
 

 
 © 2019 Tomohiro Sonobe. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 

license. 

 Journal of Computer Science 

 

 

Original Research Paper 

Variable Selection with PageRank for SAT Solvers 
 

Tomohiro Sonobe 

 
Global Research Center for Big Data Mathematics, National Institute of Informatics, Japan 

 
Article history 

Received: 01-05-2019 

Revised: 25-07-2019 

Accepted: 05-08-2019 

 
Email: tomohiro_sonobe@nii.ac.jp 

Abstract: How to choose decision variables often determines the 

performance of SAT solvers. In state-of-the-art SAT solvers, Variable State 

Independent Decaying Sum (VSIDS) has been used as a standard technique 

in the decision process. In this study, we analyze the VSIDS from the point 

of view of PageRank and propose a technique for improving the VSIDS. 

While the VSIDS focuses on local search spaces, the PageRank values are 

based on the relative importance from a global point of view. From this 

fact, we utilize the PageRank values for controlling the VSIDS and improve 

the performances of representative SAT solvers, MiniSAT and Glucose. 
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Introduction 

When a Boolean formula is given, the Boolean 

Satisfiability (SAT) problem asks whether an assignment 

of variables exists, which evaluates the formula as true. 

A SAT problem is known as a classical NP-complete 

problem and is believed not to be solvable in polynomial 

time. In general, a formula is given in Conjunctive 

Normal Form (CNF). The solvers for this kind of 

problem are called SAT solvers. Today, they are used for 

real-world applications (Marques-Silva, 2008), such as 

circuit design (Stephan et al., 2006) and neural network 

verification (Narodytska et al., 2018). 

Many SAT solvers adopt the Davis-Putnam-

Logemann-Loveland (DPLL) algorithm (Davis et al., 

1962), which is based on a backtrack search. During the 

last dozen years, various important methods have been 

proposed to improve the performance of DPLL, such as, 

Conflict-Driven-Clause-Learning (CDCL) to prevent 

reappearance of similar searches, restart (Gomes et al., 

1998) instead of backtracking to start different search 

from the first beginning in order to avoid heavy-tail 

behavior, and Variable State Independent Decaying Sum 

(VSIDS) decision heuristic (Moskewicz et al., 2001) to 

determine the priority to select variables to be assigned. 

The VSIDS is independent from the state of the variable, 

thus its management is simple and easy. Many 

CDCL/VSIDS-based solvers give scores to prioritize a 

set of variables that appear in learnt clauses in order to 

fully utilize the obtained learnt clauses. 
SAT instances from real-world applications have an 

internal structure, where specific variables have strong 

relations to each other. For example in software 

verification, a variable in a program can have At Least 

One (ALO) value and At Most One (AMO) value from a 

given range. By using a direct encoding, all the candidate 

values are encoded into multiple Boolean variables (e.g., 

v1, v2,…,vr for the range [1..r]) in the SAT instance and 

ALO/AMO constraints are encoded into clauses. 

Amongst these Boolean variables, if one of them is 

assigned to true, then the others are assigned to false. 

Such variables exist in the instances from real-world 

applications, which shapes the structure of SAT instance. 

The VSIDS decision heuristic can select the related 

variables to currently assigned variables, which boost the 

efficiency of the search. This is because the VSIDS 

prioritizes variables in learnt clauses. The variables in a 

learnt clause are considered to be the culprits of a 

conflict and these variables can be a part of the structure. 

The VSIDS efficiently manages the priority of each 

variable (as a simple score) in a dynamic manner. Many 

state-of-the-art SAT solvers use the VSIDS. 

In this study, we analyze the VSIDS with PageRank 
(Page et al., 1999) and improve the performance of SAT 

solvers by combining the PageRank with the VSIDS. 

