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Abstract: Application Programming Interface (API) is used for the software 
to interact with an operating system to do certain task such as opening file, 
deleting file and many more. Programmers use this API to make it easier for 
their program to communicate with the operating system without having the 
knowledge of the hardware of the target system. Malware author is an 
attacker that may belong to an organization or work for themselves. Some 
malware author has the capabilities to write their own malware, uses the 
same kind of APIs that is used to create normal programs to create 
malware. There are many researches done in this field, however, most 
researchers used n-gram to detect the sequence of API calls and although 
it gave good results, it is time consuming to process through all the 
output. This is the reason why this paper proposed to use Concordance to 
search for the API call sequence of a malware because it uses KWIC (Key 
Word in Context), thus only displayed the output based on the queried 
keyword. After that, Term Frequency (TF) is used to search for the most 
commonly used APIs in the dataset. The results of the experiment show that 
concordance can be used to search for API call sequence as we manage to 
identify six malicious behaviors (Install Itself at Startup, Enumerate All 
Process, Privilege Escalation, Terminate Process, Process Hollowing and Ant 
debugging) using this method. And based on the TF score, the most commonly 
used API in the dataset is the Reg Close Key (TF: 1.388), which on its own is 
not a dangerous API, hence we can infer that most API is not malicious in 
nature, it is how they were implemented is making them dangerous.  

 

Keywords: Concordance, KWIC, API Call Sequence, Malware Behaviors, 

Dynamic Analysis 

 

Introduction 

Nowadays, with a new variant of malware being 

discovered, we can see that malware is becoming more 

sophisticated in design. On top of that, malware is also 

becoming more notorious over time, with the rising 

amount of security breaches around the world as well as 

the severity of said breaches. According to Cisco (2018), 

security breaches can cause significant economic 

damages to an organization as it takes considerable 

time to fix the damages done. Moreover, more than half 

of the breaches cost more than $500,000 in financial 

damages. This shows how severe it is the effect of the 

malware attack on an organization. Take example the 

WannaCry ransomware outbreak in 2017 which shows 

how dangerous modern malware is. This ransomware 

affected more than 200 000 computers in over 150 

countries worldwide and cause huge financial damages 

to its victims (Business Advantage, 2017).  
Moreover, according to (Ghazvini and Shukur, 

2017), security breaches that are caused by human 

mistakes may lead to costly fixed up as the company 

may lose the information or data stored in the system 

as well as their reputation which in turn may affect 

their market share prices. On the other hand, 

according to (Manap et al., 2015), malware may also 

be used to steal someone's identity by using keystroke 

logger and some form of spyware. 
Malware is malicious software that can cause harm to 

our system or network. The consequence of malware 

attack is not limited to theft of data, destruction of data, 

system compromise and denial of service (DoS).
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Table 1: Malware and their description 

Category Description 

Trojan Trojan is malware that masquerade as a legitimate software. Once runs, the Trojan can spy on the user, delete files, 

 steals sensitive data and many more depending on what that Trojan is for. However, unlike virus and worms, 
 Trojan cannot self-replicate itself. 
Adware Adware is a malware that shows ads on the computer. It is mostly annoying rather than malicious in nature. 
Worm Worm is a malware that can propagate itself within the system. Worm can self-replicate itself using the internet or 
 Computer Network. 
Backdoor Backdoor is a type of access that will allow programmer to bypass the security of the system in order to access the 
 system quickly. However, the attacker also uses the backdoor to gain unauthorized access to the system. 
Virus Virus is a malware that attached itself to a piece of software that will infect system that run that infected software. 

 This malware will usually infect other system when user share that infected files 

 

Table 2: Advantages and disadvantages of different malware detection technique 
Technique Advantage Disadvantage 

Specification Can detect unknown attack Too much time needed to write good specification 
 Minimal false positive False negative is increased due to missed attack   
Signature Recognized known attack Cannot recognize unknown attack 
 Require minimum system resources to detect attack mode Not usable against invisible signature 
 Concentrate on normal behaviors 
Anomaly Able to detect new attack Must renew user behaviors information periodically 
 Focus on normal behaviors to detect unrecognized attacks   Increased false positive  

 
There are many types of malware such as Virus, 

Trojan, Worm and Backdoor. Moreover, each of these 

malwares behaves differently from each other. Table 1 

shows the different type of malware and their description. 

