

 © 2018 Ercan Canhasi. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

Journal of Computer Science

Original Research Paper

Evaluating the Efficiency of CPUs, GPUs and FPGAs on a

Near-Duplicate Document Detection Via OpenCL

Ercan Canhasi

Gjirafa, Inc. Rr. Rexhep Mala, 28A, Prishtine, Kosove

Article history

Received: 08-06-2017

Revised: 06-03-2018

Accepted: 27-03-2018

Email: ercan.canhasi@uni-prizren.com

Abstract: Discovering identical or near-identical items is urgently

important in many applications such as Web crawling since it drastically

reduces the text processing costs. Simhash is a widely used technique,

able to attribute a bit-string identity to a text, such that similar texts have

similar identities. In this study, a real-time solution for a simhash

calculation in OpenCL is presented. We also show how it can be utilized

by multi-CPUs, GPUs and FPGAs. As a result we indicate that the bottom

line computation realized on the FPGA through OpenCL provides

significant power advantages.

Keywords: Simhash, OpenCL, CPU, GPU, FPGA, Xilinx, SDAccel

Introduction

Many applications can largely benefit from an
effective duplicate or near-duplicate detection algorithm.
In Web crawling, which is the most important activity of
Gjirafa.com, the first Albanian search engine, near-
duplicate web page identification helps to reduce
spending valuable resources on parsing and indexing.
Similarly, the vertical search services such as news and
ads search engines are big benefiters since near-duplicate
detection algorithms allow clustering together results
with near-duplicate content, which in return increases
user-friendliness and avoid information overwhelming.
Many high level text processing methods such as
document summarization (Canhasi and Kononenko,
2014; 2016) can also benefit from near duplicate
sentence identification. One of the most researched
method for near-duplicate detection (Canhasi, 2016;
Xiao et al., 2011; Sood and Loguinov, 2011;
Chalamalasetti et al., 2012) is the Simhash (Charikar,
2002). The fundamental concept behind the simhash is
that each document is depicted by a short integer,
fingerprint, which rehash its content.

Method consists of two main steps: (1) The simhash

calculation step in which the fingerprints of each

document from collection are calculated; (2) the

matching step in which the near-duplicate objects are

found by comparing their simhash identities. Previous

work (Henzinger, 2006; Sood and Loguinov, 2011) has

researched the possibilities of optimizing the second

stage, i.e., the matching stage, in order to prevent a

quadratic complexity of simhash identity similarity

calculation. However, previous work show that the

simhash identity calculation phase dictates the global

execution time (Luo et al., 2013). Hence, in this study

we suggest a method to treat the first phase of

simhash inspired near-duplicate discovery, by using

OpenCL in combination with CPUs, GPUs and

FPGAs to rapidly process huge numbers of documents

and calculate their simhash identities.

Recently, the alternative technologies with higher

performance per watt has been seriously examined in the

data centers which are known for their high power and

cooling requirements. Some of the most promising

alternative technologies include multi-core CPUs,

Graphics Processing Units (GPUs) and FPGAs. The

main shortcoming of utilizing these technologies is their

demand for eminently parallel applications in order to

fully accomplish their advantage. Lately, as a reaction to

this, languages such as OpenCL (Khronos OpenCL

Working Group, 2008), CUDA (NVIDIA CUDA) and

OpenMP (Chapman et al., 2007) have emerge primarily

to simplify the complication of developing the parallel

applications. Commonly, FPGAs weren’t directly

targeted by those languages. FPGAs coding requires

profound expertise of hardware description language and

the fundamental architecture of the targeted equipment.

However, a newly announced tool, Xilinx’s (Wirbel,

2014) SDAccel the Software-Defined Development

Environment for Acceleration, targets OpenCL at FPGA

architectures in order to make programming extremely

painless. In OpenCL as a platform-independent software

development model data parallelism is clearly stated.

Ercan Canhasi / Journal of Computer Science 2018, 14 (5): 699.704
DOI: 10.3844/jcssp.2018.699.704

700

OpenCL is based on well-known ’C’ programming

language and have extensions for easy definition of data

parallelism and memory hierarchy. As it is shown in Fig.

