

 © 2019 Nur Hilda Amira Abd Wahab, Masnizah Mohd, Ravie Chandren Muniyandi, Balaji Rajendran and Gopinath

Palaniappan. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Concordance and Term Frequency in Analyzing API Calls for

Malware Behavior Detection

1Nur Hilda Amira Abd Wahab, 1Masnizah Mohd, 1Ravie Chandren Muniyandi,
2Balaji Rajendran and 2Gopinath Palaniappan

1Center for Cyber Security, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
2Centre for Development of Advanced Computing, Bangalore, India

Article history

Received: 10-06-2019
Revised: 31-07-2019
Accepted: 24-09-2019

Corresponding Author:
Masnizah Mohd
Center for Cyber Security,
Universiti Kebangsaan

Malaysia, Bangi, Selangor,
Malaysia
Email: masnizah.mohd@ukm.edu.my

Abstract: Application Programming Interface (API) is used for the software
to interact with an operating system to do certain task such as opening file,
deleting file and many more. Programmers use this API to make it easier for
their program to communicate with the operating system without having the
knowledge of the hardware of the target system. Malware author is an
attacker that may belong to an organization or work for themselves. Some
malware author has the capabilities to write their own malware, uses the
same kind of APIs that is used to create normal programs to create
malware. There are many researches done in this field, however, most
researchers used n-gram to detect the sequence of API calls and although
it gave good results, it is time consuming to process through all the
output. This is the reason why this paper proposed to use Concordance to
search for the API call sequence of a malware because it uses KWIC (Key
Word in Context), thus only displayed the output based on the queried
keyword. After that, Term Frequency (TF) is used to search for the most
commonly used APIs in the dataset. The results of the experiment show that
concordance can be used to search for API call sequence as we manage to
identify six malicious behaviors (Install Itself at Startup, Enumerate All
Process, Privilege Escalation, Terminate Process, Process Hollowing and Ant
debugging) using this method. And based on the TF score, the most commonly
used API in the dataset is the Reg Close Key (TF: 1.388), which on its own is
not a dangerous API, hence we can infer that most API is not malicious in
nature, it is how they were implemented is making them dangerous.

Keywords: Concordance, KWIC, API Call Sequence, Malware Behaviors,

Dynamic Analysis

Introduction

Nowadays, with a new variant of malware being

discovered, we can see that malware is becoming more

sophisticated in design. On top of that, malware is also

becoming more notorious over time, with the rising

amount of security breaches around the world as well as

the severity of said breaches. According to Cisco (2018),

security breaches can cause significant economic

damages to an organization as it takes considerable

time to fix the damages done. Moreover, more than half

of the breaches cost more than $500,000 in financial

damages. This shows how severe it is the effect of the

malware attack on an organization. Take example the

WannaCry ransomware outbreak in 2017 which shows

how dangerous modern malware is. This ransomware

affected more than 200 000 computers in over 150

countries worldwide and cause huge financial damages

to its victims (Business Advantage, 2017).
Moreover, according to (Ghazvini and Shukur,

2017), security breaches that are caused by human

mistakes may lead to costly fixed up as the company

may lose the information or data stored in the system

as well as their reputation which in turn may affect

their market share prices. On the other hand,

according to (Manap et al., 2015), malware may also

be used to steal someone's identity by using keystroke

logger and some form of spyware.
Malware is malicious software that can cause harm to

our system or network. The consequence of malware

attack is not limited to theft of data, destruction of data,

system compromise and denial of service (DoS).

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1308

Table 1: Malware and their description

Category Description

Trojan Trojan is malware that masquerade as a legitimate software. Once runs, the Trojan can spy on the user, delete files,

 steals sensitive data and many more depending on what that Trojan is for. However, unlike virus and worms,
 Trojan cannot self-replicate itself.
Adware Adware is a malware that shows ads on the computer. It is mostly annoying rather than malicious in nature.
Worm Worm is a malware that can propagate itself within the system. Worm can self-replicate itself using the internet or
 Computer Network.
Backdoor Backdoor is a type of access that will allow programmer to bypass the security of the system in order to access the
 system quickly. However, the attacker also uses the backdoor to gain unauthorized access to the system.
Virus Virus is a malware that attached itself to a piece of software that will infect system that run that infected software.

 This malware will usually infect other system when user share that infected files

Table 2: Advantages and disadvantages of different malware detection technique
Technique Advantage Disadvantage

Specification Can detect unknown attack Too much time needed to write good specification
 Minimal false positive False negative is increased due to missed attack
Signature Recognized known attack Cannot recognize unknown attack
 Require minimum system resources to detect attack mode Not usable against invisible signature
 Concentrate on normal behaviors
Anomaly Able to detect new attack Must renew user behaviors information periodically
 Focus on normal behaviors to detect unrecognized attacks Increased false positive

There are many types of malware such as Virus,

Trojan, Worm and Backdoor. Moreover, each of these

malwares behaves differently from each other. Table 1

shows the different type of malware and their description.