There are 3 types of malware detection technique, 

namely Specification-based, Signature-based and 

Anomaly-based. There are advantages and disadvantages 
of these malware detection techniques which is shown in 

Table 2 (Mohaddes et al., 2016). 

Malware analysis gives us an insight on how 

malware functions, so that we can ensure the safety of 

our system as well as how to eliminate the danger the 

malware poses. The analysis can be done with different 

goals such as understanding the magnitude of the 

malware infection, knowing the impact of malware 

attack as well as to analyze the behavior of the malware. 

There are three types of malware analysis, static 

analysis, dynamic analysis and hybrid analysis.  
Static analysis is done by dissecting and studying the 

malware’s code. It is done without executing the 

malware. The code is disassemble using a disassembler, 

or reverse engineered so that malware analyst can read 

the code and find out what the malware is supposed to 

do based on their code. Which is why, static analysis is 

also known as code analysis.  
On the other hand, dynamic analysis is done by 

executing malware in a safe environment, maybe it virtual 
or sandbox environment. Dynamic analysis focusses on 
analyzing the behaviors of malware, hence it monitors the 
activity of registry, API calls, processes and network when 
running the analysis. Moreover, hybrid analysis uses both 
static and dynamic analysis to analyze the malware. 

The reason why this research experiment used 

dynamic analysis to extract the API calls of the malware is 

because static analysis that use only import table to extract 

the information of the malware will not be able to extract 

any resolved APIs of the malware. This is because, to 

extract resolved APIs, we need to run the malware since it 

can only be extracted during runtime and for static 

analysis do not execute the malware, they will miss this 

kind of information.  
Moreover, this study proposed to use a concordance 

to map the API call sequence of a malware in the dataset. 

The reason for this is because the n - gram method which 

is used by most researchers displayed a lot of output, as 

the output is based on the n-value, hence it takes time to 

browse through it all. Meanwhile, concordance use Key 

Word In Context (KWIC) method to display its output, 

meaning the output displayed is only based on the keyed 

keywords and its close context, thus reducing the time it 

takes to process the displayed output.  
The rest of the paper is organized as follows: Section II 

will discuss about the related works done in analyzing API 

calls. In section III, we will discuss the materials and 

methods used in the experiment. Section IV will discuss 

about the experimental setup for the research. Section V 

will discuss about the results and discussion of said results 

and finally, Section VI will discuss about the conclusion 

of the experiment and recommendation for future works. 

The purpose of this research is to identify malware 

behavior by using API call. This research will focus on: 

 
1. Using dynamic analysis to extract API call and map 

the API call sequence using the concordance tool 
2. To find out the most commonly used APIs in the 

dataset by using Term Frequency (TF) 
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On the other hand, the scope of this research is: 

 

1. This research only focuses on Windows malware 
2. The dataset used in this experiment is created using 

resolved APIs 
3. There are criteria being imposed on the population 

and samples used 
 

Related Work 

Fujino et al. (2015) stated that API call has lots of 
useful information about the behavior of a malware. 
They use Bag-of-Words (BoW) models with TF-IDF 
word weighting to characterizing the API calls. They 
also use a soft clustering algorithm which is a non-
Negative Matrix Factorization (NMF) to extract the API 
call topics which will be used to detect similar but 
unknown malware.  

Sundarkumar et al. (2015) wrote that API level 

information inside the bytecode is beneficial to analyze 

software malevolence tendency since it shows the 

behavior of said executable which the API call sequence 

of. They also assert that the main problem in using Topic 

Model is the lots of choices in features, hence why, they 

propose to apply Latent Dirichl et al location (LDA) as a 

feature selection method in their research.  
Ki et al. (2015) proposed a novel approach to use a 

sequence alignment algorithm in the API call sequence 

analysis. This is because sequence alignment algorithm 
will make it less confusing when detecting the malware. 

