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Abstract: A comparative study is presented to evaluate the performance of 

three important Blind Source Separation (BSS) techniques under noisy 

conditions. The ability of FastICA, SOBI and JadeR is tested in separating 

several kinds of signals under noisy conditions, including human speech 

and frequency-modulated (quadratic and linear FM) signals. Additionally, 

different mixing matrices are used to inspect the effect of the mixing 

process. The influence of two types of noise (semi–white Gaussian and 

uniform) has been investigated under different Signal to Noise Ratios 

(SNR). The Pearson correlation coefficient (versus signal to noise ratio) 

between original and recovered signals is used as a performance metric. 

Despite the wide use of BSS techniques, there has been no extensive study 

in these directions. It is found that JadeR out performs other BSS 

techniques under semi-white Gaussian and uniformly-distributed noise. 
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Introduction 

Recently, Blind Source Separation (BSS) related to 

Independent Component Analysis (ICA), has a large 

attention in an engineering field, is widely used in many 

applications such as removing additive noise from signals 

and images, separating crosstalk in telecommunication and 

preprocessing for multi-probed radar-sonar signals (Murata 

and Ikeda, 1998). 

The problem is how to separate independent sources 

of a given mixed signal if mixing is done by unknown 

mixing matrix, hence the name Blind Source Separation 

(BSS). Thus, some techniques have been employed to 

extract each source from the mixed signals. These 

sources should be independent of each other and have 

non-Gaussian distribution (Hyvärinen et al., 2004). 

A problem of this type can be found in many 

applications such as cocktail party problem, where many 

persons speak simultaneously, surrounded by load voices 

and boisterous music. In this case, ICA techniques will 

be an efficient solution (Hyvarinen and Oja, 2000; 

Murata et al., 2001). This problem is fundamental in 

security applications. 

On the other hand, to separate mixed signals, the mixing 

process should be understood. The emitting of many signals 

at the same time is the main reason for the mixing process. 

As a result, this leads to interfering signals with each other, 

this process depends on unpredictable parameters such as 

the distance between the sound and recorder device. In 

addition, these parameters are represented by matrix A. To 

complete separation process successfully, matrix A must 

be square and invertible. Matrix A values represent the 

mixing weights. This matrix linearly multiplied by the 

source signals and the result is the mixture x(t). Thus, A is 

called the mixing matrix as shown in Equation (1) 

(Hyvarinen and Oja, 2000).  

ICA requires achieving of two presumptions. First, 
the observed mixture must be linear combinations of 
independent signals (do not give any information about 
each other), where the second is non-Gaussianity 
(Hyvarinen and Oja, 2000). ICA techniques easily 
separate signals, although there are other methods can 
do that, but ICA can do without prior knowledge about 
the signals and context (Hyvärinen et al., 2004; 
Hyvarinen and Oja, 2000). 

One of the important algorithms for Independent 

Component Analysis is called FastICA. It was proposed 

by Hyvarinen and Oja (2000), as a simple 

understandable algorithm and other two similar methods 

which depend on joint diagnolization principle. Second 
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Order Blind Identification (SOBI) proposed by 

Belouchrani et al. (1997), while Joint Approximation 

Diagonalization Estimation Real signals (JadeR) was 

proposed in (Rutledge and Bouveresse, 2013). 
The BSS techniques have been tested under the 

influence of the noise where two types of noise have 
been added to the signal mixtures. Due to wide use of 
BSS techniques, their performance under noise will be 
helpful to a wide range of research directions in 
communications and signal processing 

The remainder of the paper is organized as follows: 

Section 2 presents the ICA definition, principles and 

algorithms. Section 3 presents the preprocessing phases 

before BSS techniques application. Section 4 focuses on 

different ICA algorithms (JadeR, SOBI and FastICA) 

simulation under two types of noise (semi-white 

Gaussian noise and uniform noise). Section 5 states the 

proposed system. Section 6 shows the simulation and 

results. Section 7 reviews the conclusions. 