There are 3 types of malware detection technique,

namely Specification-based, Signature-based and

Anomaly-based. There are advantages and disadvantages
of these malware detection techniques which is shown in

Table 2 (Mohaddes et al., 2016).

Malware analysis gives us an insight on how

malware functions, so that we can ensure the safety of

our system as well as how to eliminate the danger the

malware poses. The analysis can be done with different

goals such as understanding the magnitude of the

malware infection, knowing the impact of malware

attack as well as to analyze the behavior of the malware.

There are three types of malware analysis, static

analysis, dynamic analysis and hybrid analysis.
Static analysis is done by dissecting and studying the

malware’s code. It is done without executing the

malware. The code is disassemble using a disassembler,

or reverse engineered so that malware analyst can read

the code and find out what the malware is supposed to

do based on their code. Which is why, static analysis is

also known as code analysis.
On the other hand, dynamic analysis is done by

executing malware in a safe environment, maybe it virtual
or sandbox environment. Dynamic analysis focusses on
analyzing the behaviors of malware, hence it monitors the
activity of registry, API calls, processes and network when
running the analysis. Moreover, hybrid analysis uses both
static and dynamic analysis to analyze the malware.

The reason why this research experiment used

dynamic analysis to extract the API calls of the malware is

because static analysis that use only import table to extract

the information of the malware will not be able to extract

any resolved APIs of the malware. This is because, to

extract resolved APIs, we need to run the malware since it

can only be extracted during runtime and for static

analysis do not execute the malware, they will miss this

kind of information.
Moreover, this study proposed to use a concordance

to map the API call sequence of a malware in the dataset.

The reason for this is because the n - gram method which

is used by most researchers displayed a lot of output, as

the output is based on the n-value, hence it takes time to

browse through it all. Meanwhile, concordance use Key

Word In Context (KWIC) method to display its output,

meaning the output displayed is only based on the keyed

keywords and its close context, thus reducing the time it

takes to process the displayed output.
The rest of the paper is organized as follows: Section II

will discuss about the related works done in analyzing API

calls. In section III, we will discuss the materials and

methods used in the experiment. Section IV will discuss

about the experimental setup for the research. Section V

will discuss about the results and discussion of said results

and finally, Section VI will discuss about the conclusion

of the experiment and recommendation for future works.

The purpose of this research is to identify malware

behavior by using API call. This research will focus on:

1. Using dynamic analysis to extract API call and map

the API call sequence using the concordance tool
2. To find out the most commonly used APIs in the

dataset by using Term Frequency (TF)

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1309

On the other hand, the scope of this research is:

1. This research only focuses on Windows malware
2. The dataset used in this experiment is created using

resolved APIs
3. There are criteria being imposed on the population

and samples used

Related Work

Fujino et al. (2015) stated that API call has lots of
useful information about the behavior of a malware.
They use Bag-of-Words (BoW) models with TF-IDF
word weighting to characterizing the API calls. They
also use a soft clustering algorithm which is a non-
Negative Matrix Factorization (NMF) to extract the API
call topics which will be used to detect similar but
unknown malware.

Sundarkumar et al. (2015) wrote that API level

information inside the bytecode is beneficial to analyze

software malevolence tendency since it shows the

behavior of said executable which the API call sequence

of. They also assert that the main problem in using Topic

Model is the lots of choices in features, hence why, they

propose to apply Latent Dirichl et al location (LDA) as a

feature selection method in their research.
Ki et al. (2015) proposed a novel approach to use a

sequence alignment algorithm in the API call sequence

analysis. This is because sequence alignment algorithm
will make it less confusing when detecting the malware.

They also stress that the algorithm has been used in many

other fields such as natural language processing and is

known to yield excellent results. On top of that, LCS

(Longest Common Subsequences) is used to extract the

most common API call sequence between the malware

which will then be used to generate malware signature.
Pektas and Acarman (2017) proposed classification

program that uses Voting Expert algorithms to precisely

recognize episode boundaries. Furthermore, the episode

boundaries are then used to search the API call sequence.

Moreover, they also track the changes made to the OS by
malware. They wrote that the API call combines with OS

state changes made by the malware will increase the

accuracy of malware classification.
Lim (2016) proposed the extraction of malicious

behaviors of malware as sets of k-grams, which is then

used to compare the similarity between API calls to the k-

grams to identify whether it is malicious behavior or not.
Salehi et al. (2014) proposed a new model in which

API call features are extracted and selected based on their

categories. The reason for this is to minimize the number

of features of the malware and to reduce analysis time.

After that, machine learning classification technique is

used for each generated set of features. They wrote that

their experiment has high detection rates in distinguishing

malware and benign file using only small features.