They also stress that the algorithm has been used in many 

other fields such as natural language processing and is 

known to yield excellent results. On top of that, LCS 

(Longest Common Subsequences) is used to extract the 

most common API call sequence between the malware 

which will then be used to generate malware signature. 
Pektas and Acarman (2017) proposed classification 

program that uses Voting Expert algorithms to precisely 

recognize episode boundaries. Furthermore, the episode 

boundaries are then used to search the API call sequence. 

Moreover, they also track the changes made to the OS by 
malware. They wrote that the API call combines with OS 

state changes made by the malware will increase the 

accuracy of malware classification. 
Lim (2016) proposed the extraction of malicious 

behaviors of malware as sets of k-grams, which is then 

used to compare the similarity between API calls to the k-

grams to identify whether it is malicious behavior or not.  
Salehi et al. (2014) proposed a new model in which 

API call features are extracted and selected based on their 

categories. The reason for this is to minimize the number 

of features of the malware and to reduce analysis time. 

After that, machine learning classification technique is 

used for each generated set of features. They wrote that 

their experiment has high detection rates in distinguishing 

malware and benign file using only small features. 

The differences between (Ki et al., 2015) and (Lim, 

2016) from this work is that one research uses a novel 

approach to analyze API call sequence which is to use 

sequence alignment algorithm and another one-use k-

gram to analyze API call sequence to determine whether 

it is malicious or not. On the other hand, this research 

use concordance to identify API call sequence of 

malware’s malicious behavior. 
Arguably, most of the research done focus on 

detection of malware, however, research done by 

Alazab et al. (2010) focus on understanding the 

behavior of malware through statistical analysis of the 

API call. They use a static analysis to disassemble, 

analyze and extract the API call from the malware. They 

then proposed a novel approach to automate the process 

to extract the API call of the malware binary.  
On the other hand, the researcher Belaoued and 

Mazouzi (2015) also doing a statistical analysis using 

Multiple Correspondence Analysis (MCA) to find out 

which APIs association that most likely used in malware. 

They use static analysis to import IAT so that they can 

extract the APIs.  
This research is similar like research done by both 

Alazab et al. (2010) and Belaoued and Mazouzi (2015) 

albeit this research will use dynamic analysis instead of 

static analysis to extract the APIs of the malware. 

Moreover, this research will focus entirely on identifying 

malware behavior and their associated APIs. 
All the reviews above shows the importance of API call 

in the understanding and detection of malware. Moreover, 

we can agree that API calls play a major role in 

understanding the malware itself, thus helps in identifying 

both existing and new variants of malware. Likewise, by 

observing the API calls of a malware, one can see how the 

malware work because API calls represents a specific 

operation that is used to run specific tasks. Prior researches 

have suggested that by observing the API calls of a 

malware, we can determine the behavior of said malware, 

as malware behave in specific behavior that differentiate it 

from benign program. Finding this malicious behavior and 

their APIs is one of the objectives of this research. 

Materials and Methods 

Dynamic Analysis 

This study uses dynamic analysis to extract the API 

calls of a malware. Dynamic analysis can be done using 

two ways, manually or automatically. Manual dynamic 

analysis means the malware will be executed in a virtual 

environment and malware analyst will monitor the malware 

and take note of any changes in the registry or processes 

caused by the malware. Table 3 shows the list of tools 

usually used in doing manual dynamic analysis. 
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On the other hand, automated dynamic analysis is 

done in a sandbox environment. There are many types of 

sandbox available for free or commercially. One of the 

most used free sandboxes is Cuckoo sandbox. Using 

automated sandbox in analyzing malware is simple and 

easy as we only must submit the malware sample and 

wait for it to execute the malware. After that, we can 

download the reports generated by the sandbox and 

analyze the malware based on the reports. As mentioned 

before, there are many automated sandboxes available 

which is shown in Table 4. 