A Brief on BSS Approaches and Algorithms 

This section presents an overview of the main BSS 

approaches and its important algorithms: 

The BSS Problem 

Imagine that, there is a room which contains two 

microphones in different places and in the same room, 

there are two persons speaking at the same time. The 

signal resulting from the recording of a speech by 

each microphone is called mixture, Equation (1) 

shows the mixing process and Equation (2) shows the 

un-mixing process: 
 
X AS=   (1) 
 

where, ( ) 1

2

x
X t

x

 
=  
 

is the mixture, 11 12

21 22

a a
A

a a

 
=  
 

is the 

mixing matrix and ( ) 1

2

s
S t

s

 
=  
 

 the matrix of source signals. 

After estimating the matrix A using BSS techniques, 

the inverse can be computed as w, so the independent 

components can be simply obtained by: 
 
S wX=   (2) 
 

There is no information about A and S hence the 

name of Blind. Accordingly, BSS techniques can be used 

to extract A
−1
. The next section reviews the ICA which 

represents the most important BSS techniques. 

Independent Component Analysis (ICA): A 

Background 

Independent Component Analysis (ICA) is a method 

for finding underlying factors or components from 

multivariate (multidimensional) statistical data. The 

essential characteristic of ICA from other techniques, it 

looks for components that are both statistically 

independent and non-Gaussian (Hyvärinen et al., 2004). 

ICA is expected to separate the incident signals and 

detect each signal effectively and conveniently. Each 

mixture and source signals are considered as a random 

variable instead of the time signal. This random variable 

must be with zero mean, if it isn’t, it must 

undergocentring by subtracting sample mean. ICA has 

some principles to be estimated, the data must be 

statistically non-Gaussian distributed and should be 

independent (Hyvarinen and Oja, 2000). 

Meaning of Independence (Hyvarinen and Oja, 

2000) 

Essentially, x1 and x2 are called independent variables 

if the random variable x1 does not give any information 

about the random variable x2  and vice versa. The joint 

density of independent variables is given by Equation (3): 

 

( ) ( ) ( ),

x y
P x y P x P y=  (3) 

 

where, P is the probability density function, x, y are 

random variables. 

Independence implies being uncorrelated but not vice 

versa, so independence is the stronger requirements. 

Another approach for ICA estimation, inspired by 

information theory, is the minimization of mutual 

information, which leads to the same principle for 

finding most independence variables: 

 

( ) ( ) ( )1 2

1

, ,...,

m

m i

i

I x x x H x H x

=

= −∑  (4) 

 

where, I is the mutual information of m random variables 

{x1,x2,…,xm}, H(xi) is the entropy of xi, xi are random 

variables, x = {x1,x2,…,xm}. 

The differential entropy can be computed to any 

random vector x by Equation (5): 

 

( ) ( ) ( )( )logH x f x f x dx= −∫  (5) 

 

where, f(x) is the joint density function. 

Non-Gaussianity Measurements 

It’s impossible to use ICA for Gaussian random 

variables because Gaussian random variables have 

symmetric joint density, so mixing matrix A cannot be 

estimated (Hyvärinen et al., 2004). 

Gaussian distribution (aka “normal distribution”) is 

encountered almost everywhere in nature and has bell-

shaped probability distribution function as follows 

(Hyvärinen et al., 2004): 
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( )
( )
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x e
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σ π

−

−

=  (6) 

 

where, σ is standard deviation and µx is mean of x. 
Non-Gaussianity must be tested using non-Gaussianity 

measurements in order to estimate independent 
components, these measurements are listed below. 

a. Kurtosis 

Kurtosis or the fourth-order cumulant is the classical 

non-Gaussianity measure. If x1 and x2 are two 

independent random variables, it holds that: 
 

( ) ( ) ( )1 2 1 2
,kurt x x kurt x kurt x= +  (7) 

 
where, Kurt is kurtosis. 

Thus, kurtosis equals to zero if the random variable is 

Gaussian and non-zero for the non-Gaussian variable 

(Hyvarinen and Oja, 2000). It is not a powerful measure 

because it is sensitive to outliers. 