1, the typical OpenCL application has two elements,

namely the host program and the kernel. The serial part

of the application which is engaged in guiding data and

the general flow of the algorithm is known as the host

program. While the kernel part of the system is the

hugely parallel fragment of the code to be sped up on a

GPU or an FPGA. Given that the same OpenCL code

can be readily used on various platforms, we saw big

benefit in using it for performance comparisons. Even

that the specific adjustments are still needed in order to

fit to each platform for optimal performance, the

evaluation method itself is much easier. Consequently, in

this study, we present an architectural and programming

model study using OpenCL. In it, we implemented

simhash, a near duplicate detection algorithm in

OpenCL. This code is ported to CPUs, GPUs and

FPGAs for comparison.

Near Duplicate Detection-Simhash

The near-duplicate document detection usually

includes two steps: (a) The simhash fingerprint

calculation; and (b) the matching phase for identifying

pairs of near-duplicate documents.

Simhash Calculation Phase

In summary, it is a hashing approach which maps a

text document represented by terms to an identity bit-

string. The essential preferable attribute of simhash is

the one which makes the number of common bits in the

simhash identity of two similar documents higher and

positively correlated to the similarity of the observed

documents. Computing the n-bits simhash of a

document is based on computing the n-bits signature

of each term, as described below. Further, the

frequency of each term t in the document needs to be

calculated and denoted as the weight of t. Next, the

vector V of f random integers is declared where to

each element of V[i] the weight of each term is

weather added or subtracted depending on whose

signature has a 1 or 0 in the i-th position.

Consequently, the elements in simhash vector V are set

to 1 in positions i with V[i]>0 and 0 otherwise.

Term Hash Function

There are many different hashing tactics for

computing the hash signatures on term level. Optimal

hash function should assign dissimilar signatures to

different terms and oppositely similar hash signatures to

comparable terms. We use the one presented in Fig. 2.

More details on actual OpenCL implementation are

given in next section.

Matching Phase

After the simhash fingerprints are ascertained, the

issue is the means by which to effectively distinguish

near-duplicate sets of documents, that is, documents

whose unique fingerprint values have at most k diverse

bits. For 64-bit fingerprints, k = 3 is a typical value used

(Moussalli et al., 2011).

Fig. 1: OpenCL programming model

Host

Computer device

multi CPU

Computer device GPU

Computer device FPGA

Computer

unit
Processing

element

Ercan Canhasi / Journal of Computer Science 2018, 14 (5): 699.704
DOI: 10.3844/jcssp.2018.699.704

701

Fig. 2: OpenCL implementation of hash function

Many different approaches to upgrade this phase
by evading the naïve quadratic cost of unique
fingerprints examinations (Manku et al., 2007).
Specifically, the key issue is the means by which to
choose if new document is close copy to any of the
current records in the collection. The primary thought
in (Moussalli et al., 2011) which we have likewise
executed in our experiments, is to make a few
duplicates of the table of fingerprints of the collection,
where in each duplicate the places of the bits are
permutated. The primary instinct is that the prefix of
another simhash will coordinate the prefix of no less
than one of the duplicates of each close copy simhash
in the collection. Consequently, the binary search on
each of the duplicate sets utilizing the prefix bits to
locate all near-identical documents is used. The
quantity of duplicates and the length of the
corresponding prefix are resolved in view of the
estimation of k and space versus time tradeoff
contemplations Additional subtle elements are
accessible at (Manku et al., 2007).

Computing Simhash using OpenCL

The basic implementation is based on a kernel which

starts one parallel thread per document which in return

calculates the simhash and maps the each term in the

document to an output array. This kernel is shown in Fig.

2. We assume that documents have been converted to the

bag-of-words format and focus only on the simhash

calculation part of the algorithm. In doing so, we used a

kernel written in OpenCL.

Experiments

To evaluate the OpenCL implementation of
simhash and particularly the efficiency of the Xilinx’s
SDAccel development environment and their
OpenCL-to-FPGA compiler, we implemented simhash
on three successful HPC platforms: Multi-core CPU, GPU
and the FPGA. The summary of platform is given on

Table 1. First, the Intel Xeon E5-2650 processor is used to
evaluate the multi-core CPU platform. This cutting edge
processor includes twelve cores running at 2.2 GHz with
30 MB cache with hyperthreating.