API 

Application Programming Interface (API) is a 

collection of rules that enable the developers to develop 

system or software for a specific operating system with 

little knowledge about that particular operating system 

(Merriam-Webster, 2018). There are two types of APIs 

that we will encounter during this experiment which is 

WinAPI and NTAPI. 
WinAPI is a normal APIs that is normally used in 

developing a new Windows program. WinAPI uses 

suffix in their name such as A, W and Ex. APIs with A 

and W suffix have the same function but differ in their 

accepting parameters as one accepts ASCII string while 

the other accept a wide character string. Meanwhile, 

APIs with Ex suffix means that it is an API with an 

updated functionality.  
On the other hand, NTAPI is not so commonly used in 

developing new programs and most of NTAPI is 

undocumented. NTAPI used prefix in their name such as 

Nt, Zw, Rtl and Ldr. According to Sikorski and Honig 

(2012), NTAPI is commonly used by malware author 

because it offers powerful and stealthier functionalities than 

it WinAPI counterpart. Since this research is about 

understanding malware behavior, we need to know which 

behaviors are considered malicious or suspicious which is 
shown in Table 5. On the other hand, Table 6 shows the list 

of malicious behaviors and their API call sequence. 

Concordance 

Concordance is a list of all examples of the search 

word or phrase found in a corpus. Concordance usually 

uses Key Word in Context (KWIC) to display their 

output. Concordance is usually used in corpus linguistics 

to analyze the concordance, word frequency, collocate 

and cluster of a corpus.  
According to Bowker (2018) concordance is a corpus 

analysis method that fetches all occurrences of a queried 

search pattern in its immediate contexts. Moreover, 

according to her, it is also possible to sort the concordances, 

so that it can identify the patterns that might otherwise go 

undetected. Furthermore, according to Wynne (2008) 

concordance is a list of patterns or word in a text that is 

arranged with surrounding words so that the patterns 

surrounding the keywords can be visually identified. Other 

researchers that use concordance KWIC in their research 

are (Brown, 2017), (Jiang and Liu, 2017), (Yılmaz and 
Soruç, 2015) and (Rockwell, 2018). 

Based on the reviewed articles, we can infer that 

concordance KWIC is mostly used in linguistic field 

only. Moreover, the consensus of the reviewed articles 

suggests that concordance with the use of KWIC is a 

powerful tool to analyze patterns. Hence why this paper 

proposed to use this method to map malicious API call 

sequence. There are many concordance tools available 

for free which is shown on Table 7. 

 

Table 3: Manual dynamic analysis tools 
Tool Description 
API monitor API Monitor is a software that allow user to monitor and control API calls made by application or  services in 

 the system 
Procmon Procmon aka Process Monitor is a monitoring tools for Windows system that shows file system,  Registry and 

 process or thread activity in real time. It is a combination of a legacy Sysinternal utilities tool, Filemon and 

 Regmon albeit with added enhancement 
Process explorer Process Explorer shows information about DLL processes and handles that have opened or loaded 
Regshot Regshot is an open-source tools that allows user to take snapshot of the system registry and compare it with 

 second one 

 

Table 4: List of automated sandbox 

Sandbox Description 

Anlyz Sandbox Online free sandbox. User upload the malware file and can download the reports in HTML or PDF format. 
 However, this sandbox only allow 10 submission per account per day. 
Cuckoo Sandbox Free automated open-sourced sandbox. Since the sandbox will be set up on user computer, submission is 
 limitless. However, the installation can be an arduous task. 
Joe Sandbox Joe Sandbox is commercial sandbox. However, user can use it for free albeit with limited functionalities and 
 limited submission per account. 
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Table 5: List of malware malicious behaviors 
Author (year) Malicious/suspicious behavior 

Sundarkumar et al. (2015)  Obtain file directory 

  Search file to infect 

  File Write 

  Modify File Attributes 

  Modify Time of File 

  Distribute Global Memory 

  Distribute Virtual Memory 

  Load Register 

Ki et al. (2015)  DLL Injection Using CreateRemoteThread 

  IAT Hooking 

  Antidebugging 

  Screen Capture 

Pektas and Acarman (2017)  Process Hollowing 

  Create Remote Thread 

  Enumerating all Processes 

  Drop file from PE resource section 

  IAT Hooking 

  Delete itself 

  Download and Execute PE file 

  Bind TCP port 

  Capture Network Traffic 

Lim (2016)  Access to files 

  Write files 

  Modify the attributes of files 

  Modify the time of files 

  Move the location of files 

Alazab et al. (2010)  Search file to infect 

  Copy/Delete Files 

  Get File Information 

  Move Files 

  Read/Write Files 

  Change File Attributes 

 