Negentropy 

Another non-Gaussianity measure is called 

Negentropy. It is defined in information theory as the 

distance between the entropy of the Gaussian 

distribution of a random variable and the entropy of the 

same random variable. For any random variables, 

Negentropy can be computed using Equation (8): 
 

( ) ( ) ( )gauss
Negentropy H Hξ ξ ξ= −  (8) 

 

where, ξ is any random variable, ξgauss is Gaussian 

random variable having the same covariance matrix, H is 

the entropy. 

The differential entropy can be computed for any 

random variable according to Equation (5). 

Approximation of Negentropy 

Approximations of Negentropy are very good 

compromise between the properties of the two 

classical non-Gaussianity measures given by kurtosis 

and negentropy. 

The classical method of approximating Negentropy is 

using higher-order moments. However, the validity of 

such approximations may be limited. They suffer from the 

non-robustness encountered with kurtosis. To avoid the 

problems encountered with the preceding approximations 

of Negentropy, other approximations were developed in 

(Hyvärinen, 1998). The approximation of Negentropy can 

be computed by Equation (9): 
 

( ) ( ){ } ( ){ }( )
2

J y G y G v≈ −E E  (9) 

 
where, v is a Gaussian variable of zero mean and unit 

variance, the variable y is assumed to be of zero mean 

and unit variance and the function G is a non-quadratic 

function; ε is the expectation operator. There are many 

suggestions for this function as follows: 
 

( ) 4

1
G u u=  (10) 

 

( ) { }( )2 1

1

1
log coshG u a u

a
=  (11)  

 

( )
2

3
exp

2

u
G u

 −
= −  

 
  (12) 

 

Because g1(u) goes to ∞ very fast it is not robust. In 

contrast, g2(u) and g3(u) are more robust, because g2(u) 

slowly goes to ∞ and g3(u) is bounded. The derivatives 

of these functions are used in FastICA to maximize the 

non-Gaussianity. 

Some useful preprocessing steps must be applied to 

the mixture before applying BSS techniques, to simply 

extracting source signals from their mixture. The next 

section will discuss these steps briefly. 

Preprocessing of BSS Techniques 

Before each BSS techniques, there are two pre-
processing phases that should be applied to the mixture 
to de-correlate the data and simplify the separating 
process, these pre-processing phases are described as 
follows (Zeng et al., 2000): 

Centring 

The essential and necessary preprocess phase is to 
centre mixture x, subtract its mean m = E{x} to make x 
have zero-mean. This process removes all outliers in the 
mixture x and makes the separation process easier. 

Whitening 

Another useful phase which follows the centering 
phase and proceeds the application of ICA algorithm, it 
is whitening the observed vector x. This vector must be 
transformed linearly after the transformation. The new 
white vector x will be obtained. The components of the 
white vector are uncorrelated and their variances equal 
unity. The covariance matrix of whitened data will be an 
identity matrix as Equation (13): 
 

( )cov( )
T

x xx= E  (13) 

 
Whitening algorithm steps will be described as follows: 

Whitening Algorithm 

1. Computing covariance matrix C for observation 

signal x 

2. Computing eigenvalue decomposition of C to get 

diagonal matrix D and orthogonal matrix V, where V 

is the (orthogonal) matrix of eigenvectors of cov(x) 
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3. Computing whitened data Wx by Equation (14): 
 

1/ 2 T

x
W VD V x

−

=  (14) 

 
The next section will illustrate the most common BSS 

techniques and their algorithms. 

BSS Techniques: An Overview 

This section displays the most effective BSS 

techniques in application. 

FastICA 

One of the most crucial BSS techniques is FastICA. 
It depends on fixed point scheme of Newton Iterations 
to project the data on the direction that maximizes the 
non-Gaussianity. The FastICA technique has three 
versions depending on the non-Gaussianity function 
used in each algorithm, Kurtosis, Negentropy and 
Approximation of Negentropy. The algorithm of 
FastICA which has been discussed in this paper 
depends on the approximation of Negentropy that 
maximizes the non-Gaussianity using Equation (9). 

