

 © 2019 Giuseppe Della Penna, Pietro Frasca and Benedetto Intrigila. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Two Factor Authentication for e-Government Services using

Hardware-Like One Time Password Generators

1
Giuseppe Della Penna,

 2
Pietro Frasca and

2
Benedetto Intrigila

1Departement of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Italy
2Dipartimento di Ingegneria dell’Impresa, University of Rome “Tor Vergata”, Italy

Article history

Received: 17-10-2018

Revised: 12-12-2018

Accepted: 25-01-2019

Corresponding Author:

Giuseppe Della Penna

Departement of Information

Engineering, Computer Science

and Mathematics, University of

L’Aquila, Italy
Email: giuseppe.dellapenna@univaq.it

Abstract: A safe and accessible authentication technique is a prerequisite

for any modern e-government application. Two-factor authentication is

currently widely adopted, since it alleviates many vulnerabilities of

password-based authentication. The majority of e-government systems

currently make use of text messages to deliver the second authentication

factor, but these messages do not constitute an adequate (secure and

reliable) solution. In this paper we show how to use One-Time

Passwords (OTP) generated by a per-user, ad-hoc built application

installed on a smartphone to support a two-factor authentication scheme

specifically targeted to e-government tasks. In particular, we develop a

process for the request, generation and distribution of such an

application that achieves the same security of OTP hardware devices but

avoids the related distribution and management costs, requiring no

dedicated hardware and relying on the pre-existing administrative

infrastructure. The process is designed to be accessible by any citizen

who is able to perform very basic operations on a smartphone.

Keywords: E-Government Services, Service Accessibility, Two-Factor

Authentication, One-Time Password, Mobile Applications

Introduction

The increasing adoption of e-government systems is
quickly and radically changing the way citizens interact
with public institutions e.g., (Orgeron and Goodman, 2011;
Santoso et al., 2016) while, on the other hand, the
availability of such systems is becoming an index of social
and political progress (Boyer-Wright and Kottemann, 2015;
Yulistiawan et al., 2014). The quality of an e-government
system depends on a set of very different factors that
range from accessibility to security e.g.,
(Papadomichelaki et al., 2015). Here we focus on a
pivotal security aspect: The authentication system.

Authentication and Digital Society

Authentication systems are at the basis of e-

government systems e.g., (Bettacchi et al., 2017;

National Institute of Standards and Technology, 2017),

as well as of a wide range of applications belonging to

the so called Digital Society. Therefore, an

authentication technique that is both very accessible, to

be used by any citizen and extremely safe, to access

public services and personal data, is a prerequisite for

any modern e-government application.

As it is well known, static authentication systems,

i.e., based on static passwords, are vulnerable to many

typologies of attacks. Such vulnerability can be

substantially alleviated by the so called multifactor

authentication systems, in particular two-factor

authentication (Stanislav, 2015). In such authentication

schemes, two techniques are joined: The first factor is

still usually a static password, whereas the second factor

can be provided in several ways, e.g., by biometric

characteristics such as fingerprints e.g., (Velásquez et al.,

2018; Kumar et al., 2017), by smart cards (Olabode, 2011)

or by One-Time Passwords (OTP) (IETF, 1998).

In particular, the majority of e-government systems

currently make use of text messages to provide the citizen

with an OTP as second authentication factor. This is not

surprising, since SMS is a basic service of mobile networks,

available on every mobile phone, thus it is a quite

democratic solution, which can be used by a very wide

segment of the population.
However, as e-government services become more and

more important in the citizen lives, the security and

reliability constraints of such services must strengthen,

making the use of text messages completely unacceptable.

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

172

Indeed, the public administration has little or no control on

the internal handling of SMS messages, so there may be

unpredictable delays in their delivery, possibly

invalidating the citizen authentication session. Moreover,

SMS phishing (Choudhary and Jain, 2018), which is a

very common criminal activity, may be easily exploited in

this scenario (Siadati et al., 2016; 2017). Finally, since in

the GSM protocol only the airway traffic may be

optionally encrypted and with a weak stream cipher,

SMS messages may be relatively easy to intercept and

read by some attacker (Barkan et al., 2008). For these

reasons and also considering that SMS messages have a

cost for the administration (and possibly for the citizens),

it is clear that they will not be the preferred way to

implement two-factor authentication in the near future

(Meyer, 2016; NIST, 2017).

Our Ad-Hoc Solution

In this paper, we show how to use OTPs generated by

a suitable application installed on a smartphone to

support a two-factor authentication scheme specifically

targeted to e-government tasks. In particular, we develop

a request, generation and distribution process for such

an application that achieves the same security level of

OTP hardware devices, which are currently a standard

for highsecurity transactions (indeed, they are widely

adopted for e-banking).

This result is obtained by:

• Embedding in the executable code of the application

a substantial amount of information related to the

specific user and his device

• Performing an ad-hoc compilation of the application

for each specific user

• Distributing the application through a controlled,

personalized channel rather than through a public

repository

To stress these important aspects, we call the application
Ad-Hoc OTP mobile app or, shortly, AH-OTP app. While
the current solutions of this kind differentiate the users only
by the initial secret key manually entered in the app, as
discussed below, the AH-OTP app will be substantially
different for each user (this is the ad-hoc aspect).

Our solution does not make use of SMS or similar

insecure channels to deliver OTPs, but at the same time

avoids the distribution and management costs related to

OTP hardware devices. Indeed, it does not use dedicated

hardware and relies on administrative offices for the

most critical identification phases. Moreover, it is

designed to be accessible by a large number of citizens,

which already own a smartphone and are able to perform

very basic operations on it.

Clearly, we are still facing some digital divide,

since a number of citizens, typically the most aged

ones, will not be able to use our authentication system

(Ebbers et al., 2016; Distel and Becker, 2017).

However, this is an intrinsic issue in e-government

(Baeuo et al., 2017; Distel and Becker, 2017), which

we will not address here: Our purpose is to minimize such

a number, while maintaining the highest security levels.

The paper is organized as follows. Section 2 compares

the proposed approach with other two-factor

authentication schemes. Section 3 introduces some

preliminary notions about one-time passwords. Section 4

contains a detailed description of the proposed process and

briefly discusses its accessibility. Section 5 focuses on the

process and app security issues related to a number of

common attacks and Section 6 formally prove the security

of the proposed approach with respect to such attacks

using model checking techniques. Finally, concluding

remarks and future work are outlined in Section 7.

Related Work

Typically, the reference scenarios for smartphone-

assisted authentication and authorization are the secure

payments and the service access mechanisms provided,

e.g., by Google or Microsoft.

Secure payments have been using two-factor

authentication schemes for many years, but they usually

employ dedicated hardware tokens to achieve higher

security. Obviously such tokens have a cost both for the

issuer and the user, must be replaced after a specific

number of years and cannot be simply “stored in a safe

place”, but rather should be carried with the user

everywhere authentication may be required. These

constraints are acceptable for e-banking purposes, but

clearly inapplicable to a diffuse e-government

infrastructure. Only in the most recent years banks are

also launching smartphone applications that may be used

as a replacement for the dedicated token. Usually these

applications are extensions of common e-banking

applications and, to achieve the required authorization

security level, use complex authentication procedures. In

other words, such software-based authorization systems

free the user from the extra hardware, but are more

demanding with respect to both the smartphone

hardware requirements and the user abilities.