Table 6: Malicious behaviors and their API call sequence 

Malicious behavior API call sequence 
Modify File Attribute Get File Attribute, Set File Attribute 
Modify Time of File Get File Time, Set File Time 
Load Register Reg. Create Key, Reg. Set Value, Reg. Close Key 
Enumerate all process  Create Tool help 32 Snapshot, Process 32 First, Process 32 Next 
 WTS Enumerate Processes 
Privilege Escalation Open Process Token, Lookup Privilege Value A, Adjust Token Privileges 
Terminate Process Terminate Process 
 NtT erminate Process 
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Table 7: Concordance tools 

Tool Description 

Ant conc This is a freeware tool for concordance and text analysis. It is very easy to use, and user have selection of 

 option to choose from such as concordance, collocate, word list, keywords, cluster and n gram.  
Word smith This is a tool that can be used to search concord, keyword and word list. However, this tool is only available  for 
Windows user.  
Text STAT This is a simple program for text analysis. It produces word frequency lists and concordances according to its 
 corpus 

 

Term Frequency 

Term Frequency (TF) is used to show how significant 

it is the terms in the whole documents or collections of 

counting their number of occurrences (Rajaraman and 

Ullman, 2011). Moreover, according to AbuHamad and 

Mohd (2019) TF-IDF can be used to determine the 

relevance of the retrieved information. TF is usually used 

alongside Inverse Document Frequency (IDF) which can 

further determine the significance of said terms. TF can 

be calculated using the equation below: 
 

 
 C t

TF t
N

  (1) 

 
Where: 

T = API call 

C = The frequency of API call 

N = Total number of API call 
 

Meanwhile, IDF is calculated using the equation below: 
 

  log
t

ND
IDF t

ND

 
   

 
 (2) 

 
Where: 

T = API call 
ND = Number of malware categories in the dataset 
NDt = Number of malware categories containing the 
  API call 
 

And finally, TF-IDF is calculated using the equation 

below: 
 

     TF IDF t TF t IDF t    (3) 

 
Where: 

TF = Term frequency 
IDF = Inverse document frequency 
 

As mentioned, TF-IDF is popular among the researchers 

when doing API call analysis. Among the researchers that 

use TF-IDF in their research is Sundarkumar et al. (2015), 

Pektas and Acarman (2017), (Altawaier and Tiun, 2016) 
and (Bai et al., 2014). 

Malware Samples 

Malware samples are used by a malware researcher 
to research the malware behaviors and techniques use in 

their creation. The reason for this is so that they can 
understand how the malware work and come out with 
the solution on how to better protect the system from the 
threats. Samples can be collected using honeypots or 
downloaded from known malicious URL. However, with 
the blooming of malware research area, there are quite a 
lot of sites that offered downloadable malware samples 
for free which is shown in Table 8. 

Some words of caution are in order, because the 

malware on these websites is live malware, it can infect 

the system or network if not handle carefully. Therefore, 

the user must ensure proper environment have been set 

up before beginning to analyze the malware and not to 

run the malware sample recklessly on their system. 
This research is done using quantitative methods, as 

an experiment will be conducted. The methodology of 

the research can be seen in Fig. 1. All the steps involved 

have to be done in order since most of them are 

dependent on the results of the previous step. There are 4 

main steps in the experiment which is: 
 
a. Data Collection 
b. Dataset 
c. API Mapping 
d. Data Analysis 
 
Framework of Implementation 

Based on the methodology above, Fig. 2 shows the 
implementation of the experiment. 

Data Collection 

The samples used in this experiment is downloaded 

from Virus Share. Virus Share provides a free live malware 

sample which can be downloaded in bulk using Torrent. 

Dataset 

The sample used in the creation of the dataset follow 
these following rules: 
 
a. Must be a malware file 
b. Must be detected by Kaspersky 
c. Exclude benign file 
d. Exclude malware that is not detected by Kaspersky 
 
Dataset Preparation 

During this phase, the malware samples will first 
submit to Virus Total to ensure that it is in fact a 



Nur Hilda Amira Abd Wahab et al. / Journal of Computer Science 2019, 15 (9): 1307.1319 

DOI: 10.3844/jcssp.2019.1307.1319 

 

1313 

malware sample and not benign one. The malware 
sample must also be detected by Kaspersky. This is to 
make sure the classification of malware is easier if they 
have same categorization format. 