Fast ICA algorithm steps can be described as follows: 
 
1. C = number of the components, i = 1 

2. Start wi with random values.  

3. Select efficient approximation negentropy function 

g and compute its derivative g'. 

4. Calculate 
i

w x′  where x is the whitened data. 

5. Compute ( )i
g w x′  and ( )i

g w x′ ′  

6. Compute the new vector of weights called wi+ by 

the following equation: 
 

( ){ } ( ){ }x
T T

i i i i
w xx g w g w w

+
′−+ E E  

 
7. If i>1 then compute wi = wi-(w'i*wi-1)* wi-1 

8. Normalization
|| ||

i

i

i

w

w

w

+

+

=  

9. If the difference between the new weights and 

previous ones is less than 0.01 (convergence is 

true) go to step 9, else go to step 4. 

10. If C = i  then Exit, else i = i +1, go to step 4. 
 

Second-Order Blind Identification (SOBI) 

Another BSS technique that is widely used to extract 

source signals from their mixture x, it exploits the 

coherence time of the source signals depending on 

second-order statistics only. Joint diagonalization is an 

essential step in this technique. This step is applied to the 

correlation matrices which estimated with a different time 

lags. Equation (15) shows correlation matrices estimation: 
 

( ) ( ) ( ){ } ( )τ τ τ

T H

x s
R x t x t AR A= − =E  (15) 

For τ ≠ 0. 

SOBI method consists of three primary steps: 

Whitening, correlation matrices estimation and joint 

diagonalization. The whitening step involves a linear 

transformation of the observed data so that the whitened 

data are uncorrelated data with unit variance as 

mentioned above. 

The algorithm of SOBI can be described as follows 

(Belouchrani et al., 1997; Gorodnitsky and 

Belouchrani, 2001): 
 
1- Estimating Correlation matrices of the whitened data 

for each sample using lag τ (Matsubara et al., 2015): 
 

( ) ( ) ( )( )TR x t x tτ τ= +E  (16) 

 

where, x  is whitened data and τ is time-lag. 

2- Compute joint diagonalization for the resulted 

correlation matrices 

3- Estimate the mixing matrix in order to extract the 

source signals 
 

Joint Approximation Diagonalization of Eigen 

Matrices (JadeR) 

Another BSS technique depends on forming a fourth 

cumulant array. In particular, cumulant can be described 

as the generalization of the mean (first-order auto-

cumulant) and the variance (second-order auto-cumulant) 

to order higher than 2 (Rutledge and Bouveresse, 2013). 

In the JadeR algorithm, the cumulant of the signals with 

themselves is called auto-cumulant, while the cumulant of 

all combinations of signals is called cross-cumulant. If the 

signal vectors are independent, then their fourth-order 

cross-cumulant will be zero and auto-cumulants maximal 

(Rutledge and Bouveresse, 2013). JadeR algorithm uses 

fourth-order statistical cumulants to calculate its cost 

function, which is a measure of signal independence and 

repeatedly rotates the set of un-separated signals to 

minimize the cost and maximize independence.  

JadeR algorithm Steps can be described as follows 

(Hong and Kim, 2015; Sahonero-Alvarez et al., 2017): 
 
1) Compute the 4

th 
order cumulant matrix of the 

whitened signals by storingthe most significant 

eigenvectors on a cumulant matrix. 

2) Apply Joint diagonalization on the output of step 2 

by unitary matrix U'. 

3) Finally, estimate an inverse of  to recover the 

original signals. 

Proposed Study 

BSS techniques have been studied for separation of 

speech and bio-signals. However, there are no studies on 

their performance when the mixture is contaminated by 
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noise. This study should not contradict the fact that ICA 

is not working with Gaussian mixtures. The mixture can 

be a result of several microphones or signal capturing 

devices. Such devices may introduce noise. In this study, 

the mixture in Equation (1) is assumed to be 

contaminated by noise to receive Xn instead of X as 

shown in the following: 
 

n
X X n AS n= + = +  (17) 

 
SNR is defined: 
 

( )

( )

 2*  

 2*  

X

n

Power of N dimensional mixture p
SNR

Power of N dimensional noise p
= =  (18) 

 
The mixture power is calculated by: 

 

( )
2

1

1
N

X AS

i

p p x i
N

=

= = ∑  (19) 

 
The dB-value of SNR can be computed as follows: 

 

( )10
10log

dB
SNR SNR=  (20) 

 

Correlation coefficients can be computed by Equation 

(21) (Sawada et al., 2007). 