The PageRank values stand for the relative importance 
of vertices in a graph. When we convert a SAT instance 

to a Variable Incidence Graph (VIG) proposed by 
Ansótegui et al. (2012), we can calculate the PageRank 

value of each Boolean variable. As Katsirelos and Simon 

(2012) have already revealed the relation between the 
Boolean variables and their PageRanks, we also observe 

the relation from another point of view. We implemented 
a function to compute the PageRank of a VIG in 

MiniSAT 2.2 (Eén and Sörensson, 2003) and conducted 
experiments with 300 instances from the SAT 

Competition 2014 application track to observe the 

relation between the VSIDS and PageRank. As a result, 
although we confirm that variables with a high 

PageRank are often selected as decision variables, we 
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found that the VSIDS scores did not completely correlate 
with the PageRank. 

From this observation, we can utilize the PageRank to 

enhance the VSIDS. It is difficult to gain good 

performance by combining the PageRank directly with the 

VSIDS scores because the PageRank values stand for 

relative importance from a global point of view. In 

contrast, the VSIDS often focuses on a limited part of 

structure, not a global structure. In addition, the 

calculation of PageRank often needs a long computational 

time. Hence we should not calculate it so frequently. In 

our method, we reflect the PageRank to the VSIDS scores 

for every a certain number of restarts. For the instances 

whose PageRank distribution has an almost uniform 

shape, we avoid using the method since these values have 

no information. In order to utilize the learnt clauses, the 

proposed method periodically reconstructs the VIG and 

recalculate the PageRank. We implemented the proposed 

method to MiniSAT 2.2 and Glucose (Audemard and 

Simon, 2009) version 3 and conducted experiments for 

300 instances from the SAT Competition 2014. The 

experimental results indicates that the proposed method 

can improve both solvers. 

Our contribution is summerized as follows: 

 

• We analyze VSIDS with PageRank by converting 

SAT instances into variable incidence graphs. It 

figures out that both scores are highly correlated and 

variables with high PageRank are often selected as 

decision variables 

• VSIDS can often focus on a local part of the search 

space. In contrast, PageRank scores stand for the 

relative importance of variables from a global point 

of view. The proposed method can bring VSIDS to 

escape from the local part when a restart is invoked 

• The experimental results exhibit that the proposed 

method can boost the performance of state-of-the-art 

SAT solvers 
 

Related Work 

Katsirelos and Simon (2012) firstly analyzed the 

solver activity with eigenvector (PageRank). They also 

showed that variables with high PageRanks tended to be 

assigned values. This paper sheds light on the local view 

of the VSIDS and global view of the PageRank and 

improves the decision heuristic by utilizing it. 

The way to select the decision variables is the fatal 

part of SAT solvers. Various types of decision heuristics 

are overviewed in (Biere and Fröhlich, 2015). In 

specific, Variable State Independent Decaying Sum 

(VSIDS) is the most basic one for the recent SAT solvers 

and was implemented first in Chaff (Moskewicz et al., 

2001). The VSIDS chooses the decision variable with 

the highest score. Before the advent of the VSIDS, the 

computational cost of decision heuristics was quite high. 

For example, dynamic largest combined sum proposed 

by Silva (1999) is one of them. Huang and Darwiche 

(2003) proposed a decision heuristic based on a tree 

decomposition technique, however its computational 

cost was also high. Bruni and Santori (2008) modified 

the VSIDS by adding more scores to variables involved 

in the conflicts. In recent years, some techniques (Liang 

et al., 2016; 2017; Nejati et al., 2017; Selsam and 

Bjørner, 2019) from the discipline of machine learning 

enhanced the decision heuristics in order to more 

dynamically select the suitable variabes. 
The VSIDS decision heuristic is considered to boost 