After that, the selected samples will then be 

submitted to Anlyz Sandbox to do dynamic analysis. 

Anlyz sandbox provides reports regarding static analysis, 

dynamic analysis and network analysis of the malware. 

Then, the generated reports will be downloaded to be 

used in the next step.  

Dataset Creation 

The dataset is created using LibreOffice Calc. The 

reason why this research use LibreOffice Calc is because 

we use Ubuntu OS during the experimentation. The 

information such as the malware category (name used by 

Kaspersky), SHA256 and the resolved API are extracted 

from the reports. The population of the sample is 524, 

however, only 182 samples match the criteria imposed 

on the samples. The categories of the malware in the 

dataset are shown in Table 9. The author decided to 

combine the malware categories which have less than 5 

samples into one category. There are also few Trojan 

families such as Trojan-Dropper, Trojan-Banker and 

Trojan-Ransom which will be all categorize into one 

category which is a Trojan. 

API Mapping 

API mapping is the process of mapping known 

malicious or suspicious API to the API from the dataset. 

This step will map the dataset APIs to the most 

commonly used API calls which is gathered on Section 

III. The API mapping is done using Python codes. This 

step is done to dismiss any API that is not considered as 

malicious or suspicious.  
The result of this step is that we get known malicious 

or suspicious APIs from the dataset which is 134 known 

malicious or suspicious APIs. Moreover, we will also 

map the APIs gathered from these steps to their 

functionalities on MSDN (2018). This will show us what 
the function of that APIs. After that, we will categorize 

the APIs based on their categories as shown in Table 10.

 
Table 8: Malware sample site 

Malware sample Description 

Virus share VirusShare provides free malware samples, however user must register as a member first before they can 

 began downloading the sample. The registration is free of charge. The sample can be downloaded one file 

 at a time (Direct Download) or bulk (Torrent) 

The zoo Provides live malware that for public. It is hosted on GitHub and doesn’t require any registration to 

 download the sample 

Mal share Provides free malware sample but need to register first. The registration is free 

Virus sign Provides malware sample but need to register to have access to the samples. They have free membership 

 as well as premium one. Free membership has some limitation   

 
Table 9: Malware categories and their number of samples 

Category Number of sample 

Backdoor 14 

Virus 19 

Worm 8 

Trojan 105 

UDS: Dangerous Object 24 

Others 12 

Total 182 

 
Table 10: APIs and their categories 

Category APIs 

Hooking SetWindowsHookEx, SetWindowsHookEx, UnhookWindowsHookEx 

Services ControlService, CreateService 

Socket ioctlsocket, socket, WSAAsyncSelect, WSACleanup, WSAGetLastError, WSAIoctl, WSASocket, WSAStartup, 

 recvfrom, gethostbyname, gethostname, accept, bind, connect, free 

Synchronization CreateMutex, OpenMutex 

Keyboard GetKeyboardState, GetKeyState, SetKeyboardState, GetKeyboardState, GetAsyncKeyState, keybd_event, 

 MapVirtualKey 
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Fig. 1: Methodology of the research 
 

 
 

Fig. 2: The framework of implementation for the experiment 
 

Data Analysis 

Concordance 

Anthony and Ant Conc (2018) is a concordance tool 

that is used in this experiment. The steps on how to use 

AntConc are as follows: 

a. Compile a list of APIs from the dataset into a plain 
text file (.txt). This is because, concordance tool’s 
corpus must be in plain text format 

b. Then, compile a list of API call sequence gathered 
on section III into another text file 

c. After that, key-in the API from previous step into 
the keyword box in the AntConc and click start 

Dataset 
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API Mapping 
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d. AntConc will display the results and if we need to 

further filter the results, just add other keywords to 

the previous one. Make sure to use spaces instead of 

commas when adding new keyword 
e. Take note of the frequencies of the results as this 

will be used on section V 
 

What makes this concordance easier than n-gram is 

that, this method only display output based on the 

keywords, hence making reading and filtering the results 

easier. As mentioned before, concordance uses KWIC 

method which will only display the output based on the 

keyed keywords and their close contexts. 