On the other hand, smartphone-based payment

systems such as Apple pay (Apple Inc, 2018) or Google

pay (Google Inc, 2018) are being increasingly adopted,

especially for micro payments. Both systems rely on

traditional credit or debit cards, whose details are stored

in an encrypted form in the smartphone itself. Using

biometric or password-based security techniques, these

systems are able to send via NFC to an enabled POS an

authorization token which encodes the card data and, in

this way, the card holder identity. It is clear that such

authorization scheme is currently very payment-specific

and hardware-eager, so it would be very difficult to

extend to an e-government scenario.

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

173

Actually, most of the recent approaches to multi-factor
authentication relying on electronic devices such as
smartphones or personal computers also use biometrics
e.g., Bailey et al. (2014), or a combination of biometrics
with standard techniques such as one-time passwords e.g.,
Dasgupta et al. (2016). Again, the hardware requirements
of such approaches make them unsuitable for a widely-
available and accessible authentication scheme such as the
one needed by the current e-government scenarios.

Two-factor authentication schemes employed by

services such as Google or Microsoft make use of more

general techniques, where the second factor can be

generated by the user smartphone in different ways with

increasing delay but decreasing requirements. As an

example, Android users can simply answer to an operating

system notification (if their phone is online) to access

Google services. On the other hand, the most common

way to access such services is to install (from the public

stores) and configure an authenticator app, which

essentially implement the TOTP (IETF, 2011) algorithm.

Finally, these services also allow sending a server-

generated OTP via text message as a backup procedure.
In the e-government context, a well-known example

of application of two-factor authentication techniques is
given by the United States approach. Such an approach
relies on a centralized authentication system with a
strong user-chosen password and an OTP sent via text
Message (SMS) to the citizen phone (U.S. General
Services Administration, 2018).

Also the recently introduced Italian Digital Identity
Public System (SPID), (APLD, 2018) includes a two-
factor authentication with OTP sent via SMS as the
middle-level authentication, whereas the base one is a
simple password-based mechanism and the strongest one
is a two-factor with a hardware token.

Moreover, in Italy, the main third parties offering

solutions for secure authentication to government portals

as well as remote digital signature, such as InfoCert

(2018) or Aruba (Aruba it, 2018), provide the users with

OTP generators which are freely downloadable from the

mobile stores and are configured using a secret key at the

first run. Such an authenticator-based approach is the

starting point of the process developed in this paper, too.

However, with respect to all the solutions above we

further reinforce the user identification process and the

app code strength, making harder to stole the user

identity or clone the app installed on his phone. This is a

fundamental prerequisite for e-government services.

One-Time Passwords

One-Time Passwords (OTP) are passwords that can

be used only to perform a single transaction and

therefore are not affected by a number of issues

associated with traditional passwords, since they are not

vulnerable to replication attacks. Moreover, to further

strengthen their security, OTPs, if not used, usually

expire after a short interval of time. Clearly OTPs cannot

be stored, but have to be generated on request and

therefore they require some additional technology to be

effectively exploited. OTP generation algorithms

commonly make use of pseudorandom number generators

and hash functions to make the prediction of the next

password very difficult to achieve. Actually, there are

several classes of OTP generation algorithms, but the most

used in the practice are the timesynchronized ones. In this

case, the OTP is based on the current timestamp, possibly

merged with the previous password or, most commonly,

with a shared user secret key. In the latter case we have

the well-known TOTP (IETF, 2011) algorithm, which

combines the current timestamp and the shared secret

using a cryptographic hash function.

Time-synchronized OTP passwords are usually

delivered through a dedicated hardware (security token)

which contains an accurate clock (that must be

synchronized with the clock on the authentication

server). The security token generates and displays an

OTP each time a button is pressed. This simple

implementation has, however, a clear drawback in that

such specific hardware must be carried along by the

owner. In other cases, the OTP generator resides on the

authentication server itself and the passwords are

generated and then sent to the user through non-internet-

based secure channels, like SMS text messages.

Nowadays, smartphones have all the computing

power needed to implement an OTP algorithm and are

always with us, so they are perfect candidates as security

tokens. Indeed, many apps are available in the mobile

stores, usually identified as authenticators, which can be

configured to generate OTPs for specific services.

However, in this case the OTP generation algorithm,

being installed on a vulnerable device often connected to

the internet and being downloaded from a public market,

can be subject to many kinds of attack. As an example,

an attacker can freely download the app from the store,

analyse it, understand how the secret key is stored in the

device’s memory and, if the device is compromised,

steal the secret key and clone the user’s OTP generator.

On the other hand, this schema does not apply to the ad-

hoc OTP application presented in this paper since it is

not public and is ad-hoc generated making use of

obfuscated user-specific information.

The AH-OTP App and its Release Process

The core of any two-factor authentication scheme,

where the first factor is usually a password, is the way of

generating the second factor. As already discussed, in an

e-government context we should try to achieve the best

compromise between security and usability. The

proposed solution relies on the AH-OTP app which is

distributed through a very specific release process, as

illustrated in Fig. 1.

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

174

Fig. 1: The AH-OTP app release process

In particular, the AH-OTP app is not distributed

through the usual release channels (i.e., the stores) but it

is ad-hoc built for each user and embeds his secret key

(used to generate the OTPs) and the IMEI of his mobile

phone. Such an ad-hoc app is released after a process

which includes a physical verification of the user identity

documents and can be downloaded and installed on the

device only within a safe environment (i.e., an ad-hoc

WiFi network). The overall process is structured in such

a way that no human or software owns all the elements

needed to complete it. Indeed, the process completion

requires an interaction between three parties: the user, a

software system and an administrative employee.

Process Overview

The AH-OTP release process is structured in five steps:

Step 1- Registration and App Request: The user

registers to the service, which also requires to

specify his identity card number and requests the

AH-OTP app release, specifying his smartphone

model and IMEI code. The system returns a case

number to be used afterwards in the process.

Step 2- Physical Identification: The identification takes

place into an administrative office. The user gives

to an authorized staff member his case number

and identity document, which is checked against

the data given during the registration step.
Step 3- App Generation: The system builds an ad-hoc

instance of the AH-OTP app, which embeds the
user randomly generated secret key and his
smartphone IMEI.

Step 4- App Download: The user connects to the
administrative office WiFi network using its
registration credentials and is guided through the
app download and installation process.

Step 5- App Activation: The user logs again in the
online system and requests the app activation.
He is asked to run the AH-OTP app, generate an
OTP and enter it in a form submitted to the
system. If this OTP is verified, then the app is
considered correctly installed and is enabled.