the intensive search for the internal structure of the SAT 
instance. It is confirmed that there are specific sets of 
variables. For exmaple, backbone proposed by 
Monasson et al. (1999) and backdoor proposed by 
Williams et al. (2003) can make the instance easy to solve. 
The structure is analyzed from a point of view of graph 
theory, especially by using modularity (Clauset et al., 
2004). The modularity is a value for a partition of 
vertices into communities and a high modularity value 
indicates that a high density of edges in the communities 
and a low density of edges between the communities. 
Ansótegui et al. (2012) showed that SAT instances from 
real-world applications had quite high modularity values 
and randomly generated instances had low modularity 
values. Newsham et al. (2014) pointed out that the number 
of detected communities correlated with literal block 
distance (Audemard and Simon, 2009) and the 
modularity values were useful for predicting the 
performance of the SAT solvers. There are some works 
that improve the solver performance. Martins et al. 
(2013) utilized the detected community for MAX-SAT 
solvers to select relaxation variables. Sonobe et al. 
(2014) proposed a diversification technique, called 
community branching, for portfolio-based parallel SAT 
solvers. Jamali and Mitchel (2018) incorporated 
betweenness centrality into the decision process aiming at 
prioritizing variables appearing in many shortest paths, 
which means that these variables have strong influence on 
many other variables. Such variables were also introduced 
as bridge variable in (Liang et al., 2015). Other than graph 
theory, Ansótegui et al. (2014) described self-similarity 
property of instances from real-world applications. 

Analysis of SAT Solver 

In this section, we explain technical background and 

some analysis results. 

Technical Background 

A SAT instance Π is a conjunction of clauses, where 

a clause c = (l1 ∨ l2 ∨…ln) is a disjunction of literals. A 

literal is a positive or negative form of a Boolean 

variable. An empty clause is always false and an empty 

SAT instance is always true. A conflict occurs when an 

empty clause appears under a certain variable 
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assignment. A SAT instance is satisfiable if there is a 

solution in the formula otherwise it is unsatisfiable: 
 
Algorithm 1: Pseudo code of CDCL 

Input: a CNF formula Π 

Output: satisfiable or unsatisfiable 

1:  level = 0 // decision level 

2:  trail = 0/  // assignment of variables 

3:  learnts = 0/  // learnt clauses 

4:  inc_score = 1.0 // incremental value for VSIDS scores 

5: conf // conflicting clause 

6: learnt // learnt clause 

7:  blevel // level to backtrack 

8:  next // next decision variable 

9:  while true do 

10:  conf = unitPropagation(Π, trail) // a conflicting variable 

11: if conf ≠ NULL then 

12:  learnt = conflictAnalysis(Π, trail, conf) 

13:  blevel = calcBackjumpLevel(learnt) 

14:  if blevel < 0 then 

15:  return unsatisfiable 

16:  end if 

17:  for each var in learnt do 

18: increaseVSIDSScores(var, inc_score) 

19: end for 
20:  inc_score = inc_score / 0.95 

21:  learnts = learnts ∪ learnt 

22: if restart() then 

23:  blevel = 0 

24:  end if 
25:  backjump(blevel); 

26:  level = blevel 

27:  else 

28:  next = chooseDecisionVariable(Π, trail) 

29:  if next == NULL then 

30:  return satisfiable 

31:  end if 

32: trail = trail ∪ next 

33:  level = level + 1 

34:  end if 

35:  end while 
 
The state-of-the-art SAT solvers for application 

instances are based on Conflict-Driven-Clause-Learning 

(CDCL) which was derived from the DPLL algorithm. 

The pseudo code of CDCL is shown in Algorithm 1. 

Given a CNF formula, this algorithm determines whether 

the formula is satisfiable or unsatisfiable. This code also 

includes the part of VSIDS and is based on MiniSAT 

(Eén and Sörensson, 2003). The variable “level” is the 

decision level that stands for the depth of the search tree. 