The differences between (Ki et al., 2015) and (Lim,

2016) from this work is that one research uses a novel

approach to analyze API call sequence which is to use

sequence alignment algorithm and another one-use k-

gram to analyze API call sequence to determine whether

it is malicious or not. On the other hand, this research

use concordance to identify API call sequence of

malware’s malicious behavior.
Arguably, most of the research done focus on

detection of malware, however, research done by

Alazab et al. (2010) focus on understanding the

behavior of malware through statistical analysis of the

API call. They use a static analysis to disassemble,

analyze and extract the API call from the malware. They

then proposed a novel approach to automate the process

to extract the API call of the malware binary.
On the other hand, the researcher Belaoued and

Mazouzi (2015) also doing a statistical analysis using

Multiple Correspondence Analysis (MCA) to find out

which APIs association that most likely used in malware.

They use static analysis to import IAT so that they can

extract the APIs.
This research is similar like research done by both

Alazab et al. (2010) and Belaoued and Mazouzi (2015)

albeit this research will use dynamic analysis instead of

static analysis to extract the APIs of the malware.

Moreover, this research will focus entirely on identifying

malware behavior and their associated APIs.
All the reviews above shows the importance of API call

in the understanding and detection of malware. Moreover,

we can agree that API calls play a major role in

understanding the malware itself, thus helps in identifying

both existing and new variants of malware. Likewise, by

observing the API calls of a malware, one can see how the

malware work because API calls represents a specific

operation that is used to run specific tasks. Prior researches

have suggested that by observing the API calls of a

malware, we can determine the behavior of said malware,

as malware behave in specific behavior that differentiate it

from benign program. Finding this malicious behavior and

their APIs is one of the objectives of this research.

Materials and Methods

Dynamic Analysis

This study uses dynamic analysis to extract the API

calls of a malware. Dynamic analysis can be done using

two ways, manually or automatically. Manual dynamic

analysis means the malware will be executed in a virtual

environment and malware analyst will monitor the malware

and take note of any changes in the registry or processes

caused by the malware. Table 3 shows the list of tools

usually used in doing manual dynamic analysis.

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1310

On the other hand, automated dynamic analysis is

done in a sandbox environment. There are many types of

sandbox available for free or commercially. One of the

most used free sandboxes is Cuckoo sandbox. Using

automated sandbox in analyzing malware is simple and

easy as we only must submit the malware sample and

wait for it to execute the malware. After that, we can

download the reports generated by the sandbox and

analyze the malware based on the reports. As mentioned

before, there are many automated sandboxes available

which is shown in Table 4.

API

Application Programming Interface (API) is a

collection of rules that enable the developers to develop

system or software for a specific operating system with

little knowledge about that particular operating system

(Merriam-Webster, 2018). There are two types of APIs

that we will encounter during this experiment which is

WinAPI and NTAPI.
WinAPI is a normal APIs that is normally used in

developing a new Windows program. WinAPI uses

suffix in their name such as A, W and Ex. APIs with A

and W suffix have the same function but differ in their

accepting parameters as one accepts ASCII string while

the other accept a wide character string. Meanwhile,

APIs with Ex suffix means that it is an API with an

updated functionality.
On the other hand, NTAPI is not so commonly used in

developing new programs and most of NTAPI is

undocumented. NTAPI used prefix in their name such as

Nt, Zw, Rtl and Ldr. According to Sikorski and Honig

(2012), NTAPI is commonly used by malware author

because it offers powerful and stealthier functionalities than

it WinAPI counterpart. Since this research is about

understanding malware behavior, we need to know which

behaviors are considered malicious or suspicious which is
shown in Table 5. On the other hand, Table 6 shows the list

of malicious behaviors and their API call sequence.

Concordance

Concordance is a list of all examples of the search

word or phrase found in a corpus. Concordance usually

uses Key Word in Context (KWIC) to display their

output. Concordance is usually used in corpus linguistics

to analyze the concordance, word frequency, collocate

and cluster of a corpus.
According to Bowker (2018) concordance is a corpus

analysis method that fetches all occurrences of a queried

search pattern in its immediate contexts. Moreover,

according to her, it is also possible to sort the concordances,

so that it can identify the patterns that might otherwise go

undetected. Furthermore, according to Wynne (2008)

concordance is a list of patterns or word in a text that is

arranged with surrounding words so that the patterns

surrounding the keywords can be visually identified. Other

researchers that use concordance KWIC in their research

are (Brown, 2017), (Jiang and Liu, 2017), (Yılmaz and
Soruç, 2015) and (Rockwell, 2018).

Based on the reviewed articles, we can infer that

concordance KWIC is mostly used in linguistic field

only. Moreover, the consensus of the reviewed articles

suggests that concordance with the use of KWIC is a

powerful tool to analyze patterns. Hence why this paper

proposed to use this method to map malicious API call

sequence. There are many concordance tools available

for free which is shown on Table 7.