For the GPU proxy, we selected the NVIDIA Tesla

K40C GPU Computing Accelerator - 12GB GDDR5.

For the FPGA representative, we use the Xilinx ADM-

PCIE-7V3 board with a Xilinx Virtex-7 FPGA. The Intel

processor is at a higher leading development node and

has a sizeable cache ready for use. Even though the

Xilinx Virtex-7 FPGA and the Tesla K40C GPU are

based on the equal 28 nm process, the GPU involve ten

times higher than the memory bandwidth of the FPGA

with more than ten times higher power utilization. In

this study, following the conventions, we report the

power utilization of GPU and FPGA taking also into

account their memory power consumption which is not

case for multi-core CPU.

kernel void sh_hashOCL(__global char* a, __global int* b,
__global unsigned long int* c, __global int *countIn, __global int *countOut, const
 unsigned int count, const unsigned int inC)

 {
 int i = get_global_id(0);
 if(i%count < count)
 {
 for (int j = 0; j < inC; j++)
 {
 unsigned int nKeyLength = count;
 unsigned long int hash = 5381;
 int pM = count*i+0;
 for(; nKeyLength >= 8; nKeyLength -= 8)
 {
 for(int k=0; k < 8; k++)
 {
 hash = ((hash << 5) + hash) + a[pM++];
 switch(nKeyLength)
 {
 case 7: case 6: case 5: case 4: case 3: case 2: case 1:

 hash = ((hash << 5) + hash) + a[pM++]; break;
 case 0: break;
 }
 c[i] = hash;
 }
 }
 }
 }

Ercan Canhasi / Journal of Computer Science 2018, 14 (5): 699.704
DOI: 10.3844/jcssp.2018.699.704

702

Experimental Data Generation

To evaluate our implementation, we utilized

methodology known as random text generation. We

designed a statistical model with the close properties

of the news web portals. Respectively, the statistically

generated documents include a mean of 500 different

terms and have the mean length of 4K terms. We

produced 256 thousand documents using this overall

methodology. For testing purposes, we randomly

generated 32K entries. The likelihood of a document

term selecting a nonzero value in this setting was

calculated as 7.6e-4.

To evaluate each implementation, various

experiments are directed to decide the best setup for a

selected platform. When detailing the last outcome on

every platform, we have bent over backward to guarantee

that the OpenCL code has been tuned in suitable

approaches to completely use each targeted architecture.

The execution is measured in million terms for every

second (MT/s). This execution is then separated by the

relating board energy to figure the execution per-watt

estimation. This is communicated as million terms for

each joule (MT/J) in the outcomes beneath.

Multi-Core CPU Experiment Outcomes

We first test the OpenCL coupling algorithm on a

multi-core Xeon E5-2650 CPU. Table 2 presents the

results of diverse parameter settings and their effect

on the efficiency. We denote the count of parallel

threads treating different elements as T in the table.

The best CPU results are observed when number of

treats is set to one which in return arguments the fact

that the CPU prefer executing one thread per

document.

Supposedly, the reason of this phenomenon is the

modern multicore design where each core uses its local

on-chip cache for processing the particular document

section. The multi core CPU experiments show best

results with processing 2080 million terms per second

(MT/s). Since the CPU power consumption is 105 Watts,

the overall performance-to-power ratio is 19 million

terms per joule.

GPU Experiment Outcomes

Graphics Processing Unit is the next platform used

in evaluation of our OpenCL application. GPUs are

extremely enhanced processors designed to reach high

computational power in graphics manipulation. The

general-purpose processor is specifically designed to

reduce latency while the GPU is optimized to

maximize application throughput. In doing so, GPUs

uses tens of thousands of threads in parallel on an

array of computing units. GPUs also include hardware

solutions for context switching among set of threads

when the current set of threads are postponed waiting

for global memory usage. In this way processing units

improve their performance and overcame memory

access latencies. As an example GPU architecture we

present Kepler architecture. The building block of the

GPU is the Streaming Multiprocessor (SM). It contains

32 floating-point computing units, or Stream Processors

(SP) and 4 special function units for transcendental

calculations. Because a group of threads often work

together on the same set of data, the SM features local

memory shared between threads as well as caches so

that fewer global memory accesses are necessary.