The function “unitPropagation” conducts the 

propagation for unit clauses and returns a conflicting 

variable if a conflict occurs. After a conflict, the function 

“conflictAnalysis” conducts the clause learning. From 

the learnt clause, the function “calcBackjumpLevel” 

calculates a level to which the solver jumps back. If the 

backjump level is less than zero, the given formula is 

unsatisfiable. Then the scores of the variables in the 

learnt clause are increased by the function 

“increaseVSIDSScores” and the degree of increment 

(“inc_score”) is updated by being divided by 0.95 (this 

value is used in MiniSAT). Note that all the VSIDS 

scores and “inc_score” are decreased before a overflow. 

The backjump level becomes zero when restarting of the 

search is invoked. Finally, the backjumping is conducted 

and the decision level is renewed. If there is no conflict, 

the function “chooseDecisionVariable” picks up a 

decision variable with the highest VSIDS score. If there 

is no variable to assign, the search is ended and the 

formula is turned out to be satisfiable. 

The procedure of VSIDS is as follows: 
 
1. Initialize all the scores as 0 (or randomly) 

2. Choose a variable with the highest score as a 

decision variable 

3. Increase the scores of variables in learnt clauses 

4. Decrease all the scores periodically 
 

Note that the scores are increased not only when the 

variables are in learnt clauses, but also when the 

variables are involved in the learning process in recent 

solvers. By increasing the scores of learnt variables, the 

VSIDS achieves intensive searches for local parts of the 

structure. For the purpose of reduction of computational 

costs, the recent implementation increases the degree of 

increment instead of the decrement of all the scores. 

The PageRank is one of basic metrics for calculating the 

importance of each vertex in a graph. Although it is 

originally used to rank Web pages in the search engine, 

today it is applied to other networks such as bioinformatics 

(Morrison et al., 2005) and image categorization (Pan et al., 

2004). Assume that we have a weighted directed graph G = 

(V, E) with n vertices and m edges. We denote a weight of 

an edge as :w V V
+

× → ℝ , satisfying: 

 

|( , )

( , ) 1
v u v E

w u v

∈

=∑  (1) 

 

for a vertex u. The PageRank is the stationary 

distribution of the random walk with random jumping 

with probability c, called the teleportation probability. 

The walking goes on to outgoing edges from the current 

vertex with probability 1−c. In general, the PageRank π 

for vertex v is calculated as follows: 

 

|( , )

( ) ( ) (1 ) ( ) ( , )
u u v E

v c v c u w u vπ δ π

∈

= + − ∑  (2) 

 

where, δ(v) is a probability to be selected as the 

destination vertex from the random jumping and is set to 

1.0 / n. The teleportation probability c is set to 0.15 in 

the original paper (Page et al., 1999). This calculation 

can converge in several dozen of iterations. 



Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084 

DOI: 10.3844/jcssp.2019.1074.1084 

 

1077 

We create a Variable Incidence Graph (VIG) from 
the given CNF (Ansótegui et al., 2012). In the VIG, the 
vertices correspond to the Boolean variables and the 
edges correspond to the relations between the variables 
in the same clause. A clause “C” generates |C|C2 edges 
(|C|(|C|−1)/2) between every pair of the variables in the 

clause C. The weight of each edge is (1/|C|C2), therefore, 
the sum of the weights of the edges added by each clause 
is always 1. We create a VIG by traversing all the 
clauses and learnt clauses. 

VSIDS and PageRank 

The VSIDS tries to choose important variables and 
the importance is expressed as a score. The score is 
increased when the variable appears in learnt clauses. 
The more variables appear in clauses, the more 
frequently they are assigned values and appear in learnt 
clauses. From this perspective, PageRanks of VIG can be 

highly related with the VSIDS. This is because the 
variables appearing in many clauses have many edges, 
which leads to high PageRanks. However, they have 
different views. The PageRank values are based on a 
global view. The value stands for a relative importance. 
In contrast, the VSIDS may focus on local parts of the 

instance structure. The scores are high if corresponding 
variables are current targets of the search. In fact, if the 
top two highest PageRank variables are placed on 
opposite sides of the VIG, one can have a high VSIDS 
score while the other can have a low score. Whereas the 
PageRank does not completely correspond to the VSIDS 

score, there is a high correlation between them. 