Table 3: Manual dynamic analysis tools
Tool Description
API monitor API Monitor is a software that allow user to monitor and control API calls made by application or services in

 the system
Procmon Procmon aka Process Monitor is a monitoring tools for Windows system that shows file system, Registry and

 process or thread activity in real time. It is a combination of a legacy Sysinternal utilities tool, Filemon and

 Regmon albeit with added enhancement
Process explorer Process Explorer shows information about DLL processes and handles that have opened or loaded
Regshot Regshot is an open-source tools that allows user to take snapshot of the system registry and compare it with

 second one

Table 4: List of automated sandbox

Sandbox Description

Anlyz Sandbox Online free sandbox. User upload the malware file and can download the reports in HTML or PDF format.
 However, this sandbox only allow 10 submission per account per day.
Cuckoo Sandbox Free automated open-sourced sandbox. Since the sandbox will be set up on user computer, submission is
 limitless. However, the installation can be an arduous task.
Joe Sandbox Joe Sandbox is commercial sandbox. However, user can use it for free albeit with limited functionalities and
 limited submission per account.

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1311

Table 5: List of malware malicious behaviors
Author (year) Malicious/suspicious behavior

Sundarkumar et al. (2015)  Obtain file directory

  Search file to infect

  File Write

  Modify File Attributes

  Modify Time of File

  Distribute Global Memory

  Distribute Virtual Memory

  Load Register

Ki et al. (2015)  DLL Injection Using CreateRemoteThread

  IAT Hooking

  Antidebugging

  Screen Capture

Pektas and Acarman (2017)  Process Hollowing

  Create Remote Thread

  Enumerating all Processes

  Drop file from PE resource section

  IAT Hooking

  Delete itself

  Download and Execute PE file

  Bind TCP port

  Capture Network Traffic

Lim (2016)  Access to files

  Write files

  Modify the attributes of files

  Modify the time of files

  Move the location of files

Alazab et al. (2010)  Search file to infect

  Copy/Delete Files

  Get File Information

  Move Files

  Read/Write Files

  Change File Attributes

Table 6: Malicious behaviors and their API call sequence

Malicious behavior API call sequence
Modify File Attribute Get File Attribute, Set File Attribute
Modify Time of File Get File Time, Set File Time
Load Register Reg. Create Key, Reg. Set Value, Reg. Close Key
Enumerate all process Create Tool help 32 Snapshot, Process 32 First, Process 32 Next
 WTS Enumerate Processes
Privilege Escalation Open Process Token, Lookup Privilege Value A, Adjust Token Privileges
Terminate Process Terminate Process
 NtT erminate Process

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1312

Table 7: Concordance tools

Tool Description

Ant conc This is a freeware tool for concordance and text analysis. It is very easy to use, and user have selection of

 option to choose from such as concordance, collocate, word list, keywords, cluster and n gram.
Word smith This is a tool that can be used to search concord, keyword and word list. However, this tool is only available for
Windows user.
Text STAT This is a simple program for text analysis. It produces word frequency lists and concordances according to its
 corpus

Term Frequency

Term Frequency (TF) is used to show how significant

it is the terms in the whole documents or collections of

counting their number of occurrences (Rajaraman and

Ullman, 2011). Moreover, according to AbuHamad and

Mohd (2019) TF-IDF can be used to determine the

relevance of the retrieved information. TF is usually used

alongside Inverse Document Frequency (IDF) which can

further determine the significance of said terms. TF can

be calculated using the equation below:

 
 C t

TF t
N

 (1)

Where:

T = API call

C = The frequency of API call

N = Total number of API call

Meanwhile, IDF is calculated using the equation below:

  log
t

ND
IDF t

ND

 
   

 
 (2)

Where:

T = API call
ND = Number of malware categories in the dataset
NDt = Number of malware categories containing the
 API call

And finally, TF-IDF is calculated using the equation

below:

     TF IDF t TF t IDF t   (3)

Where:

TF = Term frequency
IDF = Inverse document frequency

As mentioned, TF-IDF is popular among the researchers

when doing API call analysis. Among the researchers that

use TF-IDF in their research is Sundarkumar et al. (2015),

Pektas and Acarman (2017), (Altawaier and Tiun, 2016)
and (Bai et al., 2014).

Malware Samples

Malware samples are used by a malware researcher
to research the malware behaviors and techniques use in

their creation. The reason for this is so that they can
understand how the malware work and come out with
the solution on how to better protect the system from the
threats. Samples can be collected using honeypots or
downloaded from known malicious URL. However, with
the blooming of malware research area, there are quite a
lot of sites that offered downloadable malware samples
for free which is shown in Table 8.

Some words of caution are in order, because the

malware on these websites is live malware, it can infect

the system or network if not handle carefully. Therefore,

the user must ensure proper environment have been set

up before beginning to analyze the malware and not to

run the malware sample recklessly on their system.
This research is done using quantitative methods, as

an experiment will be conducted. The methodology of

the research can be seen in Fig. 1. All the steps involved

have to be done in order since most of them are

dependent on the results of the previous step. There are 4

main steps in the experiment which is:

a. Data Collection
b. Dataset
c. API Mapping
d. Data Analysis

Framework of Implementation

Based on the methodology above, Fig. 2 shows the
implementation of the experiment.