From the process summary above, it should be clear that
the process has been designed to be very similar to the one

usually adopted in the distribution e-banking tokens.
Therefore, it should be simple and intuitive to follow by any
citizen that also uses online banking systems. On the other
hand, thanks to the particular App structure and installation
process, the proposed solution is very hard to attack,
achieving a security degree very similar to the hardware

security tokens, still preserving the convenience deriving
from the use of a software OTP generators installed on the

User registers to

the system

User requests

OTP Token

app release

System returns
a case number

User goes to

administrative

office

User shows case

number and

credentials to

administrative

staff

Staff validates

credentials with

the system

Credentials

match
Ok

No

System

customizes and

builds the OTP

Token app

System enables

office WiFi

access for user

System deletes

app from server

and disables office

WiFi access

Users logs in

the office

WiFi network

System opens

captive portal on

user’s device

System presents

app download

link

User downloads

and installs OTP

Token app

System deletes

app from server

and disables office

WiFi access

User logs in the

system and

requests OTP
Token app

activation

User starts OTP

Token app and

generates first

OTP

User sends first

OTP to the system
OTP is correct

No

System enables

OTP authentication

through the OTP

App

Ok

R
eq

u
es

t
Id

en
ti

fi
ca

ti
o
n

G
en

er
at

io
n

R
el

ea
se

A

ct
iv

at
io

n

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

175

user’s smartphone. To better understand these points, let us
give a more detailed description of the five steps above.

Process Details and Discussion

In this section we give more technical details about the
development of each step of the proposed process. We
assume that state-of-the-art, standard security technologies
are employed where needed: These basic “security
assumptions” are highlighted within the description below:

Step 1- Registration and App Request: The user
connects to the authentication portal and
registers to the service. The registration data
include the user identity card number. The
system returns a valid user ID and password.
Once logged with these credentials, the user
requests the AH-OTP app release, specifying the
mobile device model and IMEI code. The system
provides a case number linked to the activation
request and invites the user to go to the nearest
administrative office to complete the process.

Security assumption 1 (Weak authentication on web

clients). To achieve a better usability on the web client,

the registration step uses weak authentication (e-mail

check), since the identity will be later physically verified

in the administrative office (step 2).

Step 2- Physical Identification: At the administrative
office, the user declares his assigned case number
and is physically identified by the authorized staff

through his identity document, whose data is
compared to the registration data entered in the first
step. To further enforce security, the staff cannot
add or update any identification data, i.e., they have
a read-only access to the system and can only
execute the “confirm identity” action. Note that

such a step, even if it makes the overall process
longer and more complex both for the citizen and
for the administration, cannot be skipped in an e-
government scenario. Indeed, in most of the
national law systems, the physical identification of
a citizen is a prerequisite for the release of any

identity-related artefact.

If the identification succeeds, the system starts the

AH-OTP app generation and distribution process, which

is completely automatic.
Security assumption 2 (Not falsifiable identity

document). Identity documents are always a reliable
certification of the user identity. In particular, identity
documents are compliant with the international
standards (ICAO 9303, ISO/IEC 7810, ISO/IEC 7816)
and contain verifiable security elements such as
markers, holograms, etc. which allow a quick visual
check of the document validity IOS (2003). Furthermore,
we can assume that the administrative office can also
exploit hardware devices that scan the document and
verify its integrity e.g., IOS (2003); ICAO (2015).

Security assumption 3 (Strong employee fairness

policy). Administrative employees should never have the

user smartphone in their hands and, more in general, get

any object from the user except his identity card. This

strong policy is part of the employee contract and failing

to adhere to it results in disciplinary actions. Such rule

is also recalled inside the administrative office and

clearly written in the registration website.
Security assumption 4 (Office with video

surveillance). The administrative office is equipped
with cameras that record the customer/employee
interactions. In particular, the video surveillance
system can be used to detect disallowed actions (as
user objects given to the employees). Note that this
detection can take place whenever an anomaly is
notified by the citizen (i.e., the video must recorded and
stored for later use) or, in the future, by using a real-
time automatic image analysis software.

Step 3- App Generation: The system generates and

stores a random secret key associated with the

user. Then, the AH-OTP app is built from the

sources specific for the target device indicated by

the user in the first step. The app is customized

embedding the user secret key and the mobile

device IMEI number in its obfuscated binary

code. Therefore, such information will never be

stored, even in an encrypted form, in the device

data storage unit. This ensures that the app cannot

be moved to another device, thus making it a

permanent piece of the mobile device software

and makes the OTP generation parameters very

difficult to steal from the device itself.

Security assumption 5 (Obfuscated app data). The

target device IMEI and the OTP secret key are hard-

coded in the app binary. To prevent an attacker to obtain

such information by reverse engineering the app, its code

is obfuscated (through one of the available tools like, e.g.,

PROGUARD for Java (GuardSquare nv, 2017).

Moreover, the source code is randomly interleaved by

meaningless code lines, to make understanding the

decompiled binary more difficult. Finally, the sensible

data are not included as simple constants, but rather split

in a random number of pieces which are assigned to

variables with random names and different types declared

among the code e.g., Drape et al. (2007) and are merged

on demand to re-generate the original data.

Step 4- App Download: At this point, the system

enables the user to access the office WiFi

through the credentials released in the first step.

Security assumption 6 (Wi-Fi security). The

administrative office WiFi network makes use of

standard communication security techniques. Moreover,

the office WiFi network is continuously scanned in order

to verify that only one network exists with the requested

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

176

SSID and that the network correctly responds to a

challenge-response procedure. If the scan fails, the staff

is notified and all the download processes are disabled.

The user connects to the office WiFi network with his

credentials and is redirected to a captive portal with a

single link that can be used to download and install the

application instance built in the previous step (clearly

such a link can be accessed only within the WiFi LAN).

The installation procedure, specific for the user’s device

and operating system, is illustrated on the same web

page. Both the link and the WiFi access are available for

a small time interval, after that the WiFi access is

disabled and the app is deleted from the server. This also

happens once the user successfully downloads the app.

It is worth noting that forcing the user to download

and install the application only within a safe, controlled

environment and in a limited time slot is required to give

to the app, in our process, the same security features of

the hardware tokens in e-banking scenarios. Indeed, in

this way we may consider the app, in some sense,

directly consigned to the user by the administration after

the identification, as hardware tokens are physically

given to the user after their identity is confirmed.

Allowing the application to be downloaded later, for

example at user’s home, would open a number of attack

scenarios since, for example, we cannot assert the

security of a generic WiFi network. To mitigate these

attacks, we would need to introduce further levels of

security in the process, e.g., by giving the user (secret)

download codes and checksums to verify the

downloaded app before installing it. This would make

the overall process more complex and, possibly,

expensive for the administration.

On the other hand, we may safely assume that
nowadays the main administrative offices are already
equipped with an internal Wifi network and that the user
involved in the AH-OTP process wants to complete it as
soon as possible in a place where he may find further

assistance if needed. Therefore, forcing him to download
the app immediately is not a real restriction.
Step 5- App Activation: In the last step, the user

logs again in the online system using his credentials and
requests the app activation. He is asked to run the
AHOTP app that has been installed on his mobile device.