 

( )
( ) ( ) ( )

1

1 1 1 1

1 1

1

,

x s

E x s E x E s
p x s

σ σ

−

=  (21) 

where, x1,s1 are two signals, 
1
x
σ  standard deviation of x1, 

1
s
σ  standard deviation of s1. 

The next section discusses the effect of such a 

condition on the performance of BSS algorithms. 

Simulation and Results 

MATLAB (R2018b) has been used as an 
environment to simulate each BSS technique and 
compute the statistical results. Different signals (speech, 
QFM and LFM) signals are simulated under the 
influence of two types of noise. This section discusses 
the results of the simulation in detail. 

Two Speech Signals 

BSS techniques have been employed to separate mix 
of two speech signals, these signals are related into two 
different humans (baby and man), with equal sample rate 
(fs = 44100) and same length (N = 73729). Figures 1 and 
2 show the original signals and Figure 3a and 3b shows 
the mixed signals. Different mixing matrices were used 
to analyze their effect on the separation process: 
 

1 2

3 4

5

0.7 0.15 0.7 0.15
; ;

0.37 0.9 0.37 0.9

0.7 0.15 0.7 0.15
; ;

0.37 0.9 0.37 0.9

0.7 0.15
;

0.37 0.9

A A

A A

A

−   
= =   
   

− − − −   
= =   −   

− − 
=  − − 

 

 

 
 

Fig. 1: Source signal 1 

0 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

 
-0.2 

 
-0.4 

 
-0.6 

 
-0.8 

 
-1 

1 2 3 4 5 6 7 8 

×104 



Muna H. Fatnan et al. / Journal of Computer Science 2019, 15 (1): 27.44 

DOI: 10.3844/jcssp.2019.27.44 

 

32 

 
 

Fig. 2: Source signal 2 

 

 
 

Fig. 3: (a) Mixture1 (b) Mixture2 
 

In case of failure, FastICA algorithm may be re-

executed more than once to extract the original signals. 

Figure 4 shows this state precisely. 

Implementation of each algorithm suffers from two 

ambiguities. First, the extracted signals are not in the 

same order of the source signals, to solve this ambiguity 

a permutation step should have occurred in each 

iteration. Second, the obtained signals do not have the 

same amplitude as in the original signals, then to solve 

this ambiguity a normalization process for each 

amplitude should be done. 

BSS algorithms (FastICA, SOBIand JadeR) have 

been applied to the whitened data. Pearson correlation 

coefficient has been used as a performance measure. 

Figure 5 shows the correlation coefficients between 

source signals and extracted signals for each 

technique without using noise. FastICA algorithm was 

unstable. In contrast, SOBI and JadeR algorithms 

appear very stable. 

Speech Signals with Additive Semi-White Gaussian 

Noise 

Noisy speech signals have been produced using 

MATLAB function (wgn), this function is used to create 

2D noise with different powers corresponding to 

different signal to noise ratios SNRdB (ranging from -50 
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dB to 80 dB). Note that this noise is not exactly white or 

Gaussian, as it is band limited; also, speech signals 

themselves behave like non-Gaussian probabilistic 

signals. Hence, the mixtures are not Gaussian, hence are 

separable when BSS techniques are applied. BSS 

techniques are shown to fail for negative SNRdB (in the 

range -50 to -20). From -20dB and above, BSS 

techniques start to separate the signals. SNRdB Vs. 

correlation coefficients have been used as a quality 

metric for each technique. 