Data Collection

The samples used in this experiment is downloaded

from Virus Share. Virus Share provides a free live malware

sample which can be downloaded in bulk using Torrent.

Dataset

The sample used in the creation of the dataset follow
these following rules:

a. Must be a malware file
b. Must be detected by Kaspersky
c. Exclude benign file
d. Exclude malware that is not detected by Kaspersky

Dataset Preparation

During this phase, the malware samples will first
submit to Virus Total to ensure that it is in fact a

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1313

malware sample and not benign one. The malware
sample must also be detected by Kaspersky. This is to
make sure the classification of malware is easier if they
have same categorization format.

After that, the selected samples will then be

submitted to Anlyz Sandbox to do dynamic analysis.

Anlyz sandbox provides reports regarding static analysis,

dynamic analysis and network analysis of the malware.

Then, the generated reports will be downloaded to be

used in the next step.

Dataset Creation

The dataset is created using LibreOffice Calc. The

reason why this research use LibreOffice Calc is because

we use Ubuntu OS during the experimentation. The

information such as the malware category (name used by

Kaspersky), SHA256 and the resolved API are extracted

from the reports. The population of the sample is 524,

however, only 182 samples match the criteria imposed

on the samples. The categories of the malware in the

dataset are shown in Table 9. The author decided to

combine the malware categories which have less than 5

samples into one category. There are also few Trojan

families such as Trojan-Dropper, Trojan-Banker and

Trojan-Ransom which will be all categorize into one

category which is a Trojan.

API Mapping

API mapping is the process of mapping known

malicious or suspicious API to the API from the dataset.

This step will map the dataset APIs to the most

commonly used API calls which is gathered on Section

III. The API mapping is done using Python codes. This

step is done to dismiss any API that is not considered as

malicious or suspicious.
The result of this step is that we get known malicious

or suspicious APIs from the dataset which is 134 known

malicious or suspicious APIs. Moreover, we will also

map the APIs gathered from these steps to their

functionalities on MSDN (2018). This will show us what
the function of that APIs. After that, we will categorize

the APIs based on their categories as shown in Table 10.

Table 8: Malware sample site

Malware sample Description

Virus share VirusShare provides free malware samples, however user must register as a member first before they can

 began downloading the sample. The registration is free of charge. The sample can be downloaded one file

 at a time (Direct Download) or bulk (Torrent)

The zoo Provides live malware that for public. It is hosted on GitHub and doesn’t require any registration to

 download the sample

Mal share Provides free malware sample but need to register first. The registration is free

Virus sign Provides malware sample but need to register to have access to the samples. They have free membership

 as well as premium one. Free membership has some limitation

Table 9: Malware categories and their number of samples

Category Number of sample

Backdoor 14

Virus 19

Worm 8

Trojan 105

UDS: Dangerous Object 24

Others 12

Total 182

Table 10: APIs and their categories

Category APIs

Hooking SetWindowsHookEx, SetWindowsHookEx, UnhookWindowsHookEx

Services ControlService, CreateService

Socket ioctlsocket, socket, WSAAsyncSelect, WSACleanup, WSAGetLastError, WSAIoctl, WSASocket, WSAStartup,

 recvfrom, gethostbyname, gethostname, accept, bind, connect, free

Synchronization CreateMutex, OpenMutex

Keyboard GetKeyboardState, GetKeyState, SetKeyboardState, GetKeyboardState, GetAsyncKeyState, keybd_event,

 MapVirtualKey

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1314

Fig. 1: Methodology of the research

Fig. 2: The framework of implementation for the experiment

Data Analysis

Concordance

Anthony and Ant Conc (2018) is a concordance tool

that is used in this experiment. The steps on how to use

AntConc are as follows:

a. Compile a list of APIs from the dataset into a plain
text file (.txt). This is because, concordance tool’s
corpus must be in plain text format

b. Then, compile a list of API call sequence gathered
on section III into another text file

c. After that, key-in the API from previous step into
the keyword box in the AntConc and click start

Dataset

Data collection Dataset creation
Dataset

preparation
API Mapping

Data analysis

Report Result and
discussion

Concordance

Term
frequency

Malware samples

Virus total

NO TF
REJECTED

1) Is it a malware samples?

2) Is it detected by Kaspersky?

NO YES API Mapping

YES
Dataset

Analyze

sandbox
1) Does the report have

resolved API?

2) Is the resolved API is

more than 5?

Concordance

KWIC

Download

malware report

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1315

d. AntConc will display the results and if we need to

further filter the results, just add other keywords to

the previous one. Make sure to use spaces instead of

commas when adding new keyword
e. Take note of the frequencies of the results as this

will be used on section V

What makes this concordance easier than n-gram is

that, this method only display output based on the

keywords, hence making reading and filtering the results

easier. As mentioned before, concordance uses KWIC

method which will only display the output based on the

keyed keywords and their close contexts.

