \cdot r_3^2 \cdot \omega_{30}^2 \]

(24)
Fig. 2: Geometry and kinematic at G_{2*} Inertial moments

\[2 \cdot \varepsilon_{3z2} = J_{G_{2*}}^{3z} \cdot \omega_{20}^2 = \frac{1}{2} \cdot m_3 \cdot r_{3z}^2 \cdot \omega_{20}^2 \] \hspace{1cm} (25)

\[2 \cdot \varepsilon_2 = \\
= \left[d_2^2 + \left(a_2 + \frac{1}{2} a_1 \right)^2 + d_1^2 \cdot \cos^2 \phi_{20} + 2 \cdot d_1 \cdot d_2 \cdot \cos \phi_{20} \cdot \frac{1}{4} \cdot r_2^2 \right] \cdot m_2 \cdot r_{2z}^2 + m_3 \cdot d_2 \cdot r_{3z}^2 + \frac{1}{2} \cdot m_1 \cdot r_1^2 \cdot \omega_0^2 + \\
+ 2 \cdot m_2 \cdot d_2 \cdot \left(a_2 + \frac{1}{2} a_1 \right) \cdot \sin \phi_{20} \cdot r_{2z} \cdot r_{3z} \] \hspace{1cm} (26)

On element 3^*, in the center of gravity G_{3^*}, the kinetic energy takes shape (27) and the final expression (31):

\[2 \cdot \varepsilon_{3^*} = m_{3^*} \cdot v_{3^*}^2 + J_{G_{3^*}}^{3z} \cdot \omega_{00}^2 + J_{G_{3^*}}^{3^*} \cdot \omega_{00}^2 \] \hspace{1cm} (27)

The double of the kinetic energies due to the rotation of the element on the two axes is determined with the relations (29 and 30):

\[2 \cdot \varepsilon_{3^*r3^*} = J_{G_{3^*}}^{3^*} \cdot \omega_{00}^2 = J_{G_{3^*}}^{3^*} \cdot \omega_{00}^2 = \frac{1}{4} \cdot m_{3^*} \cdot r_{3^*z}^2 \cdot \omega_{00}^2 \] \hspace{1cm} (29)
The kinetic energy relationship of the entire system (32) is written first, comprising the three elements each dissected in two (32). The kinetic energy relationship of the entire system (32) is very long. Lagrange (1) Lagrange (course 07) is used to obtain practically three expressions corresponding to the three actuators, more precisely corresponding to the moments of the three actuators:

\[
\begin{align*}
2 \cdot c_{32} & = m_{32} \cdot \left(\frac{1}{2} (a_2 + a_1)^2 + + \frac{1}{4} m_{32} \cdot \phi_0 \cdot \phi_0 \right) \\
2 \cdot c_{33} & = m_{33} \cdot \left(\frac{1}{2} \phi_0^2 + m_{33} \cdot \phi_0 \cdot \phi_0 \right) \\
2 \cdot c_{34} & = m_{34} \cdot \left(\frac{1}{4} \phi_0^2 + m_{34} \cdot \phi_0 \cdot \phi_0 \right) \\
\end{align*}
\]

The expression (32) of the kinetic energy of the whole system is used. The independent parameters (the generalized coordinates) are written as (33). \(Q_k\) represents the generalized forces (in us are even motor moments of actuators):

\[
\begin{align*}
q_1 & = \phi_0; \quad q_2 = \phi_20; \quad q_3 = \phi_30; \\
q_1 & = \phi_0; \quad q_2 = \phi_20; \quad q_3 = \phi_30 \\
\end{align*}
\]

The first derivative (relation 34) is the partial derivative of the total kinetic energy (of the whole system) to the independent parameter \(q_0\) (i.e., the partial kinetic energy of the system at the angular velocity of the first actuator is derived):

\[
\begin{align*}
\frac{\partial T}{\partial q_0} & = \frac{1}{2} m_{11} \cdot q_0^2 + \frac{1}{4} m_{22} \left(a_1^2 + a_2^2 \right) \phi_0 \\
& + m_{12} \cdot \frac{1}{4} \phi_0^2 + m_{13} \cdot \frac{1}{2} \phi_0 \cdot \phi_0 \\
& + m_{23} \cdot \frac{1}{2} \phi_0 \cdot \phi_0 + m_{33} \cdot \phi_0 \cdot \phi_0 + m_{34} \cdot \phi_0 \cdot \phi_0 \\
& + \frac{1}{2} m_{34} \cdot \phi_0 \cdot \phi_0 + m_{14} \cdot \phi_0 \cdot \phi_0 \\
& + m_{24} \cdot \phi_0 \cdot \phi_0 + m_{34} \cdot \phi_0 \cdot \phi_0 + m_{44} \cdot \phi_0 \cdot \phi_0 \\
& + \frac{1}{2} m_{44} \cdot \phi_0 \cdot \phi_0 + m_{10} \cdot a_1 \cdot a_1 + m_{20} \cdot a_2 \cdot a_2 + m_{30} \cdot a_3 \cdot a_3 + m_{40} \cdot a_4 \cdot a_4 \\
\end{align*}
\]