 

 
 

Fig. 4: Extracted signals using ICA 
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 (a) 
 

 
 (b) 

 
Fig. 6: (a) Correlation coefficients Vs. SNR for separation of two signals mixed using positive mixing matrix under semi-white 

Gaussian noise; (b) Correlation coefficients Vs. SNR for separation of two signals mixed using negative mixing matrix under 

semi-white Gaussian noise 
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The analysis of the simulation shows that JadeR is 

the best algorithm among the compared algorithms, it 

is very accurate and efficiently more than SOBI and 

FastICA and it also has more stable results (non-

fluctuating). In addition, JadeR requires less execution 

time that other BSS techniques. Figure 6 shows that JadeR 

gives better correlation coefficients (between original and 

recovered signals), hence, better separation accuracy, than 

SOBI or ICA. A Table 1 of comparison. 

Speech Signal Separation under Uniform Noise 

This section explains the effect of uniform 

distribution noise on speech signals separation. Uniform 

noise can be computed in Equation (22): 
 

( ) ( )2 0,1r a a= − + U   (22) 

 

where, 3 ,
n n

a p p= ,  (power of noise), ( )0,1U  is the 

standard uniform distribution. 

Figure 7 shows the mixed speech signals separation 

under Uniform noise when different mixing matrices are 

mixing the signals. Under uniform noise, JadeR 

algorithm remains the best algorithm to separate the 

speech signals. As a conclusion of BSS techniques 

implementation, the variety of the mixing matrices do 

not significantly affect the separation process. Also, 

SOBI algorithm affected merely by the diversity of the 

mixing matrix. 

Two Frequency-Modulated Signals (QFM, LFM) 

Frequency-Modulated (FM) signals are important in 

applied signal processing and communications. Linear 

FM (LFM) has a frequency that changes linearly with 

time, while non-linear FM has a frequency that follows a 

non-linear function of time. Here we will only consider 

quadratic FM (QFM) for non-liner FM. To apply BSS to 

noisy FM, we consider the original signal x(t) to be a 

finite-length LFM or QFM signal of the following forms 

(Lau et al., 2004): 

 

( ) ( )

( ) ( )

2

2 3

LFM : sin 2 / 2

QFM : sin 2 / 2 / 3

o

o

x t f t et

x t f t Et Gt

π

π

 = + 

 = + + 

 (23) 

 

where, e, E and G are the modulation coefficients. 

 
Table 1: Correlation Vs. SNR of BSS techniques under semi-

white Gaussian noise for mixing matrix A = [0.7 0.15; 

0.35 0.8] 

SNR FastICA SOBI JadeR 

-10 0.1613 0.1169 0.1943 

0 0.3748 0.3712 0.4944 

20 0.9420 0.9777 0.9798 
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 (b) 
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 (d) 
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 (f) 

 
Fig. 7: Correlation coefficients Vs. SNR for separation of two speech signals under uniform noise, the signals are mixed by different 

types of mixing matrix; (a) all the entries of the mixing matrix are positive, A = [0.7 0.15; 0.37 0.9]; (b) mixing matrix has 

one negative entry only, A = [0.7 0.15; -0.37 0.9]; (c) mixing matrix has two negative entries, A = [0.7 -0.15; -0.45 0.9]; (d) 

mixing matrix has three negative entries, A = [-0.7 -0.15; -0.37 0.9]; (e) all the entries of the mixing matrix are negative, A = 

[-0.7 -0.15; -0.37 -0.9]; (f) entries of the mixing matrix are selected randomly, A = random values 

 

 
 

Fig. 8: QFM and LFM signals 

 

Figure 8 shows two FM signals (QFM and LFM), 

these signals are used to inspect the ability of BSS 

techniques to separate FM signals. 
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discussed above. Figure 9 shows the correlation coefficient between the extracted signals and the original signals. 
 

 
 (a) 

 

 
 (b) 

 
Fig. 9: Correlation coefficients vs. SNR for FM mixed signals under semi-white Gaussian noise (a) QFM mixed with LFM using 

positive-valued mixing matrix under semi-white Gaussian noise (b) QFM mixed with LFM using negative valued mixing 

matrix under semi-white Gaussian noise 
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Second, FM signals are mixed under uniform noise 
and separated using BSS techniques. Figure 10 shows 
the correlation coefficients between the extracted signals 
and the original signals. 