Analysis Result 

To confirm our inference, we have conducted 
experiments. We have implemented a PageRank 
calculation function to MiniSAT 2.2. We conducted 20 
iterations for the PageRank calculation setting the 

teleportation ratio to 0.15. We chose variables of the top 
10% highest PageRank and calculated a decision ratio 
(the number of decisions for these variables / the total 
number of decisions) for each instance. We used 300 
instances from the SAT Competition 2014 application 
category. We set the time limit for each instance to 5000 

seconds and the experiments were conducted on a Linux 
PC with Intel Core i7 4770 (3.40GHz, quad-core hyper-
threading) and 16 GB memory. We used the GNU 
compiler (gcc) version 4.8.2. 

The results are exhibited in Fig. 1 for 100 satisfiable 

instances and Fig. 2 for 76 unsatisfiable instances. We 

excluded instances that could not be solved within the 

time limit. The x-axis indicates each instance, the left y-

axis indicates the decision ratio and the right y-axis 

indicates the processing time. The instances sorted by 

ascending order of the decision ratio. For satisfiable 

instances, 89 out of 100 instances exhibited over 10% 

decision ratio and 72 out of 76 unsatisfiable instances did. 

From these results, we found that the variables with high 

PageRank values tend to be selected as decision variables 

by the VSIDS. Hence there is a high correlation between 

them. In addition, the instances with the high decision 

ratio seem to be solved within a short processing time for 

both satisfiable and unsatisfiable instances. 

 

 
 

Fig. 1: Decision ratio of variables with top 10% highest PageRank and processing time for 100 satisfiable instances 
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Fig. 2: Decision ratio of variables with top 10% highest PageRank and processing time for 76 unsatisfiable instances 
 

 
 
Fig. 3: Spearman’s rank correlation coefficient between VSIDS and PageRank for 242 instances (x-axis indicates each instance and 

y-axis indicates the correlation coefficient) 
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Proposed Method 

The VSIDS tends to focus on a specific part of the 

structure in the given instance. This feature has 

advantages and disadvantages. While it can efficiently 

search variables that are strongly related, it could lead to 

a certain search spaces excessively. The restarting of the 

search can be a remedy of this issue, however the VSIDS 

scores are taken over to the search and the same search 

can repeat in vain because the scores are not changed 

after the restart. There is a possibility that the VSIDS 

guides the solver to a certain search space where no 

useful learnt clauses can be extracted. 

We can solve this problem by combining the 

PageRank values with the VSIDS scores. PageRank has 

a global view and ranks all the vertices (variables). 

Hence this perspective enables the VSIDS to escape 

from the local structure and have a look at the global 

structure. However, in order not to spoil the advantage of 

VSIDS, we should not apply the PageRank to the VSIDS 

scores so frequently. We have to control the number of 

the applications. In addition, we should limit the 

application only for the variables with a high PageRank 

because the variables with a low PageRank are 

considered as not important. In order to convert the 

search space effectively, we should increase the VSIDS 

scores for the variables with a high PageRank and a low 

VSIDS score. For this issue, we first calculate rankings 

of the VSIDS scores and PageRank for each variable and 

increase the scores by considering those rankings. 

We should also observe the distribution of the 

PageRank value. If the PageRank values are uniformly 

distributed, the variables have almost same importance 

and we have no idea which variables we should choose 

first. In our preliminary experiments, we figured out that 

the proposed method had almost no effect for instances 

with the uniform PageRank distribution. Thus, we first 

calculate the degree of unification of the PageRank and 

decide whether we use our proposal or not. The timing 

of the execution of the proposed method is suitable for 

the moment of restarting because our aim is to refresh 

the search. We implement Algorithm 2 right after the 

restarting routine. 