The expression (34) obtained derives absolutely with time and the relation (35) is obtained. Constant angular velocities have been considered over time:

\[
\begin{align*}
\frac{d}{dt} \left(\frac{\partial T}{\partial q_k} \right) & = m_{11} \cdot q_1 + \frac{1}{2} m_{12} \cdot a_1 \cdot a_2 + m_{13} \cdot \phi_0 \cdot \phi_0 \\
& + \frac{1}{2} m_{22} \cdot a_1 \cdot a_1 + m_{23} \cdot \phi_0 \cdot \phi_0 + m_{33} \cdot \phi_0 \cdot \phi_0 + m_{34} \cdot \phi_0 \cdot \phi_0 + m_{44} \cdot \phi_0 \cdot \phi_0 \\
& + \frac{1}{2} m_{44} \cdot \phi_0 \cdot \phi_0 + m_{10} \cdot a_1 \cdot a_1 + m_{20} \cdot a_2 \cdot a_2 + m_{30} \cdot a_3 \cdot a_3 + m_{40} \cdot a_4 \cdot a_4 \\
& + \frac{1}{2} m_{12} \cdot a_1 \cdot a_2 + m_{13} \cdot \phi_0 \cdot \phi_0 + m_{23} \cdot \phi_0 \cdot \phi_0 + m_{33} \cdot \phi_0 \cdot \phi_0 + m_{34} \cdot \phi_0 \cdot \phi_0 + m_{44} \cdot \phi_0 \cdot \phi_0 \\
& + \frac{1}{2} m_{44} \cdot \phi_0 \cdot \phi_0 + m_{10} \cdot a_1 \cdot a_1 + m_{20} \cdot a_2 \cdot a_2 + m_{30} \cdot a_3 \cdot a_3 + m_{40} \cdot a_4 \cdot a_4 \\
& + \frac{1}{2} m_{12} \cdot a_1 \cdot a_2 + m_{13} \cdot \phi_0 \cdot \phi_0 + m_{23} \cdot \phi_0 \cdot \phi_0 + m_{33} \cdot \phi_0 \cdot \phi_0 + m_{34} \cdot \phi_0 \cdot \phi_0 + m_{44} \cdot \phi_0 \cdot \phi_0 \\
& + \frac{1}{2} m_{44} \cdot \phi_0 \cdot \phi_0 + m_{10} \cdot a_1 \cdot a_1 + m_{20} \cdot a_2 \cdot a_2 + m_{30} \cdot a_3 \cdot a_3 + m_{40} \cdot a_4 \cdot a_4 \\
\end{align*}
\]

Lagrange equations of the second case have the known classical form (1):
There follows the partial derivative of the kinetic energy of the entire system with the independent parameter (36):

\[
\frac{\partial E}{\partial \phi_{t0}} = 0 \tag{36}
\]

The first Lagrange equation (of the three) can now be written as (37):

\[
d\left(\frac{\partial E}{\partial \phi_{t0}} \right) - \frac{\partial E}{\partial \phi_{t0}} = M_{10}
\]

By replacing the derivatives derived above in Equation (37), it takes shape (38). The expression (38) represents the required variation of the motor torque of the first actuator:

\[
M_{10} = \frac{d}{dt}\left(\frac{\partial E}{\partial \phi_{t0}} \right) = m_{2*} \cdot \omega_{t0}
\]

\[
\begin{align*}
&= \left(-\frac{1}{2} \cdot r_{2}^2 \cdot \cos \phi_{20} \cdot \sin \phi_{20} \cdot \omega_{20} - d_{1} \cdot d_{2} \cdot \sin \phi_{20} \cdot \omega_{20} \\
&\quad + \frac{1}{2} \cdot m_{2*} \cdot \phi_{t0} \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \sin \phi_{20} \cdot \omega_{20} \right) \tag{38}
\end{align*}
\]