Each time it is started, the app verifies that the device

IMEI corresponds to the one embedded in its code and that

the device operating system is not rooted or jailbreaked,

i.e., unlocked. This last check is performed to further

enforce the app security since, in rooted phones, apps are

free to access and modify the operating system services as

well and other apps (Hassan and Pantaleon, 2017).
If both the above checks succeed, the app presents a

simple, standard interface with a button that, when
pressed, generates a, say, 30 sec valid OTP. This
password is derived, using the standard TOTP algorithm,
from the device internal clock and the user secret stored

in the app binary. When the password expires, the user
can click again the button to get a new one.

The user enters the generated OTP in a form and

submits it to the system. If this OTP is verified, then the app

is considered correctly installed and properly working, thus

its use is enabled for all linked the e-Government tasks.

Again, if the activation is not performed within a

reasonable amount of time after the release, the system

invalidates the app (in particular by forgetting the

associated secret), so that it must be uninstalled and

requested again.

AH-OTP Security

In this section we analyse a number of possible attacks

that could be achieved on the AH-OTP app itself or during

its release. Each attack is described in detail, together with

the conditions that should make it infeasible in the

practice, given the security assumptions of Section 4. Such

issues will be better formalized in Section 6.

Table 1 summarizes the considered attacks. In

particular, the attacks are classified in two types:

• An Outsider attack is performed by someone not

involved in the AH-OTP app release process.

• An Insider attack is performed by a malicious

employee of the administrative office where the app

is actually released (steps 2-4 of the process

described in the previous section)

Table 1: Summary of the analysed attacks

Attack name Attack type

Fake User Profile Outsider

Compromised User Client Outsider

Stolen/Fake Identity Document Outsider

App Copy Outsider

Smartphone OS Manipulation Outsider

Secret Key Copy Outsider

Phone Consignment Insider

WiFi intrusion Insider

Registration Data Manipulation Insider

App Download Insider

Table 2: Security elements

Element Description

Name The user first name

Surname The user last name

Email The user email address

UserID The user account ID

Password The user account password

IMEI The user phone IMEI

(User) profile The name, surname and email

(User) credentials The user ID and password

(Identity) document The user physical identity document

(Secret) key The user secret key

Application (file) The application executable package

(Office) WiFi The administrative office WiFi network

(Smartphone) OS The user mobile operating system

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

177

Fig. 2: ”Fake user profile” attack

To simplify the analysis, in the following we will

make reference to a set of meaningful vulnerable

elements, described in Table 2, that can be exploited by

an attacker to break the process security.

Outsider Attacks

Fake User Profile

The attacker tries to get an AH-OTP App using a fake

user profile.

The attacker creates a user profile by entering false

data and requests the release of an AH-OTP app. In the

administrative office, the employee selects the profile and

verifies the data by checking the identity document.
Figure 2 shows the attack progress and the elements

involved, where a checkmark in a cell means that the
actor (User, System, Employee and Attacker) associated
with the column owns the element identified by the row.
Moreover, we use the text style to denote the role of each
element in the attack:

• Italic style indicates that the element is being

exploited for the current attack
• Bold style indicates that the element is blocking the

current attack

U Element

Profile

Credentials

IMEI

Document

Key

Application

WiFi

OS

S E A

Attacker

Employee OTP system

Name: George

Surname: Brown

1: activation_request

1.1: case_number

2: Select_user_data

2.1: user_data

3: identity_document_request Name: George

Surname: Brown

4: identity_document

5: identity_document_check
Name: Harry
Surname: White Name: Harry

Surname: White

Name: George
Surname: Brown

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

178

• Normal (not-bold, not-italic) style indicates that the

element is not being involved in the current attack.

Italic style indicates that the element

In this case, the attack is blocked by the identity

document check (security assumption 2).

Compromised User Client

The attacker tries to get an AH-OTP app using real

identity data stolen through some malware installed on

the user client.
The user, who is unaware of operating on a

compromised machine, registers and issues the request to
activate the AH-OTP app. The attacker collects all the

data entered by the user during such process (i.e., the
complete user profile) and goes to the administrative
office to obtain the app. Figure 3 shows the attack
progress and the elements involved. Again, the attack is
blocked by the identity document check.

Stolen/Fake Identity Document

The attacker tries to get an AH-OTP app using a

stolen or fake identity document.
The attacker steals or falsifies an identity

document and requests the activation of the AH-OTP
app using data from such document. Figure 4 shows
the attack progress and the elements involved. Again,
the attack is blocked by the identity document check.

Fig. 3: “Compromised user client” attack

U Element

Profile

Credentials

IMEI

Document

Key

Application

WiFi

OS

S E A

John Smith

User

Harry White

Attacker

Employee OTP system

1: case_number

case number: 1234

1.1: case_number

Case number:
1234

2: select_user_data

2.1: user_data

3: identity_document_request
Name: John

Surname: Smith

4: identity_document

5: identity_document_check
Name: Harry

Surname: White

Name: John

Surname: Smith

Name: Harry

Surname: White

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

179

Fig. 4: ”Stolen/fake identity document” attack

App Copy

The attacker tries to copy the AH-OTP app to

another smartphone.

The attacker extracts AH-OTP application file (e.g.,

the APK file on Android devices) from the user

smartphone, installs it on another device and tries to use

it to generate an OTP. Figure 5 shows the attack progress

and the elements involved. The attack is blocked by the

codelevel binding between the app and the user phone

IMEI (security assumption 5).

Smartphone OS Manipulation

The attacker tries to copy the AH-OTP app to

another smartphone and manipulates the OS to return a

specific IMEI code and/or disable other security checks.

The attacker wants to bypass the smartphone OS

security, in particular to return a specific IMEI to the

app. To achieve such modifications on the phone

operating system, the attacker has to obtain root

permissions on the device. Figure 6 shows the attack

progress and the elements involved. The attack is then

blocked by the “rooted device” verification executed

at the application startup.

Secret Key Copy

The attacker tries to copy the AH-OTP App secret key

to use it in another OTP token application.

With the secret key, the attacker could use another

standard OTP token to generate the same OTP sequence

of the user. Figure 7 shows the attack progress and the

elements involved. The attack is blocked by the hard-

coding of the secret key in the obfuscated app code

(security assumption 5).

Insider Attacks

Phone Consignment

An administrative employee tries to get the user phone.

In the administrative office, an unfaithful

employee asks the user to consign the phone (thus

deliberately violating security assumption 3).

U Element

Profile

Credentials

IMEI

Document

Key

Application

WiFi

OS

S E A

User Employee OTP system
Identity card

reader

Attacker ID

Name: Harry

Surname: White

Attacker

1: identity_document_theft
2: activation_request

Name: John
Surname: Smith

11:

Name: John
Surname: Smith

2.1: case_number

3: select_user_data

Name: John
Surname: Smith 3.1: user_data

4: Identity_document_request

5: identity_document

6: Identity_document_check
Name: John

Surname: Smith
6.1: Fake_identity_document

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

180

Fig. 5: ”App Copy” attack

In this way, the employee can read the phone memory,

extract applications or read its IMEI. Figure 8 shows

the attack progress and the elements involved. The

attack is blocked by the video surveillance that

records the objects passed between the employee and

the user (security assumption 4).