The PageRank values are calculated outside. The 

“run_count” stands for the number of calls of this 

function. In fact, the main part of this function is 

conducted every “INTERVAL” restarts because this 

function modifies the VSIDS scores drastically. We 

control the number of the applications by adjusting this 

parameter. The “inc_score” is the degree of increment of 

the VSIDS scores, calculated by the solver. Note that the 

second argument of the function “increaseVSIDSScore” 

is just “inc_score” when clause learning is conducted. 

The function “calcRanking” returns the corresponding 

rank of each element of the given array (greater values 

rank higher). We calculate rankings of the PageRank and 

VSIDS score of each variable, “p_rank” and “a_rank”. 

The main part of this function increases the VSIDS 

scores of variables with top-(“nv”×“TARGET_RATIO”) 

PageRanks (e.g., if “TARGET_RATIO” is set as 0.05, 

5% of variables). The function “selectTopKthIndex” 

returns an index of top k-th (the second argument) index 

of the given array (the first argument). 
 
Algorithm 2: Pseudo code of the proposal method 

Input: array of PageRank of each variable: pr 

Input: array of VSIDS score of each variable: act 

Input: the number of calls of this function: run_count 

Input: incremental value for VSIDS: inc_score 

Input: interval of this function: INTERVAL 

Input: ratio of increment: INC_RATIO 

Input: ratio of target variables: TARGET_RATIO 

 1:  nv = the number of variables 

 2:  p_rank // rank of variables w.r.t. PageRank 

 3:  a_rank // rank of variables w.r.t. VSIDS score 

 4:  if run_count % INTERVAL ≠ 0 then 

 5:  return 

 6:  end if 
 7:  p_rank = calcRanking(pr) 

 8:  a_rank = calcRanking(act) 

 9:  for k = 0 to nv * TARGET_RATIO do 

 10:  var_index = selectTopKthIndex(p_rank, k); 

 11:  if p_rank[var_index] < a_rank[var_index] then 

 12: increaseVSIDSScore(var_index, inc_score 

  * INC_RATIO * a_rank[var_index] / 

  p_rank[var_index]) 

 13:  end if 

 14:  end for 
 
By comparing the rankings of the PageRank and VSIDS 

score, we increase the VSIDS score of the target variable 

with a low VSIDS score and a high PageRank. For 

example, when k = 0, the “var_index” stands for the 

variable index with the highest (top-0th) PageRank. 

Then, “p_rank[var_index]” and “a_rank[var_index]” 

indicate the variable’s rank of PageRank and the rank of 

VSIDS score, respectively. The value 

“a_rank[var_index]”/“p_rank[var_index]” can be high 

when the PageRank is high and the VSIDS score is low. 

In this manner, we convert the search direction to other 

search spaces where important, but not focused on so far, 

variables exist from the point of view of the PageRank. 

We limit the number of the variables by setting the 

“TARGET_RATIO” because we do not have to observe 

all the variables (the variables with low PageRank are 

not important). We have to set the parameter 

“INC_RATIO” to relatively large number in order to 

increase the scores vigorously. 

The procedure of PageRank calculation is in 

Algorithm 3. This function is called before Algorithm 2. 

Note that the function “calcPageRank” makes a VIG 

from the clauses in the given CNF and learnt clauses that 
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the solver currently preserves. We conduct the power 

iteration method for the PageRank calculation. 

 

Algorithm 3: Pseudo code of the PageRank calculation 

Input: the number of calls of this function: run_count 

Input: PageRank recalculation interval: 

 REC_INTERVAL 

 1: nv = the number of variables 

 2: pr = [1.0/nv] * nv // PageRank array (global scope) 

 3: fcp // first cumulative percentage 

 4: if run_count % REC_INTERAVAL ≠ 0 then 

 5: return 

 6: end if 

 7: pr = calcPageRank(pr) 

 8: fcp = calcFirstCumulativePercentage(pr, nv/100) 

 9: if fcp < 3 then 

10: [turn off the proposed method] 

 11: end if 

 

Since the calculation of PageRank is expensive, we limit the 

number of the power iterations to 5 and we limit the length 

of clauses to less than or equal to 10 for constructing VIGs. 