Term Frequency

As mentioned before, TF is used to calculate the most

commonly used APIs in the dataset. The API calls used

in this step are chosen randomly and not based on the

categories of the APIs. This is because the TF is used to

show which of the malicious or suspicious APIs is

favorable by the malware in the dataset. There are a few

steps involved when calculating term frequency of the

APIs. The steps are as follows:

a. The first thing to do is to create a list of APIs based

on the malware categories in the dataset
b. Then, map the API to the result of the API mapping
c. After that, use freqKey.py to calculate the

frequencies of the API
d. During the API Mapping phase, we got 134 known

malicious or suspicious API in the dataset, which we

will use as our N
e. Meanwhile, the C(t) is the result we get from

freqKey.py. Then, use Eq. 1 to calculate the TF
f. After that, we will calculate IDF. Since there are 6

malware categories in the dataset, this is what we

will use as our ND
g. To calculate NDt we will calculate how many

documents (categories) does the term appear. Then,

use Eq. 2 to calculate IDF
h. And finally, to calculate TF-IDF, we will use

Equation. 3
i. Take note of the results as this will be used on

section V

Results and Discussion

Concordance

Based on the experiment done in section IV, the results

for concordance can be seen in Fig. 3. The figure shows

the lists of malware's malicious behaviors and their

frequencies found in the dataset. The behaviors that we

manage to identify using this method are; Antidebugging,

Process Hollowing, Terminate Process, Privilege

Escalation, Install itself at startup and Enumerate all

process. On the other hand, the API call sequence of these

behaviors can be seen on Table 11.
The highest behavior frequency is to install itself at

startup. And the API call sequence for this behavior is
DelNodeRunDLL32. Upon further reading at Process
Library (2018) about the API shows that the API are from
advpack.dll which is not a malicious dll. It is a normal dll
that helps with hardware and software installation.
Moreover, further reading on DelNodeRunDLL32 shows
that it is usually installed on the computer when user
downloaded a free software (Abalmasov, 2010). When
downloading free software, user will sometimes be asked to
install another component, this technique is called bundled
installation and when the user failed to reject the offer,
DelNodeRunDLL32 will be installed on the computer.

On the other hand, the lowest behavior frequency is

to enumerate all processes. This may be due to the only

certain malware need to see all processes in the system

to find their target.

Term Frequency

As mentioned before, TF is use in this experiment to

show the most commonly used API calls in the dataset.

Based on the experiment done in section IV, the result of

TF can be seen on Fig. 4. The result shows that Reg

Close Key (TF: 1.388) is the most commonly used APIs

in the dataset. Meanwhile, the second most used API in

the dataset is DelNodeRunDLL32 (TF: 0.806).
On the other hand, the TF-IDF (Fig. 5) result shows

that Get Thread Context (TF-IDF: 0.097) has the highest

TF-IDF score while the GetTickCount64 (TF-IDF: 0.074)

shows that some of the malware is on 64-bit architecture

since that API is only used on 64-bit Windows.

Table 11: Malicious behaviors and their API call sequence on the dataset

Behavior API call sequence

Enumerate all process CreateToolhelp32Snapshot, Process32First, Process32Next

Install itself at startup DelNodeRunDLL32

Privilege Escalation OpenProcessToken, LookupPrivilegeValueA, AdjustTokenPrivileges

Terminate Process TerminateProcess OR NtTerminateProcess

Process Hollowing CreateProcess, NtUnmapViewOfSection, VirtualAllocEx, WriteProcessMemory

Antidebugging IsDebuggerPresent OR OutputDebugStringA OR OutputDebugStringW

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1316

Fig. 3: Concordance Results

Fig. 4: The TF score

Fig. 5: The TF-IDF Score

Malicious behavior frequency

Frequency

Antidebugging

Process Hollowing

Terminate Process

Privilege Escalation

Install itself at startup

Enumerate all process

M
al

ic
io

u
s

b
eh

av
io

r

0 20 40 60 80 100 120

Frequency

TF Score for top 10 API

CreateToolhelp32snapshot

WriteFile

GetCurrentThreadld

LoadLibraryA

GetCurrentProcess

GetProcAddress

CloseHandle

OpenProcessToken

DelNodeRunDLL32

RegCloseKey

TF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

TF

0 0.02 0.04 0.06 0.08 0.1 0.12

TF-IDF score for top 10 API

TF-IDF

DeviceloControl

RegOpenKeyA

PostMessageA

InternetWriteFile

LoadResource

GetTickCount64

NtUnmapVuewOfSection

GetAsyncKeyState

SetThreadContext

GetThreadContext

TF-IDF

A
P

I

A
P

I

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1317

Discussion

As mentioned before, concordance is used to identify
the API call sequence from the dataset. The KWIC
concordance method is easier to use than n-gram because
n-gram listed all possible outcomes based on n value,
meaning there will be a lot of output being displayed as
compared to this method who will only display results
based on the queried keywords. For example, we want to
search whether the malware has Terminate Process
behavior, we just must query the TerminateProcess as
the keyword and it will display the context of the
TerminateProcess in the dataset.