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

IMEI: 12345

Smartphone 1

IMEI: 56789

Smartphone 2

App

Attacker

1: extractor_APK

1.1: extract_APK_file

1.2: file_APK

IMEI: 12345

1.3: file_APK

2: install_APK

2.1: ok

3: launch_App

3.1: start_App

3.1.1: IMEI_code_check

IMEI: 12345

IMEI: 56789

U S E A

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

181

Fig. 6: ”Smartphone OS manipulation” attack

Wifi Intrusion

The attacker tries to break into the administrative

office WiFi network.
In the administrative office, the attacker tries to

interfere with the WiFi network to intercept, read or

modify the data exchanged between the system and

the user. Figure 9 shows the attack progress and the

elements involved. The attack is blocked by the

presence of an Intrusion Detection System that

analyses the traffic in order to identify anomalies or

intrusions (security assumption 6).

Smartphone App

Attacker

1: root_smartphone

1.1: root_permission

2: change_IMEI_code

2.1: IMEI_code_changed

3: launch_App

3.1: start_App

3.1.1: root_device_verification

3.1.1.1: root_permission

3.1.1.1.1: invalid_root_ permission

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

U S E A

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

182

Fig. 7: ”Secret Key Copy” attack

Fig. 8: ”Phone consignment” attack

Fig. 9: ”WiFi Intrusion” attack

Fig. 10: ”Registration data manipulation” attack

Attacker

Smartphone App

1: extractor_APK

1.3: APK_file

1.1: extract_APK_file

1.2: APK_file

2: read_secret_key

2.1: obfuscated_code

3: use-deobfuscator

3.1: obfuscated_code

User

Disloyal Employee

Video Surveillance

System

1.1: identity_document

2: phone_consignment_request

1: identity_document_request

2.1: phone_consignment

3:prolonged_use_of_user’s
_smartphone_and_copy_of

_the_IMEI_code

4: detected_anomaly

User

Disloyal Employee

Wi-FI Software Monitoring

loop

1: SSID scan

1.1: SSID List

2: challenge Response Test

2.1: ok

3: WiFi_interference

3.1:

OTP System

Disloyal Employee

1: identity_document_request

1.1: identity_document

2: select_user_data

2.1: user_data

2.1: modify_data
Action:

- Read data

- Confirm identity

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

U S E A
U E A S

U S E A
U S E A

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

183

Registration Data Manipulation

The administrative employee tries to change the user

registration data.
In the administrative office, an unfaithful employee

tries to modify the user profile data in order to match a
different identity document. Figure 10 shows the attack
progress and the elements involved. The attack is
blocked since the registration data is read-only for the
administrative office employees.

App Download

The administrative employee tries to download the

OTP token app of another user.

After the user has been successfully identified and

the release phase of the AH-OTP app has started, an

unfaithful employee convinces the user to reveal his

credentials and tries to use them to download the OTP

token application on another smartphone. Figure 11

shows the attack progress and the elements involved.

The attack is blocked by the code-level binding between

the app and the user phone IMEI.

AH-OTP Security Verification

Although the discussion following each attack described

in Section 5 may be convincing, so far we have no

definitive evidence that such attacks, or a sequence of them

executed in some order, may not break the security of the

proposed approach. To this aim, in this section we

develop a formal model for both the AH-OTP process

described in section 4 and the attacks listed in Section

5 and then use model checking to verify if the attacks

can break the process in some way. As it is well

known, model checking techniques, applied on a

correct model of a system, are able to produce a

formal, mathematically correct proof of any suitably

modelled system property (see, e.g., Burch et al.

(1992); Dill et al. (1992); Holzmann (1991) for a

general introduction to model checking).

Fig. 11: ”App download” attack

IMEI: 12345

User

IMEI: 56789

Disloyal Employee

OTP System

Employee App

1: user_enabled_to_WiFi

2: WiFi_access

2.1:

captive_portal_with_single

_link

4: download_link

4.1: download_App

User IMEI: 12345

5: startApp

6: IMEI_code_check

IMEI User: 12345

IMEI Disloyal Employee: 56789

Element

profile

credentials

IMEI

document

key

application

WiFi

OS

3: obtain_download_link

U S E A

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

184

The Verification Tool

To perform model checking, in this paper we make use
of the CMurϕ tool (Della Penna et al., 2004), a fork of the
Murϕ model checker (SU, 2004) originally developed by
the SU, (2004) which has been often used for the
verification of security protocols and hardware systems.
CMurϕ can be downloaded from (URLS, 2017).

The CMurϕ input consists of a definition of the system

to be verified and a definition of the property to be checked.

Both definitions are encoded in the CMurϕ description

language, a high-level Pascal-like programming language

that offers many features also found, e.g., in C or Java.
More in detail, the CMurϕ input contains declarations of

constants, types, global variables, procedures and functions,
followed by a collection of transition rules, a description of
the initial states and a set of invariant properties. The
system model itself is given by the collection of transition
rules: Each rule is a guarded command with a condition (a
Boolean expression on the global variables) and an action (a
statement that can modify the global variables).

Roughly speaking, CMurϕ starts from the given initial
state(s) of the system and applies all the enabled transition
rules to generate all the possible next states in a loop
called explicit state space exploration. Of course, known
states are not regenerated, thus the exploration always ends
in a finite state system. On every generated state, the tool
checks the value of the invariant properties: If all the
properties are true, the exploration continues, otherwise it
stops and the tool reports the violated invariant and
(optionally) the sequence of rules/actions that lead to the
error, which constitute a counterexample for the invariant
property. On the other hand, if the exploration ends without
errors, then we have a certification that the invariant always
holds in the system. Note that CMurϕ models may be
nondeterministic, since different rules can be active on the
same state: In this case, the model checker verifies that the
property holds regardless of the chosen rule.

The AH-OTP Process Model

 To make the CMurϕ model of the AH-OTP process
and its possible attacks easily understandable also by
non-expert users, we try to remain as adherent as
possible to the terminology used in Section 5. In the
following we report the most important parts of the
model, whereas the complete source code is available
upon request from the authors.

We start by defining the normal AH-OTP Process as
reported in Section 4. Figure 12 shows the declarations:
Here we define enumerated constants for all the process
actors (user, attacker, system: For sake of simplicity, we
merged the malicious employee with the attacker) and the
security elements explained in section 5. Note that, to better
model the concepts of “valid document” and “profile
modification rights” we introduced here the elements
validdocument and profilemodify. Moreover, the new
OTP element indicates a fully-working OTP generator,
i.e., it is the last element obtained by the user after the

activation phase. Finally, the process state is an array
representation of the element/actor tables used in Section
5 to indicate that a particular actor owns an element.