Term Frequency 

As mentioned before, TF is used to calculate the most 

commonly used APIs in the dataset. The API calls used 

in this step are chosen randomly and not based on the 

categories of the APIs. This is because the TF is used to 

show which of the malicious or suspicious APIs is 

favorable by the malware in the dataset. There are a few 

steps involved when calculating term frequency of the 

APIs. The steps are as follows: 
 

a. The first thing to do is to create a list of APIs based 

on the malware categories in the dataset 
b. Then, map the API to the result of the API mapping 
c. After that, use freqKey.py to calculate the 

frequencies of the API 
d. During the API Mapping phase, we got 134 known 

malicious or suspicious API in the dataset, which we 

will use as our N  
e. Meanwhile, the C(t) is the result we get from 

freqKey.py. Then, use Eq. 1 to calculate the TF 
f. After that, we will calculate IDF. Since there are 6 

malware categories in the dataset, this is what we 

will use as our ND 
g. To calculate NDt we will calculate how many 

documents (categories) does the term appear. Then, 

use Eq. 2 to calculate IDF 
h. And finally, to calculate TF-IDF, we will use 

Equation. 3 
i. Take note of the results as this will be used on 

section V 

Results and Discussion 

Concordance 

Based on the experiment done in section IV, the results 

for concordance can be seen in Fig. 3. The figure shows 

the lists of malware's malicious behaviors and their 

frequencies found in the dataset. The behaviors that we 

manage to identify using this method are; Antidebugging, 

Process Hollowing, Terminate Process, Privilege 

Escalation, Install itself at startup and Enumerate all 

process. On the other hand, the API call sequence of these 

behaviors can be seen on Table 11. 
The highest behavior frequency is to install itself at 

startup. And the API call sequence for this behavior is 
DelNodeRunDLL32. Upon further reading at Process 
Library (2018) about the API shows that the API are from 
advpack.dll which is not a malicious dll. It is a normal dll 
that helps with hardware and software installation. 
Moreover, further reading on DelNodeRunDLL32 shows 
that it is usually installed on the computer when user 
downloaded a free software (Abalmasov, 2010). When 
downloading free software, user will sometimes be asked to 
install another component, this technique is called bundled 
installation and when the user failed to reject the offer, 
DelNodeRunDLL32 will be installed on the computer. 

On the other hand, the lowest behavior frequency is 

to enumerate all processes. This may be due to the only 

certain malware need to see all processes in the system 

to find their target. 

Term Frequency 

As mentioned before, TF is use in this experiment to 

show the most commonly used API calls in the dataset. 

Based on the experiment done in section IV, the result of 

TF can be seen on Fig. 4. The result shows that Reg 

Close Key (TF: 1.388) is the most commonly used APIs 

in the dataset. Meanwhile, the second most used API in 

the dataset is DelNodeRunDLL32 (TF: 0.806).  
On the other hand, the TF-IDF (Fig. 5) result shows 

that Get Thread Context (TF-IDF: 0.097) has the highest 

TF-IDF score while the GetTickCount64 (TF-IDF: 0.074) 

shows that some of the malware is on 64-bit architecture 

since that API is only used on 64-bit Windows. 

 
Table 11: Malicious behaviors and their API call sequence on the dataset 

Behavior API call sequence 

Enumerate all process CreateToolhelp32Snapshot, Process32First, Process32Next 

Install itself at startup DelNodeRunDLL32 

Privilege Escalation OpenProcessToken, LookupPrivilegeValueA, AdjustTokenPrivileges 

Terminate Process TerminateProcess OR NtTerminateProcess 

Process Hollowing CreateProcess, NtUnmapViewOfSection, VirtualAllocEx, WriteProcessMemory 

Antidebugging IsDebuggerPresent OR OutputDebugStringA OR OutputDebugStringW 
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Fig. 3: Concordance Results 

 

 
 
 

Fig. 4: The TF score 
 

 
 

Fig. 5: The TF-IDF Score 
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Discussion 

As mentioned before, concordance is used to identify 
the API call sequence from the dataset. The KWIC 
concordance method is easier to use than n-gram because 
n-gram listed all possible outcomes based on n value, 
meaning there will be a lot of output being displayed as 
compared to this method who will only display results 
based on the queried keywords. For example, we want to 
search whether the malware has Terminate Process 
behavior, we just must query the TerminateProcess as 
the keyword and it will display the context of the 
TerminateProcess in the dataset.  