Moreover, we can also query multiple keywords

separated by a space, in the search box. However, by

using this method means that we must know the API call

sequence for the malicious behavior beforehand as if we

do not know the API call sequence for the malicious

behavior, then we have nothing for the keyword. This is

one of the disadvantages of this method, though we should

never let it cover our judgment regarding this method.
On the other hand, based on the results from the

experiment, it does provide evidence that this method can

be used to search for API call sequence patterns in a dataset.

The reason for this is because the researcher manages to

identify six malicious behaviors from the dataset using this

method. Table 12 shows the comparison results for

malicious behaviors detected among different methods.
Based on the Table 12 above, we can infer that

Concordance KWIC and N-gram both have great

capabilities in detecting malware behaviors as compared

to other methods. However, as mentioned before,

concordance will display less results as compared to the

n-gram output, making reading the results easier.
The TF score from the experimental result shows that

the most used APIs is the RegCloseKey (1.388). While

the TF-IDF score shows that the GetThreadContext

(0.097) has the highest TF-IDF score. Both of these APIs

is not dangerous in nature, which give revelation that not

all APIs are malicious in nature, it will only be

dangerous if it is programmed to do malicious tasks like

what malware authors do. They use normal APIs and

programmed it to do malicious task. Take examples

DeleteFile API which function is to delete existing files.

The normal user may use the API to delete unwanted

file, however, malware author may use it to compromise

the system by deleting important files.
To say that this research, manages to cover all malicious

APIs is an overstatement of the year since there are so many

APIs out there and there is no way this research will cover it

all. That being said, at least we can state that this research,

manages to cover a small portion of APIs that is

considered malicious and should we encounter those APIs,

we have an inkling of an idea that the program that use

those APIs may be a malware program instead of benign.

Table 12: Comparison results between malware behavior
detection methods

 Results

 (malicious

Researcher Method behavior detected)

Alazab et al. (2010) N-gram 6

Ki et al. (2015) Sequence alignment 4

 algorithm

This study Concordance KWIC 6

This further solidified the view that by viewing the

APIs of a malware, we can identify whether that

program is a malware or benign. This is because some

APIs are dangerous in nature, such as TerminateProcess.

If TerminateProcess are used recklessly such as terminating

the critical process of a program or system, it may cause

blue screen of death, which consequently would cause loss

of data or worse, system failure. This shows how dangerous

some APIs are as compared to the others.

Conclusion

In this experiment, we use concordance tool to

identify malicious API call sequence from the dataset.

The results are that we manage to identify six behaviors
using this method which is antidebugging, install itself

during startup, privilege escalation, terminate processes,

process hollowing and enumerate all process. This shows

that we can use a concordance to identify API call

sequence of a malware.
Moreover, we also use TF to statistically identify

which of the malicious or suspicious APIs is favorable

by the malware. This is because, the results of the

experiment show that RegCloseKey (TF: 1.388) as the

most commonly used APIs in the dataset. However, its

functionality is not dangerous in nature. Hence, we can

infer that some API are not dangerous and will only be
dangerous if programmed to do so.

All in all, this study has proven that we can use a

concordance to identify malware behavior. And based

on the results of the experiment, we manage to achieve

the purpose of this research which is to use a

concordance to detect malware behavior based on their

API call and to find out the API that is frequently used

by the malware in the dataset.
Hence, the next logical step is to develop a

concordance tool that can automatically identify malware

behaviors from the database. This is what we recommend

for future research. Furthermore, since this research only
uses a small sample dataset, the future research may use a

bigger dataset to further test the concordance KWIC

ability in identifying the API call sequence.

Acknowledgment

This study was supported by the Universiti
Kebangsaan Malaysia grant: DCP-2017-007/4

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1318

Author’s Contributions

Nur Hilda Amira Abd Wahab: Researching and

conducting the experiment as well as writing the

manuscript.
Masnizah Mohd: Provide publication

recommendations, reviewing the manuscript as well as

supporting the publication of this manuscript.
Ravie Chandren Muniyandi: Reviewing the

manuscript and provided guidance during project

experimentation phase.
Balaji Rajendran, Gopinath Palaniappan:

Contributing on reviewing the manuscript.

Ethics

This is an original manuscript and contains

unpublished material. All authors have read, reviewed

and approved the manuscript and there are no ethical

issues involved.

References

Abalmasov, A., 2010. Delnoderundll32 Removal-

Remove Delnoderundll32 Easily.

AbuHamad, M. and M. Mohd, 2019. Data categorization

and model weighting approach for language model

adaptation in statistical machine translation. Int. J.

Advanced Comput. Sci. Appli., 10: 135-141.