Fig. 12: AH-OTP process model: Declarations and global state

Fig. 13: AH-OTP process model: support functions

-- tests whether an actor has an element
Function has(a : actors; e : elements): boolean;
Begin
 return (element[a][e]=true);
End;
-- removes an element from an actor
Procedure releases(a : actors; e : elements);
Begin
 element[a][e]:=false;
End;
-- gives an element to an actor
Procedure gets(a : actors; e : elements);
Begin
 element[a][e]:=true;
 -- some resources have mutually exclusive
 ownership
 if (e=WiFi) then
 for OA:actors Do
 if (OA!=a) then releases(oa,e); endif;
 end;
 endif;
End;
-- Startstate initializer
Procedure commonInit();
Begin
 -- everybody has nothing
 For e : elements Do
 For a : actors Do releases(a,e); End;
End;
-- normally, we start with the user having
gets(user,profile); -- his personal data
gets(user,IMEI); -- the IMEI of his phone
gets(user,document); -- a valid identity
 document
gets(user,validdocument);
gets(user,validos); -- a non-rooted phone OS
gets(system,WiFi); -- office wifi network is ok
gets(user,validos); -- attacker has his own
 mobile
End;

Type

 -- human actors
 mainactors: Enum {user,attacker};
 -- all the actors
 actors: Union {mainactors,Enum{system}};
 -- watched elements
 elements: Enum {
 profile, --user profile
 profilemodify, --profile modification access
 credentials, -- user credentials
 IMEI, --phone IMEI
 document, --identity document
 validdocument, --valid identity document
 key, --secret key
 application, --application for IMEI and key
 WiFi, --office WiFi control (mutually exclusive
)
 validos, --non-rooted phone OS
 OTP --working OTP generator
 };
Var

 -- process state
 element: Array[actors] of Array[elements] of
 boolean;
 -- element[actor][name] is true if the actor
 owns the element

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

185

Fig. 14: AH-OTP process model: process rules

Then, we define some useful support functions and

procedures, reported in Fig. 13. It is worth noting how we

initialize the process in function commonInit by giving to

each actor the elements that he should initially own.

Fig. 15: AH-OTP process model: Attack rules, part 1

Then core of the model is given by the transition

rules in Fig. 14. Each rule is named as the

corresponding AH-OTP process step and commented,

so it should be easy to read. In particular, the rule

guard, written before the ==> symbol, makes each rule

available only when the state meets its preconditions.

The rule-set statement allows us to make the process

steps (except step 3) available to both the user and the

-- the attacker registers to the service using a
 fake (or stolen) profile
Rule "A1.Fake user profile"
 !has(attacker,credentials)
==>
Begin

 -- the attacker gets the credentials relative to
 his fake identity
 gets(attacker,profile);
 gets(attacker,IMEI);
 gets(attacker,credentials);
 -- the attacker has an identity document for the
 profile (but not valid!)
 gets(attacker,document);
End;
 -- the attacker spies the user client and gets
 all the registration data
Rule "A2.Compromised user client"
 !has(attacker,credentials)
 & has(user,profile)
 & has(user,IMEI)
==>
Begin

 -- the attacker gets the user profile, IMEI
 number and credentials
 gets(attacker,profile);
 gets(attacker,IMEI);
 gets(attacker,credentials);
 -- the attacker may also have an identity
 document for the profile (but not valid!)
 gets(attacker,document);
End;
 -- the attacker stoles the user identity document
Rule "A3.Stolen identity document"
 !has(attacker,document)
==>
Begin

 -- the attacker gets the user document, but not a valid one
 -- since the theft is known to the police
 gets(attacker,document);
End;
 -- the attacker tries to copy the app from the user phone
Rule "A4. App copy"
 has(user,application) -- app downloaded
 & !has(attacker,application)
==>

Begin

 -- attacker stoles user app
 gets(attacker,application);
End;
 -- the attacker (after getting the user phone
 IMEI, e.g., with rule A2) forces his phone OS to
 report the stolen IMEI)
Rule "A5.OS manipulation"
 has(attacker,validos) -- the attacker phone is initially non-rooted
 & has(attacker,IMEI) -- the attacker has the user IMEI
==>
Begin

 -- the attacker manipulates the OS of his phone to
 -- possibly return a different IMEI
 releases(attacker,validos); -- attacker phone is
 now rooted

End;

-- the following actions can be taken by both the
 user and the attacker
Ruleset actor : mainactors Do
Rule "1.Registration and App Request"
 !has(actor,credentials) -- if actor not already
 registered
 & !has(system,profile) -- and there is no
 identical profile in the system
 & has(actor,profile) & has(actor,IMEI) -- and
 actor has the required information
==>
Begin
 -- actor gets his credentials
 gets(actor,credentials);
 -- system stores actor information
 gets(system,credentials);
 gets(system,profile);
 gets(system,IMEI);
End;
Rule "2.Physical Identification"
 !has(system,document) -- if actor not already
 identified
 & has(system,profile) & has(system,credentials)
 -- actor registered
 & has(actor,profile) & has(actor,credentials) &
 has(actor,document) & has(actor,validdocument)
 -- actor has required information and a valid
 document
==>
Begin
 -- system gets (validates) the document
 gets(system,document);
End;
Rule "4.App Download"
 !has(actor,application) -- if app not downloaded
 & has(actor,credentials) -- actor registered
 & has(system,application) & has(system,
 credentials) & has(system,key) -- app
 generated
 & has(system,WiFi) -- WiFi is ok
==>
Begin
 -- actor downloads app
 gets(actor,application);
 -- system deletes app
 releases(system,application);
End;
Rule "5.App Activation"
 !has(actor,OTP) -- if app not activated
 & has(actor,application) -- app downloaded
 & has(actor,IMEI) & has(actor,validos) -- actor
 device is ok
 & has(system,key) -- system has secret key
==>
Begin
 -- actor activates app
 gets(actor,OTP);
End;
End; -- ruleset
-- this rule is not actor-dependant
Rule "3.App Generation"
 !has(system,application) -- if app not generated
 & has(system,profile) & has(system,IMEI) --
 profile registered
 & has(system,document) -- profile identified (
 system has his document)
==>
Begin
 -- system generates secret key and app
 gets(system,key);
 gets(system,application);
End;

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

186

attacker (here generically called actor), so the attacker

can interfere, when possible, with the process followed

by the user. As an example, rule 1 (“Registration and

App Request”) can be executed only if the actor has no

system credentials yet !has (actor,credentials), but has

all his profile information available as well as the IMEI

of his device has (actor,profile) and has (actor,IMEI).

Obviously, the rule cannot be executed if the system

already has an identical profile registered (!has

(system,profile). When the rule is fired, the actor

obtains his credentials gets (actor,credentials) and the

system registers all of his data gets

(system,credentials); gets (system,profile); gets

(system,IMEI). Note that, when the process ends (rule

5), the actor (user or attacker) gets the OTP element,

i.e., the fully working OTP generator.