Moreover, we can also query multiple keywords 

separated by a space, in the search box. However, by 

using this method means that we must know the API call 

sequence for the malicious behavior beforehand as if we 

do not know the API call sequence for the malicious 

behavior, then we have nothing for the keyword. This is 

one of the disadvantages of this method, though we should 

never let it cover our judgment regarding this method.  
On the other hand, based on the results from the 

experiment, it does provide evidence that this method can 

be used to search for API call sequence patterns in a dataset. 

The reason for this is because the researcher manages to 

identify six malicious behaviors from the dataset using this 

method. Table 12 shows the comparison results for 

malicious behaviors detected among different methods. 
Based on the Table 12 above, we can infer that 

Concordance KWIC and N-gram both have great 

capabilities in detecting malware behaviors as compared 

to other methods. However, as mentioned before, 

concordance will display less results as compared to the 

n-gram output, making reading the results easier. 
The TF score from the experimental result shows that 

the most used APIs is the RegCloseKey (1.388). While 

the TF-IDF score shows that the GetThreadContext 

(0.097) has the highest TF-IDF score. Both of these APIs 

is not dangerous in nature, which give revelation that not 

all APIs are malicious in nature, it will only be 

dangerous if it is programmed to do malicious tasks like 

what malware authors do. They use normal APIs and 

programmed it to do malicious task. Take examples 

DeleteFile API which function is to delete existing files. 

The normal user may use the API to delete unwanted 

file, however, malware author may use it to compromise 

the system by deleting important files. 
To say that this research, manages to cover all malicious 

APIs is an overstatement of the year since there are so many 

APIs out there and there is no way this research will cover it 

all. That being said, at least we can state that this research, 

manages to cover a small portion of APIs that is 

considered malicious and should we encounter those APIs, 

we have an inkling of an idea that the program that use 

those APIs may be a malware program instead of benign.  

Table 12: Comparison results between malware behavior 
detection methods 

  Results 

  (malicious 

Researcher Method behavior detected) 

Alazab et al. (2010) N-gram 6 

Ki et al. (2015) Sequence alignment 4 

 algorithm 

This study Concordance KWIC 6 

 

This further solidified the view that by viewing the 

APIs of a malware, we can identify whether that 

program is a malware or benign. This is because some 

APIs are dangerous in nature, such as TerminateProcess. 

If TerminateProcess are used recklessly such as terminating 

the critical process of a program or system, it may cause 

blue screen of death, which consequently would cause loss 

of data or worse, system failure. This shows how dangerous 

some APIs are as compared to the others. 

Conclusion 

In this experiment, we use concordance tool to 

identify malicious API call sequence from the dataset. 

The results are that we manage to identify six behaviors 
using this method which is antidebugging, install itself 

during startup, privilege escalation, terminate processes, 

process hollowing and enumerate all process. This shows 

that we can use a concordance to identify API call 

sequence of a malware. 
Moreover, we also use TF to statistically identify 

which of the malicious or suspicious APIs is favorable 

by the malware.  This is because, the results of the 

experiment show that RegCloseKey (TF: 1.388) as the 

most commonly used APIs in the dataset. However, its 

functionality is not dangerous in nature. Hence, we can 

infer that some API are not dangerous and will only be 
dangerous if programmed to do so. 

All in all, this study has proven that we can use a 

concordance to identify malware behavior. And based 

on the results of the experiment, we manage to achieve 

the purpose of this research which is to use a 

concordance to detect malware behavior based on their 

API call and to find out the API that is frequently used 

by the malware in the dataset. 
Hence, the next logical step is to develop a 

concordance tool that can automatically identify malware 

behaviors from the database. This is what we recommend 

for future research. Furthermore, since this research only 
uses a small sample dataset, the future research may use a 

bigger dataset to further test the concordance KWIC 

ability in identifying the API call sequence. 
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