The best results for the GPU is 3760 MT/s, see Table.

3. The board power of the K40C is 235Watts and leads

to a performance to power ratio of 16 million terms per

joule.

Table 1: Specifications of platforms under test

Test platform Representative Process Memory bandwidth Cache size Board power

Multi-Core CPU Intel Xeon E5-2650 v.4 14 nm 76.8 GB/s 30 MB 105 W

GPU NVIDIA Tesla K40C 28 nm 288 GB/s 1 MB 235 W

CPU Xilinx Virtex-7 28 nm 12.8 GB/s None 20 W

Table 2: CPU results

Configuration MT/s MT/J

T = 1 2080 19.0

T = 2 1720 16.3

T = 4 1800 17.1

Table 3: GPU results

Configuration MT/s MT/j

T = 64 2341 10.0

T = 128 2782 11.9

T = 256 3760 16.0

T = 512 2794 11.9

Ercan Canhasi / Journal of Computer Science 2018, 14 (5): 699.704
DOI: 10.3844/jcssp.2018.699.704

703

Fig. 3: SDAccel envirovement

Table 4: FPGA results

Configuration MT/s MT/j

T = 32 1690 84.5

T = 64 1980 99.0

T = 128 1650 84.0

FPGA Experiment Outcomes

As stated previously for FPGA experiments we used

Xilinx ADM-PCIE-7V3 board with a Xilinx Virtex-7

FPGA. Actual development, coding, debugging,

optimization and testing stage has been realized on

SuperVessel OpenPOWER Cloud infrastructure via the

SDAccel Application Development environment.

SuperVessel is unique open connection cloud service

serving as a virtual R&D instrument for application

development, system designing and academic research.

It presents a one of its kind platform for creating, testing

and prototyping resolutions for rising solutions counting

deep learning, machine learning, deep analytics and

many others. The Xilinx SDAccel Development

Environment is a full software-determined Integrated

Development Environment (IDE) which allows coders to

compile, profile, debug and deploy FPGA-based

acceleration. The combination of SuperVessel, IBM

POWER architecture, the SDAccel Development

Environment and Xilinx FPGA accelerator boards

provide application developers with a high throughput,

high availability cloud-based platform to develop and

execute the compute intensive applications.

Table 4. shows the results of the OpenCL FPGA

implementation. This board contains two DDR2-800

DIMMs (400 MHz memory clock, 800 MT/s) providing

a peak bandwidth to external memory of 12.8 GB/s as

shown in Fig. 3. Each of the key data buffers is allocated

such that half of it resides in each DIMM. This allows

the kernel to maximize the amount of data bandwidth

available when accessing the data buffers.

The best results for the FPGA is 1980 MT/s. The board

power of the Virtex-7 is 20 Watts and leads to a

performance to- power ratio of 99 million terms per joule.

Conclusion

In this study, we have demonstrated how OpenCL

can be utilized to unleash the power of FPGAs for server

farm applications obliged by power and cooling

expenses. At the point when thought about on a

performance per watt premise, the FPGA can beat a

tantamount GPU and CPU by a factor of 5.25x and 6.18x

individually as appeared in Table 5.

There are huge groups of solutions where FPGA
usage offer a critical preferred standpoint in

progressively control obliged situations. The near
duplicate identification application inspected in this
study truly speaks to a lower bound on one of the best
qualities of the FPGA; that is, its capacity to perform
profoundly parallel and complex algorithmic calculations
on the information brought on-chip. In this application,

the data-path is generally basic. Our future work will
take a look at more perplexing applications to show the
productivity of utilizing FPGAs with high-level
languages such as OpenCL. It is likewise fascinating to
investigate a heterogeneous blend of FPGAs, GPUs and
multi-core CPUs for data centre applications as each has

specific qualities.

OpenCL, C, C++ Application Code

Compiler Debugger Profiler
Libraries

Environment

x86-Based Server
FPGA-Based Accelerator Boards

PCle

Ercan Canhasi / Journal of Computer Science 2018, 14 (5): 699.704
DOI: 10.3844/jcssp.2018.699.704

704

Table 5: Table type styles

Configuration MT/s MT/j

NVIDIA Tesla K40C 3760 16

Intel Xeon E5-2650 v.4 2080 19

Xilinx Virtex-7 1980 99

Acknowledgement

This work was completely supported by the Gjirafa,

Inc. We also thanks POWER Technology Open Lab for

allowing us to use their SuperVessel Cloud.