In practice, we do not need exact PageRank values in order 

to apply them for the VSIDS scores. Besides, this function 

is also executed every “REC_INTERVAL” restarts to 

reduce the computational cost. 

We also consider the distribution of the PageRank 

value. The function “calcFirstCumulativePercentage” 

calculates the cumulative percentage of the PageRank 

value (“fcp”) for the variables with top 1% highest 

PageRank. Let V0 a set of variables with top 1% highest 

PageRank. Then: 

 

' '

100 ( ) / ( )
u V v V

fcp u vπ π

∈ ∈

= ×∑ ∑  (3) 

 

If this value is low, the distribution seems to be uniform. In 

an extreme case when “fcp” is less than three, we do not use 

our proposed method because we did not see any positive 

effect in our preliminary experiments. 

The whole flow of the proposed method is as follows. 

After setting four parameters (“INC_RATIO”, 

“INTERVAL”, “REC_INTERVAL” and 

“TARGET_RATIO”), Algorithm 3 and 2 are called 

when a restart is invoked (Algorithm 1). Note that the 

variable “run_count” corresponds to the number of 

invoked restarts. 

Although there are four parameters to determine the 

behavior of our method, we found that these values were 

not so sensitive to the performance of solvers in the 

preliminary experiments. The key idea is that we should 

use the PageRank value if its distribution is skewed and 

increase the score of the variables with a low VSIDS 

scores and a high PageRank value. 

Results 

We have implemented the proposed method in 
MiniSAT 2.2 and Glucose version 3 and conducted 
experiments. The experimental conditions are same as 
the previous section. However, there were 46 
instances whose top 1% cumulative percentage of 
PageRank is less than three. We did not apply our 
method to these instances. Hence we excluded them 
from the results below. 

We conducted comparison experiments with our 

methods, a randomized version of our method and 

MiniSAT 2.2. We set the “INC_RATIO” to 10000, 

“INTERVAL” to 10, “REC_INTERVAL” to 500 and 

“TARGET_RATIO” to 0.05 for the proposed method. 

The number of solved instances and their total time are 

shown in Table 1. Each column indicates the number of 

solved instances and its total time in seconds. The 46 

instances whose “fcp” value is less than three, instances 

solved only by preprocessing and instances that were not 

solved by any solver are excluded. The instance not 

solved within the time limit is calculated as 5000. The 

“baseline”, “proposal”, “no-recalc” and “random” stands 

for the original MiniSAT 2.2, our proposal, our proposal 

without no recalculation of PageRank 

(“REC_INTERVAL” is ∞), our proposal with randomly 

selection of target variables and randomly increment of 

VSIDS scores, respectively. The “random” method is a 

modified version of our method that selects the variables 

randomly (according to the “TARGET_RATIO”) with 

the same parameter setting of our proposal. From this 

result, we can see that the proposed method could solve 

the most instances within the shortest time. We can also 

see that we should recalculate the PageRank values in 

the search by using learnt clauses. By comparing 

“proposal” and “random”, we figured out that using the 

PageRank values is more effective than at least random 

selection. Note that the total calculation time of the 

PageRank values was negligible for all the instances 

(0.77 seconds per solved instance on average). 
Figure 4 (satisfiable instances) and 5 (unsatisfiable 