Now we are ready to model the attacks. Each attack

is encoded in a single rule, as shown in Fig. 15 and 16,

whose name recalls the corresponding attack described

in Section 5. The guards of these rules allow each

attack to be launched whenever possible during the

normal process, so the attacker can interfere with the

user in various ways and also perform attack

combinations. Remember that CMurϕ will try every

possible sequence of allowed rules, so it will check any

possible attack configuration. As an example, with rule

A2 (“Compromised user client”) the attacker steals the

profile, IMEI and credentials gets (attacker,profile);

gets (attacker,IMEI); gets (attacker,credentials)) from

the user web interaction and also obtains the

corresponding (false) identity document gets

(attacker,document).

Finally, we define the system initial state (via the

commonInit procedure in Fig. 13) and the invariant:

“The attacker must never have a fully working OTP

application”, which is encoded as! has (attacker,OTP), as

shown in Fig. 17.

Verification Results

When running the model above through CMurϕ, we

obtain the report shown in Fig. 18. Note that part of the

report headers, which describe some verification

technical details, have been omitted for sake of brevity.

The statistics show that there are 132 possible states in

our model (corresponding to all the possible process

and attacks inter-leavings) and that some rules were

never used (fired): This happens since some attacks,

like the “Registration data manipulation” are

impossible by design, as explained in Section 5, so the

corresponding rule cannot fire.

The model checker found no errors, meaning that

the invariant always holds. Therefore, within the

limits of the model correctness and all the security

assumptions it relies on, the attacker never obtains a

working OTP generator.

Fig. 16: AH-OTP process model: Attack rules, part 2

Fig. 17: AH-OTP process model: Start state and invariant

-- startstate: initializes the process

Startstate "OTP main"

Begin
 commonInit();

End;

-- invariant: the attacker should never own a
 working otp generator

Invariant "attackerCanUseOTP"

 !has(attacker,otp);

-- the attacker tries to get the secret key from
 the user to exploit it in his personal copy of
 the OTP app
Rule "A6.Secret Key Copy"
 !has(attacker,key)
 & has(user,key) -- the key is somehow obtainable
 from the user or his device
==>
Begin

 -- the attacker gets the user key
 gets(attacker,key);
 -- note that, since the key is embedded in the
 app, this action is useless
End;
-- the attacker gets the user phone and copies
 his IMEI (copying the app itself is handled by
 rule A1)
Rule "A7.Phone consignment"
 !has(attacker,imei)
==>
Begin

 -- attacker gets the phone and reads its IMEI
 gets(attacker,IMEI);
End;
-- the attacker tries to intercept the office
 WiFi network during the app download
Rule "A8.Wifi intrusion"
 !has(attacker,WiFi)
==>
Begin

 -- the attacker takes control of the office WiFi
 gets(attacker,WiFi);
End;
-- ther attacker tries to modify the user
 registration data in order to match a different
 identity document
Rule "A9.Registration data manipulation"
 has(attacker,profilemodify) -- the attacker can
 modify the profile: this will never happen
==>
Begin

 -- the attacker has his own valid document
 gets(attacker,document);
 gets(attacker,validdocument);
 -- the user profile becomes the attacker profile
 gets(attacker,profile);
 gets(attacker,IMEI);
End;
-- the attacker tries to download the app before
 the user installs it on his phone
Rule "A10. App download"
 has(system,application) -- app ready (not
 downloaded)
 & !has(attacker,application)
==>
Begin

 -- attacker stoles user app
 gets(attacker,application);
End;

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

187

Fig. 18: CMurϕ verification results

Conclusion

In this paper we presented an one-time password

generation mechanism, which has been specifically

designed to support two-factor authentication schemes in

e-government processes. In this sense, it aims to offer

the highest security without sacrificing usability and

accessibility, i.e., it is a good compromise between the

increasing security requirements of e-government

authentication schemes and the digital divide, which still

prevents a part of the population from accessing digital

government services.

In particular, the ad-hoc nature of the proposed OTP

generator application, together with its specific

generation and distribution process, makes our solution

secure as an hardware token and, at the same time, easy

to use as a smartphone app and has a limited cost for

both the user and the administration. This is in contrast

with most of the current similar approaches, which are

often unbalanced and sacrifice security for usability or

have relatively high implementation costs.

We developed prototypes of all the software artefacts

supporting our authentication process, including the

registration website, the app customization and building

system and the AH-OTP app itself for the Android

platform. Since the whole process relies on a

combination of known technologies, the development of

such applications is not complex and does not require

big investments in terms of time, efforts or hardware

infrastructures, which can be considered another

advantage of our approach.

Indeed, most of the proposed process is designed also

to be very easy and cheap to implement in a pre-existing

administrative structure: The physical identification phase

is easy to achieve in a government context, where offices

and staff are already at hand. The app distribution, which

in our approach is achieved through direct download

within an ad-hoc WiFi network, would only require some

amount of WiFi configuration in the administrative

offices, where WiFi connection is usually already present.

The only element in our process that may require

attention is the app installation: As already discussed, for

security reasons we build an ad-hoc app for every

citizen, thus such an app cannot be installed from the

mobile stores. On the Android platform, this implies

temporarily disabling the “install only from known

sources” security flag which, however, is a common

practice since many other well-known third-party app

stores already exist (e.g., Amazon). On the other hand,

Apple allows to apply for special development licenses

which provide the option to deploy apps on the iOS

without the app store.

Author’s Contributions

Giuseppe Della Penna: Contributed to the writing of

the manuscript and the development of the research.

Pietro Frasca: Participated in the experimentation

and validation, and developed the prototypes.

Benedetto Intrigila: Developed the original research

idea and contributed to the writing of the manuscript.

Ethics

This work is original and has not been published

elsewhere. The authors confirm that there are no ethical

issues involved.

References

APLD, 2018. Sistema pubblico di identita digitale.

Agenzia per l’Italia digitale.

Apple Inc, 2018. Apple pay. Apple Inc.

Aruba it, 2018. Otp da smartphone. Arubait. Baeuo, M., A.

Rahim, N. and A. Alaraibi, 2017. Technology factors

influencing e-government readiness. J. Theoretical

Applied Informat. Technol., 95: 1637-1645.
Bailey, K.O., J.S. Okolica and G.L. Peterson, 2014. User

identification and authentication using multi-modal
behavioral biometrics. Comput. Security, 43: 77-89.
DOI: 10.1016/j.cose.2014.03.005

Barkan, E., E. Biham and N. Keller, 2008. Instant
ciphertext-only cryptanalysis of GSM encrypted
communication. J. Cryptol., 21: 392-429.

 DOI: 10.1007/s00145-007-9001-y
Bettacchi, A., B. Re and A. Polzonetti, 2017. E-

government and cloud: Security implementation for
services. Proceedings of the 4th International
Conference on eDemocracy and E-government, Apr.
19-21, IEEE Xplore Press, Quito, Ecuador, pp: 79-85.
DOI: 10.1109/ICEDEG.2017.7962516

Boyer-Wright, K.M. and J.E. Kottemann, 2015. E-
government and related indices:
Telecommunications infrastructure, human capital,
institutional efficacy and online services. Int. J.
Electro. Govt. Res., 11: 24-37.