Alazab, M., S. Venkataraman and P. Watters, 2010.

Towards understanding malware behaviour by the

extraction of API calls. Proceedings of the 2nd

Cybercrime Trustworthy Computing Workshop, Jul.

19-20, IEEE Xplore press, Australia.

 DOI: 10.1109/CTC.2010.8
Altawaier, M.M. and S. Tiun, 2016. Comparison of

machine learning approaches on Arabic Twitter

sentiment analysis. Int. J. Advanced Sci. Eng.

Inform. Technol., 6: 1067-1073.
 DOI: 10.18517/ijaseit.6.6.1456

Anthony, L. and Ant Conc, 2018.

ttp://www.laurenceanthony.net/software

Bai, J., Z. Zhao and J. Wang, 2014. Malware detection

method based on the control-flow construct feature

of software. IET Inform. Secur. 8: 18.24.

Belaoued, M. and S. Mazouzi, 2015. Towards an

automatic method for API Association extraction for

PE-Malware categorization. Proceedings of the

International Conference Intelligent Information

Processing, Security Advanced Communication,
Nov. 23-25, ACM New York, USA.

 DOI: 10.1145/2816839.2816921

Bowker, L., 2018. Corpus linguistics is not just for

linguists: Considering the potential of computer-

based corpus methods for library and information

science research. Library Hi Tech.

Brown, M.H., 2017. Using the sentence corpus of

remedial English to introduce Data-Driven Learning

tasks. Kanda Acad. Rev., 1: 1-14.

Business Advantage, 2017. The State of Industrial
Cybersecurity.

Cisco, 2018. Annual Cybersecurity Report.

Fujino, A., J. Murakami and T. Mori, 2015. Discovering

similar malware samples using API call topics.

Proceedings of the 12th Annual IEEE Consumer

Communications Networking Conference, Jan. 9-12,

IEEE Xplore perss, USA,

 DOI: 10.1109/CCNC.2015.7157960

Ghazvini, A. and Z. Shukur, 2017. Review of

information security guidelines for awareness

training program in healthcare industry. Proceedings

of the 6th International Conference Electrical

Engineering and Informatics, Nov. 25-27, IEEE

Xplore perss, Malaysia,

 DOI: 10.1109/ICEEI.2017.8312399

Jiang, Y. and H. Liu, 2017. Research on the Construction

of Parallel Corpus for the Specific Field of Machine

Translation. 55: 77-82.

Ki, Y., E. Kim and H.K. Kim, 2015. A novel approach to

detect malware based on API call sequence analysis.

Int. J. Distrib Sens Networks.

Lim, H., 2016. Detecting malicious behaviors of

software through analysis of API sequence k-grams.

Comput. Sci. Inf. Technol., 4: 85-91.

Manap, N.A., A.A. Rahim and H. Taji, 2015.

Cyberspace Identity Theft: The Conceptual

Framework Nazura Abdul Manap Anita Abdul

Rahim. M.J.S.S., 6: 595-605.

Merriam-Webster, 2018. Application Programming

Interface.

Mohaddes, H., R.C. Muniyandi, I.T. Ardekani and A.

Sarrafzadeh, 2016. Taxonomy of malware detection

techniques: A Systematic Literature Review. IEEE.

Pektas, A. and T. Acarman, 2017. Malware classification

based on API calls and behaviour analysis. IET.

Inform. Secur.

Process Library. 2018. Advpack.dll.

Rajaraman, A. and J.D. Ullman, 2011. Mining of
Massive Datasets: Data Mining (Ch01). Min

Massive Datasets. 18: 114-42.

Rockwell, G., 2018. Too Much Information and the

KWIC.
Salehi, Z., A. Sami and M. Ghiasi, 2014. Using feature

generation from API calls for malware detection.
Comput. Fraud Secur., 2014: 9-18.

 DOI: 10.1016/S1361-3723(14)70531-7

Sikorski, M. and A. Honig, 2012. Practical malware

analysis the hands-on guide to dissecting malicious

software. No Starch Press.

Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319

DOI: 10.3844/jcssp.2019.1307.1319

1319

Sundarkumar, G.G., V. Ravi, I. Nwogu and V.

Govindaraju, 2015. Malware Detection via API

calls, Topic Models and Machine. Proceedings of

the International Conference Automation Science

Engineering, Aug. 24-28, IEEE Xplore press,

Sweden, pp: 1212-7.

 DOI: 10.1109/CoASE.2015.7294263

Wynne, M., 2008. Searching and Concordancing. Pre-
publication Draft a chapter which Appear Handb
Corpus Linguist Ed by Merja Kytö Anke Lüdeling,
Mout Gruyter.

Yılmaz, E. and A. Soruç, 2015. The use of concordance
for teaching vocabulary: A data-driven Learning
Approach. Proc. Soc. Behav. Sci., 191: 2626-2630.
DOI: 10.1016/j.sbspro.2015.04.400 Get