Next we repeat the previous procedure for the second element, partly deriving the total kinetic energy of the system in relation to the generalized coordinate (representing the angular velocity of the second actuator). The relationship is thus obtained (39):

\[
\frac{\partial E}{\partial \phi_{20}} = \frac{1}{2} \cdot m_{2*} \cdot r_{2}^2 \cdot \omega_{20} + \frac{1}{4} \cdot m_{2*} \cdot \left(r_{2}^2 + r_{3}^2 \right) \cdot \omega_{20} \\
+ \frac{1}{2} \cdot m_{2*} \cdot d_{1} \cdot d_{2} \cdot \sin \phi_{20} \cdot \omega_{t0} + m_{3*} \cdot d_{2}^2 \cdot \omega_{20} \\
+ m_{3*} \cdot d_{1} \cdot d_{2} \cdot \left(a_{2} + \frac{1}{2} \cdot a_{3} \right) \cdot \cos \phi_{20} \cdot \omega_{t0} + m_{3*} \cdot d_{2}^2 \cdot \omega_{20} \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \cos \left(\phi_{t0} - \phi_{20} \right) \cdot \omega_{t0} \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot \left(a_{2} + a_{3} \right) \cdot \sin \phi_{20} \cdot \omega_{t0} \tag{39}
\]

The resulting relationship (39) is derived the second time, this time absolute, depending on time and the expression (40) is obtained. It is considered during this absolute derivation that the angular speeds of the actuators do not vary over time (they are approximately constant):

\[
\begin{align*}
\frac{d}{dt}\left(\frac{\partial E}{\partial \phi_{20}} \right) &= \frac{1}{2} \cdot m_{2*} \cdot d_{2} \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
&\quad + m_{3*} \cdot d_{2} \cdot \left(a_{2} + \frac{1}{2} \cdot a_{3} \right) \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
&\quad - \frac{1}{2} \cdot m_{3*} \cdot d_{3} \cdot \sin \left(\phi_{t0} - \phi_{20} \right) \cdot \left(\omega_{t0} - \omega_{20} \right) \cdot \omega_{20} \\
&\quad + m_{3*} \cdot d_{2} \cdot \left(a_{2} + a_{3} \right) \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \omega_{t0}
\end{align*}
\]

(40)

There follows a partial derivative of the kinetic energy of the system according to the angular displacement of the second actuator (41):

\[
\frac{\partial E}{\partial \phi_{20}} = \frac{1}{4} \cdot m_{2*} \cdot d_{2}^2 \cdot \cos \phi_{20} \cdot \sin \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
- \frac{1}{2} \cdot m_{2*} \cdot d_{1} \cdot d_{2} \cdot \sin \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
+ \frac{1}{4} \cdot m_{3*} \cdot r_{2}^2 \cdot \sin \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
+ \frac{1}{2} \cdot m_{3*} \cdot a_{2} \cdot d_{2} \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
- m_{3*} \cdot d_{2}^2 \cdot \cos \phi_{20} \cdot \sin \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
- m_{3*} \cdot d_{1} \cdot d_{2} \cdot \sin \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
+ m_{3*} \cdot d_{2} \cdot \left(a_{2} + \frac{1}{2} \cdot a_{3} \right) \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
- m_{3*} \cdot a_{2} \cdot d_{2} \cdot \cos \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
- m_{3*} \cdot a_{3} \cdot d_{2} \cdot \sin \phi_{20} \cdot \omega_{20} \cdot \omega_{t0} \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \sin \left(\phi_{20} - \phi_{t0} \right) \cdot \omega_{20} \cdot \omega_{t0} \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot \left(a_{2} + a_{3} \right) \cdot \cos \phi_{20} \cdot \omega_{t0} \cdot \omega_{20}
\]

(41)

Using the relations (40) and (41) introduced in the Lagrange equation (42), the expression of the alternating motor moment of the second actuator is obtained:

\[
\frac{d}{dt}\left(\frac{\partial E}{\partial \phi_{20}} \right) - \frac{\partial E}{\partial \phi_{20}} = M_{20} \tag{42}
\]
The total kinetic energy of the system and the third element are now partially derived, partly deriving the actuator and the expression (46) results:

\[
M_{30} = -\frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 \\
+ \left(m_{3*} + \frac{1}{4} \cdot m_{2*} \right) \cdot d_{1} \cdot d_{2} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{20}^2 \\
- \frac{1}{4} \cdot m_{2*} \cdot r_{2}^2 \cdot \cos(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 \\
\left. + \left(m_{3*} + \frac{1}{4} \cdot m_{2*} \right) \cdot d_{1} \cdot d_{2} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{20}^2 \right) \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 (43)
\]

The total kinetic energy of the system and the third actuator (representing the angular velocity of the third actuator). The relationship is thus obtained (44):

\[
\frac{d\dot{E}}{d\omega_{30}} = -\frac{1}{4} \cdot m_{3*} \cdot \omega_{30} \cdot \left(d_{1}^2 + r_{20}^2 \right) \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \omega_{20} \cdot \cos(\phi_{30} - \phi_{20}) \\
\left. \frac{1}{2} \cdot m_{3*} \cdot d_{3} \cdot \left(a_{2} + a_{3} \right) \cdot \sin(\phi_{30} - \phi_{20}) \right) (44)
\]