Discussion 

All techniques fail under high-power uniform or 

semi-white Gaussian noise with SNRdB (-50 to -20). The 

separation starts when SNRdB is (-20) and above. In this 

case, JadeR algorithm is better than SOBI and FastICA 

because it is very stable and has higher correlation values 

at each SNR. 

Two LFM Signals Separation under Semi-White 

Gaussian Noise 

Figure 11 shows two LFM signals with different 
frequency content, these signals have been mixed using 
random mixing matrix. 

 

 
 

Fig. 10: Correlation coefficients Vs. SNR for FM (QFM and LFM) mixed signals under uniform noise 

 

 
 

Fig. 11: Two LFM signals 
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 (a) 

 

 
 (b) 

 
Fig. 12: (a) Correlation coefficients vs. SNR for two LFM mixed signals mixed by positive mixing matrix under semi-white 

Gaussian noise; (b) Correlation coefficients vs. SNR for two LFM mixed signals mixed by negative mixing matrix under 

semi-white Gaussian noise 

 

Mixed FM signals are separated using BSS 

techniques. Figure 12a shows correlation coefficients 

(between extracted signals and original signals) vs. SNR 

when original signals are mixed using positive mixing 

matrix, Figure 12b consider negative mixing matrix. 

Discussion 

JadeR algorithm is the most efficient algorithm and 

SOBI gives lower correlation coefficients as compared with 

JadeR and FastICA when fixed SNR is considered. Hence, 
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all previous experiments show that JadeR is the best 

algorithm as compared with SOBI and FastICA algorithms 

and FastICA algorithm is better than SOBI algorithm where 

SOBI algorithm is unstable in each of the discussed cases.  

 

 
 (a) 

 

 
 (b) 

 
Fig. 13: (a) Correlation coefficients Vs. SNR for two LFM mixed with positive mixing matrix under uniform noise; (b) Correlation 

coefficients Vs. SNR for two LFM mixed with negative mixing matrix under uniform noise 
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Two LFM Signals Separation under Uniform Noise 

Figure 13 shows the performance when the mixture is 

two LFMs under uniformly-distributed noise. 

Figure 13 show that performance of BSS algorithms 

under uniform noise is similar to that given by the test 

results under semi-white Gaussian noise, where JadeR 

outperforms other techniques. 

Future directions will involve testing these algorithms 

over modern engineering systems, especially wireless 

channels as in (Mahmoud et al., 2002; 2006) and chaotic 

communication systems as in (Lau and Hussain, 2005). 

Conclusion 

Three major BSS techniques (JadeR, SOBI and 

FastICA) have been extensively studied and applied to 

mixed speech and FM signals for the purpose of recovering 

original signals. Tests included noisy conditions, where two 

kinds of band-limited noise have been used. 

For a noise-free observed data, JadeR and SOBI 

techniques are more stable than FastICA where their 
correlation coefficients (between the original and the 
separated signals) range over (0.99 to 1), whereas 
FastICA is volatile and requires re-execution more than 
once to extract the originals signals accurately.  

For noisy observed data under semi-white Gaussian 

or uniform noise, the BSS techniques fail at high noise 

powers (SNR less than -20 dB). Hence, the correlation 

coefficients are low. JadeR algorithm is the best 

algorithm among BSS techniques because it is the most 

resistive to noise.  
For noisy and noise-free observed data, JadeR 

algorithm requires less running time among the 
compared techniques. This is because it applies the joint 
diagonalization steps to the cumulant array which has 
smaller dimensions. 

Future directions will involve testing these algorithms 
over modern engineering systems, especially wireless 
channels as in (Mahmoud et al., 2002; 2006) and chaotic 
communication systems as in (Lau and Hussain, 2005). 
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Appendix: Flowchart of the Proposed Testing Approach 
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