instances) show the result of each instance for the 
original MiniSAT 2.2 and our method. They show the 
processing time and the cumulative percentage of the 
PageRank values of the variables with the top 1% 
highest PageRank (the “fcp” value). The x-axis indicates 
each instance sorted by the time of the original MiniSAT 
2.2 in ascending order. Hence the points on the same x-
axis show the result for a same instance. The left y-axis 
indicates the time and the right y-axis indicates the 
cumulative percentage of PageRank. For satisfiable 
instances, although the total time was longer, we could 
solve two more instances than the baseline. This is 
because the original MiniSAT 2.2 is good at solving 
them intrinsically. Hence there are few rooms to improve 
the performance. In contrast, we could solve eight more 
unsatisfiable instances within a shorter time. We could 
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see that instances with high “fcp” values (around 50%) 
could be solved in a short time. 
We also implemented our method to Glucose 3. We 

set the “INC_RATIO” to 10, “INTERVAL” to 50, 
“REC_INTERVAL” to 5000 and “TARGET_RATIO” 
to 0.05 for our proposal. We set higher “INTERVAL” 
and “REC_INTERVAL” because Glucose 3 uses a 
dynamic restart policy (Audemard and Simon, 2012) and it 
can conduct the restart more frequently than MiniSAT 2.2. 
Table 2 shows the number of solved instances (total 
time) of each solver and Fig. 6 and 7 show the result of 
each instance. We can see that our proposal exhibits the 
best performance among the four solvers, same as in the 
case of MiniSAT 2.2. We could achieve good 
performance for the satisfiable instances and a little 
improvement for the unsatisfiable instances. This 
situation is opposite from MiniSAT 2.2. Glucose is good 
at solving unsatisfiable instances and has difficulties to 
solve satisfiable instances. In fact, there are few 

unsatisfiable instances not solved by original Glucose 3 
except for the instances with a low “fcp” value. 

 
Table 1: The result of each solver based on MiniSAT 2.2. for 

71 satisfiable instances and 86 unsatisfiable instances 

Solver SAT (71) UNSAT (86) Total (157) 

Baseline 67 (52550) 75 (109370) 142 (161920) 

Proposal 69 (52690) 83 (85450) 152 (136140) 

No-recalc 67 (63070) 80 (91730) 147 (154800) 

Random 67 (61210) 77 (117890) 144 (179100) 

 
Table 2: The result of each solver based on Glucose 3 for 63 

satisfiable instances and 126 unsatisfiable instances 

Solver SAT (63) UNSAT (126) Total (189) 

Baseline 55 (68130) 125 (90520) 180 (158650) 

Proposal 60 (51920) 125 (90680) 185 (142600) 

No-recalc 57 (59540) 125 (91650) 182 (151190) 

Random 57 (59780) 123 (92870) 180 (152650) 

 

 
 

Fig. 4: The result of the original MiniSAT 2.2 and MiniSAT 2.2 with the proposed method for 71 satisfiable instances 
 

 
 

Fig. 5: The result of the original MiniSAT 2.2 and MiniSAT 2.2 with the proposed method for 86 unsatisfiable instances 
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Fig. 6: The result of the original Glucose 3 and Glucose 3 with the proposed method for 63 satisfiable instances; Note that the 

instances solved before the “fcp” calculation (i.e., solved only by preprocessing) are not included 

 

 

 
Fig. 7: The result of the original Glucose 3 and Glucose 3 with the proposed method for 126 unsatisfiable instances 

 

Conclusion 

We investigated the relation between PageRank and 

VSIDS and applied the PageRank value to the VSIDS 

score. From observational experiments, we found that 

variables with a high PageRank tend to be selected as 

decision variables. However, we also observed that they 

did not completely correlate when we saw the Spearman’s 

rank correlation coefficient between them. It is because the 

VSIDS focuses on the local part of the structure of given 

instance, while PageRank gives the global view of the 

importance of Boolean variables. We utilize this advantage 

of the PageRank to convert the search space effectively by 

comparing the VSIDS and PageRank of each variable. In 

the computational experiments, we could boost the 

efficiency of MiniSAT 2.2 and Glucose 3. Our method does 

not depend on a specific implementation, thus we can 

embed it to any CDCL solver. We are planning to apply this 

method to parallel SAT solvers as future work. 
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