The absolute expression (44) obtained, considering the angular velocities of the actuators approximately constant over time, is obtained and the relation (45) is obtained:

\[
d\left(\frac{d\dot{E}}{d\omega_{30}} \right) = \\
= -\frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{20} + \\
\left. \frac{1}{2} \cdot m_{3*} \cdot \omega_{30} \cdot \left(a_{2} + a_{3} \right) \cdot \sin(\phi_{30} - \phi_{20}) \right) (45)
\]

The kinetic energy of the entire system is partly derived from the angular displacement of the third actuator and the expression (46) results:

\[
\frac{d\dot{E}}{d\phi_{30}} = -\frac{1}{4} \cdot m_{3*} \cdot d_{3}^2 \cdot \cos(\phi_{30} - \phi_{20}) \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 \\
+ \frac{1}{2} \cdot d_{1} \cdot d_{3} \cdot m_{3*} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{3} \cdot \left(a_{2} + a_{3} \right) \cdot \cos(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 (46)
\]

Using the relations (45) and (46) by introducing them into the Lagrange equation (47), the expression of the motor moment variation of the third actuator is obtained.

\[
d \left(\frac{d\dot{E}}{d\phi_{30}} \right) - \frac{d\dot{E}}{d\phi_{30}} = M_{30} \quad (47)
\]

\[
M_{30} = -\frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{20}^2 \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{2} \cdot d_{3} \cdot \cos(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 \\
\left. + \frac{1}{4} \cdot m_{3*} \cdot r_{2}^2 \cdot \cos(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 \right) \\
+ \frac{1}{2} \cdot m_{3*} \cdot d_{1} \cdot d_{3} \cdot \sin(\phi_{30} - \phi_{20}) \cdot \omega_{30}^2 (48)
\]

Discussion

By using the expressions (38), (43) and (48), the variations of the motor moments, actuator moments, can be determined for the entire operating range. It uses the angular displacements and angles determined in the first courses, values given in the form of functions (in direct kinematics), obtained from the studied relations (in the indirect kinematics), or determined by the conditions imposed on the end-effector to go through certain optimized trajectories preset, (review course 5). A dynamic synthesis can be made to optimize the choice of the three actuators.

Interestingly, engine moments depend on the masses, shapes and dimensions of the elements, but also on kinematic actuator parameters: \(\phi_{10}, \phi_{20}, \phi_{30}, \omega_{30}, \omega_{10}\) less.

So the motors are not dynamically influenced by the position of the first element, or more clearly, by the angle of rotation of the first element (Fig. 1), the dynamic movement being influenced only by the positions of the second and third elements and by the angular velocities of the three actuators.

Conclusion

The work presents an analytical method for determination of dynamic parameters in a 3R robotics module.

The dynamics of any system requires knowledge of the mechanical kinetic energy of the system. It is the starting point for the number one of determining dynamic calculations and relationships of any mechanical system. The problem with MP-3R systems is that they work spatially, so the kinetic energy of the system includes spatial elements (it can't fit only in a plan).

The Lagrange equation used has the known classical form (1).
Acknowledgement

This text was acknowledged and appreciated by Dr. Veturia CHIROIU Honorific member of Technical Sciences Academy of Romania (ASTR) PhD supervisor in Mechanical Engineering.

Funding Information

2-Contract research integration. 19-91-3 from 29.03.1991; Beneficiary: MIS; TOPIC: Research on designing mechanisms with bars, cams and gears, with application in industrial robots.
3-Contract research. GR 69/10.05.2007: NURC in 2762; theme 8: Dynamic analysis of mechanisms and manipulators with bars and gears.
4-Labor contract, no. 35/22.01.2013, the UPB, "Stand for reading performance parameters of kinematics and dynamic mechanisms, using inductive and incremental encoders, to a Mitsubishi Mechatronic System" "PN-II-IN-CI-2012-1-0389".

Author’s Contributions

This section should state the contributions made by each author in the preparation, development and publication of this manuscript.

Ethics

Authors should address any ethical issues that may arise after the publication of this manuscript.

References

Antonescu, P., M. Opren and F. Petrescu, 1985b. At the projection of the oscillate cams, there are mechanisms and distribution variables. Proceedings of the 5th Conference of Engines, Automobiles, Tractors and Agricultural Machines, Engines Automobiles, Brasov.

DOI: 10.3844/jmrsp.2017.24.37

Petrescu, F.I., Teoria Mecanismelor si a Masinilor. 1st Edn., Create Space Publisher, USA, pp: 432.