 DOI: 10.4018/IJEGR.2015100102

Caching Murphi Release 5.4.9
==
Protocol: AH-OTP
Algorithm:
 Verification by breadth first search.
 with symmetry algorithm 3
 -- Heuristic Small Memory Normalization
 with permutation trial limit 10.
Status:
 No error found.
State Space Explored:
 132 states, 573 rules fired in 0.10s.
Omission Probabilities (caused by Hash Compaction):
 Pr[even one omitted state] <= 0.000000
 Pr[even one undetected error] <= 0.000000
 Diameter of reachability graph: 10
Analysis of State Space:
 There are rules that are never fired.

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

188

Burch, J.R., E.M. Clarke, K.L. McMillan, D.L. Dill and
L.J. Hwang, 1992. Symbolic model checking: 10

20

states and beyond. Inform. Comput., 98: 142-170.
DOI: 10.1016/0890-5401(92)90017-A

Choudhary, N. and A. Jain, 2018. Comparative analysis

of mobile phishing detection and prevention

approaches. Proceedings of the International

Conference on Information and Communication

Technology for Intelligent Systems, (TIS’ 18),

Springer, Cham, pp: 349-356.

 DOI: 10.1007/978-3-319-63673-3_43

Dasgupta, D., A. Roy and A. Nag, 2016. Toward the

design of adaptive selection strategies for multi-

factor authentication. Comput. Security, 63: 85-116.

Della Penna, G., B. Intrigila, I. Melatti, E. Tronci and

M. Venturini Zilli, 2004. Exploiting transition

locality inautomatic verification of finite-state

concurrent systems. Int. J. Software Tools

Technol. Transfer, 6: 320-341.

Dill, D.L., A.J. Drexler, A.J. Hu and C.H. Yang, 1992.

Protocol verification as a hardware design aid.

Proceedings of the IEEE International Conference

on Computer Design on VLSI in Computer and

Processors, Oct. 11-14, IEEE Xplore Press,

Cambridge, MA, USA, pp: 522-525.

 DOI: 10.1109/ICCD.1992.276232

Distel, B. and J. Becker, 2017. All citizens are the same,

aren’t they? – Developing an e-government user

typology. Proceedings of the 16th IFIP WG 8.5

International Conference on Electronic Government,

(CEG’ 17), Springer, Cham, pp: 336-347.

Drape, S., C. Thomborson and A. Majumdar, 2007.

Specifying imperative data obfuscations.

Proceedings of the 10th International Conference on

Information Security, Oct. 09-12, Springer,

Valparaíso, Chile, pp: 299-314.

 DOI: 10.1007/978-3-540-75496-1_20

Ebbers, W.E., M.G. Jansen and A.J. van Deursen, 2016.

Impact of the digital divide on e-government:

Expanding from channel choice to channel usage.

Govt. Inform. Quarterly, 33: 685-692.
 DOI: 10.1016/j.giq.2016.08.007

Google Inc, 2018. Google pay. Google Inc.

GuardSquare nv, 2017. Proguard. GuardSquare nv.

Hassan, M. and L. Pantaleon, 2017. An investigation

into the impact of rooting android device on user

data integrity. Proceedings of the 7th International

Conference on Emerging Security Technologies,

Sept. 6-8, IEEE Xplore Press, Canterbury, UK, pp:

32–37. DOI: 10.1109/EST.2017.8090395

Holzmann, G.J., 1991. Design and Validation of

Computer Protocols. 1st Edn., Prentice Hall,

Englewood Cliffs. ISBN-10: 0135399254, pp: 500.

ICAO, 2015. Machine readable travel documents (doc

9303). http://www.icao.int/publications/Documents

/9303 p1 cons en.pdf.

InfoCert, 2018. Infocert id.

https://identitadigitale.infocert.it/.

IOS, 2003. Identification cards-physical characteristics

(iso/iec 7810:2003). International Organization for

Standardization.

IETF, 1998. A one-time password system (rfc2289).

Internet Engineering Task Force.

IETF, 2011. Totp: Time-based one-time password

algorithm (rfc6238). Internet Engineering Task

Force. https://tools.ietf.org/html/rfc6238.

Kumar, S., S. Paul and D.K. Shaw, 2017. Real-time

multimodal biometric user authentication for web

application access in wireless LAN. J. Comput. Sci.,

13: 680-693. DOI: 10.3844/jcssp.2017.680.693

Meyer, D., 2016. NIST prepares to phase out SMS-based

login security codes.

http://fortune.com/2016/07/26/nistsms-two-factor/

NIST, 2017. NIST special publication 800-63b. Digital

Identity Guidelines, National Institute of Standards

and Technology.

Olabode, O., 2011. Smart card identification

management over a distributed database model. J.

Comput. Sci., 7: 1770-1777.

Orgeron, C.P. and D. Goodman, 2011. Evaluating citizen

adoption and satisfaction of e-government. Int. J.

Electr. Govt. Res., 7: 57-78.

Papadomichelaki, X., V. Koutsouris, D. Konstantinidis

and G. Mentzas, 2015. An analytic hierarchy

process for the evaluation of e-government service

quality. Int. J. Electr. Govt. Res., 9: 19-44.
 DOI: 10.4018/jegr.2013010102

Santoso, H.A., J. Zeniarja, A. Luthfiarta and B.J. Wijaya,

2016. An ontological crawling approach for

improving information aggregation over e-

government websites. J. Comput. Sci., 12: 455-463.
DOI: 10.3844/jcssp.2016.455.463

Siadati, H., T. Nguyen, P. Gupta, M. Jakobsson and N.

Memon, 2017. Mind your SMSes: Mitigating social

engineering in second factor authentication.

Comput. Security, 65: 14-28.

DOI: 10.1016/j.cose.2016.09.009

Siadati, H., T. Nguyen and N. Memon, 2016.

Verification code forwarding attack. Proceedings of

the 9th International Conference on Technology and

Practice of Passwords, Dec. 7-9, Cambridge, UK,

pp: 65-71. DOI: 10.1007/978-3-319-29938-9_5

SU, 2004. Murphi web page. Stanford University.

Stanislav, M., 2015. Two-factor authentication. IT

Governance Publishing.

URLS, 2017. Model checking laboratory. University of

Rome ”La Sapienza”.

Giuseppe Della Penna et al. / Journal of Computer Science 2019, 15 (1): 171.189
DOI: 10.3844/jcssp.2019.171.189

189

U.S. General Services Administration, 2018. login.gov.

https://www.login.gov/

Velásquez, I., A. Caro and A. Rodríguez, 2018. Kontun:

A framework for recommendation of authentication

schemes and methods. Inform. Technol., 96: 27-37.

DOI: 10.1016/j.infsof.2017.11.004

Yulistiawan, B.S., H. Prabowo, D. Budhiastuti and F.L.

Gaol, 2014. Maturity model to measure the

government institutions of Indonesia (the

environment bureaucracy of education) in the

implementation of e-government. J. Comput. Sci.,

10: 2653-2657-16. DOI: 10.3844/jcssp.2014