Ethics

There are no ethical issues or conflict of interest.

References

Canhasi, E. and I. Kononenko, 2014. Multi-document
summarization via Archetypal Analysis of the
content-graph joint model. Knowl. Inform. Syst., 41:
821-842. DOI: 10.1016/j.eswa.2013.07.079

Canhasi, E. and I. Kononenko, 2016. Weighted
hierarchical archetypal analysis for multi-document
summarization. Comput. Speech Lang., 37: 24-46.
DOI: 10.1007/s10115-013-0689-8

Canhasi, E., 2016. Fast document summarization using

locality sensitive hashing and memory access

efficient node ranking. Int. J. Electr. Comput. Eng.,

6: 945-945. DOI: 10.11591/ijece.v6i3.9030

Xiao, C., W. Wang, X. Lin, J.X. Yu and G. Wang, 2011.

Efficient similarity joins for near-duplicate

detection. ACM Trans. Database Syst., 36: 15-15.

DOI: 10.1145/2000824.2000825

Chalamalasetti, S.R., M.V. Margala, W. Wright and P.

Ranganathan, 2012. Evaluating FPGA-acceleration

for real-time unstructured search. Proceedings of the

IEEE International Symposium on Performance

Analysis of Systems and Software, Apr. 1-3, IEEE

Xplore Press, New Brunswick, NJ, USA, pp: 200-209.
DOI: 10.1109/ISPASS.2012.6189226

Chapman, B., G. Jost and R.V.D. Pas, 2007. Using

OpenMP: Portable shared memory. Parallel

Programming (Scientific and Engineering

Computation), The MIT Press.

Charikar, M.S., 2002. Similarity estimation techniques

from rounding algorithms. Proceedings of the 34th

Annual ACM Symposium on Theory of

Computing, May 19-21, ACM, Montreal, Quebec,

Canada, pp: 380-388.

 DOI: 10.1145/509907.509965

Henzinger, M.R., 2006. Finding near-duplicate web

pages: A large-scale evaluation of algorithms.

Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in

Information Retrieval, Aug. 06-11, ACM, Seattle,

Washington, USA, pp: 284-291.

 DOI: 10.1145/1148170.1148222

Luo, X., W. Najjar and V. Hristidis, 2013. Efficient near-

duplicate document detection using FPGAs.

Proceedings of the IEEE International Conference

on Big Data, Oct. 6-9, IEEE Xplore Press, Silicon
Valley, CA, USA, pp: 54-61.

 DOI: 10.1109/BigData.2013.6691698

Sood, S. and D. Loguinov, 2011. Probabilistic near-

duplicate detection using simhash. Proceedings of the

20th ACM International Conference on Information

and Knowledge Management, Oct. 24-28, ACM,

Glasgow, Scotland, UK, pp: 1117-1126.

 DOI: 10.1145/2063576.2063737

Khronos OpenCL Working Group, 2008. Khronos

OpenCL Working Group, The OpenCL

Specification, version 1.0.29.

Manku, G.S., A. Jain and A. Das Sarma, 2007.

Detecting near-duplicates for web crawling.

Proceedings of the 16th International Conference

on World Wide Web, May 08-12, ACM, Banff,

Alberta, Canada, pp: 141-150.

 DOI: 10.1145/1242572.1242592

NVIDIA CUDA Compute Unified Device Architecture -

Programming Guide, 2007.

Wirbel, L., 2014. Xilinx SDAccel: A unified

development environment for tomorrow’s data

center. The Linley Group Inc.

Moussalli, R., M. Salloum, W.A. Najjar and V.J.

Tsotras, 2011. Massively parallel XML twig

filtering using dynamic programming on FPGAs.

Proceedings of the IEEE 27th International

Conference on Data Engineering, Apr. 11-16, IEEE
Xplore Press, Hannover, Germany, pp: 948-959.
DOI: 10.1109/ICDE.2011.5767899

