

 © 2018 Dino Alagić and Ivan Magdalenić. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Model for Automated and Improved Utilization of Existing

Computer Resources on an Example of Web Servers

Dino Alagić and Ivan Magdalenić

Faculty of Organization and Informatics, University of Zagreb, Varazdin, Croatia

Article history

Received: 28-11-2017
Revised: 26-01-2018
Accepted: 28-02-2018

Corresponding Author:
Dino Alagić
University of Zagreb, Faculty
of organization and informatics,
Varazdin, Croatia
Email: dialagic@gmail.com

Abstract: Information technology is under constant innovation pressure to

provide the highest level of data availability – i.e., the continuous functioning

of operating systems. This is the very reason for an accelerated development

of complex systems encompassed by the term cloud computing. Among other

things, such solutions are aimed to ensure high-level availability of complex

systems and architecture. Numerous studies indicate that the main cause of

high cost of data centers are procurement and maintenance costs of servers.

Furthermore, this paper presents concrete practice examples which confirm

that there are systems whose resources are not sufficiently exploited, but

still have to be provided due to their importance. The high costs and

inadequate utilization of the existing computer resources constitute the

main motivation for the present research. In this study, we present a new

model for automated and improved utilization of the existing computing

resources. The model is verified by using an application for automated

management of computer resources that was developed for this research

and by several tests conducted on Web clusters.

Keywords: Cloud Computing, Web Cluster, Web Farm, HTTP,

Algorithm, Model

Introduction

In the last decade, the concept of cloud computing

has been increasingly used, becoming an important part

of any modern business system. Cloud computing is a

type of computing which relies on sharing of computing

resources starting with applications and including a

variety of related services (Islam et al., 2012). Such

systems are very complex and require an IT

infrastructure – i.e., data centers for proper functioning.

This is primarily caused by globalization and

liberalization of markets in which it is not acceptable to

have an information system without a high level of

availability. However, such data centers are not cheap

and in order for one such center to survive in today's

market, continuous investment in the growth and

improvement of the system is required. This means that

capital expenditure (CAPEX) as well as operating

expenses (OPEX) (Gruber, 2009; Li et al., 2013;

Wiboonrat, 2014) will be incurred. Numerous studies

confirm that servers account for the high costs of data

centers (Sampson and Tullsen, 2012).

Providers of cloud computing strive for multiple use
of existing resources – i.e., they wish to achieve system
automation and optimization. The question addressed in

our research is how to ensure multiple use of such an
infrastructure or servers in order to minimize costs. More
than a decade ago, this problem was approached through
virtualization of computing resources by dividing the
resources of a single physical device or server into
several smaller virtual environments (Soundararajan and

Herndon, 2014). Today, virtualization is common in
almost all data centers and as such no longer presents an
innovation, but a necessary standard for achieving
market competitiveness. To ensure a high level of
availability, data centers make use of virtualized
machines which are powered on demand. In such a

scenario, data centers have reserved resources such as
CPUs and RAM. Our field of interest is Web clusters for
small and medium-sized enterprises because they have
limited resources that need to be utilized to the greatest
possible extent. On the basis of our preliminary research
we concluded that services have different demands on

resources at different times. We believe that is
reasonable to take resources from a poorly loaded server
and transfer them to a server under heavy load and vice
versa, if needed. This can be done and is actually done in
practice by powering off virtualized machines and
increasing or decreasing their resources. However, this

process is time-demanding and system response is

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

287

usually measured in minutes. The process is also hard to
automate because of the lack of an appropriate tool. In
this study, we propose a new model for automated and

improved utilization of the existing computing resources,
mainly CPUs and RAM, without the need to power off
virtualized machines.

Research Problem

Since cloud computing is a very broad term, we have

narrowed our focus on Web servers, where computer

resources are mostly inadequately utilized but are still

necessary to ensure a high level of system availability.

Following the development of technologies and

increasingly complex user demands, the services

provided through Web servers and their architecture are

also becoming more complex. One example of such a

solution are Web farms, which may consist of one or

more Web clusters containing multiple Web servers, the

architecture and design of which depend on the

technology and the type of content (static or dynamic).

In addition to issues of complexity and required

amount of resources of such systems, the fact that one

Web farm is usually not sufficient also needs to be taken

into consideration (Islam et al., 2012; Celesti et al.,

2011; Teodoro et al., 2003; Yanmaz et al., 2005). Some

of the reasons for this are: Compatibility (technologies

and programming languages), type of content (static or

dynamic), Web servers (Apache, nginx, IIS, GWS etc.),

type of business (security and privacy issues), resources

(dedicated or shared), performance, availability etc.

For the above reasons, it is usually necessary to have

several Web farms in order to ensure higher

competitiveness in the market. However, a growing

number of Web farms requires a larger number of

servers as well as a more complex infrastructure for their

proper functioning, such as a larger space, better air-

conditioning, more electricity etc. All of this eventually

results in higher OPEX and CAPEX costs.
One of the main reasons for the greater complexity of

the Web farm architecture model is that it strives to
provide the highest possible level of system availability
with maximum performance. In other words, in addition
to the Web server as the main component of the system,
there are many other supporting components such as:
Supporting tools, system cache cluster databases etc.
Consequently, such a complex architecture can be
divided into the following four categories or levels:

• Network – this category also includes the load
balancer for HTTP/HTTPS requests and traffic.
Systems are usually installed in pairs with the aim of
higher availability and are characterized by: Types of
algorithms, business category, technology types
(solutions) etc

• Web – This level entails two components: Web

farms, that is, clusters divided by means of the

HTTP/HTTPS load balancer system and system

cache, which serves to faster access and process

data. The main purpose of these systems is to save

system memory in order to decrease the time

necessary for accessing and processing the data

• Databases – these systems no longer represent a single

database, but an entire cluster, the so-called farm

database, wherein the main objective is to achieve

optimal results regarding processing and system

availability through a number of separate servers

• Supporting tools and services – in order for such a

complex system to function properly, a number of

supporting and monitoring tools are required, some of

which are: Logging, back-up, management system,

safety system, monitoring, virtualization system etc

To provide a better understanding of the entire

solution, a system containing several Web farms with all

the other components necessary for their correct

operation is shown in Fig. 1.

The figure shows that proper functioning of Web

farms necessitates a large number of components.

Consequently, the validation of a new model for

automated and improved utilization of the existing

computing resources proposed in this study will be

performed on an example of Web server.

As mentioned earlier, numerous analyses and surveys

confirm that servers are the most expensive component

of cloud computing systems (Islam et al., 2012). The

reason for this lies in large capital and operating costs

that servers entail as well as in a high level of

amortization. That is why computer resources need to be

used more efficiently. However, there are concrete

practice examples (Web farms) which confirm that there

are systems whose resources are not sufficiently

exploited, but still have to be provided due to their

importance. In order to validate this research topic, we

conducted a preliminary study by using the data from

several IT companies that provide Web hosting services.

To enable us to conduct the research in its entirety, the

companies secured access to all their relevant data and

indicators related to Web farms, including, among

others, the data concerning the infrastructure and the

number of visits or user requests for individual Web

sites. The values, including the number of user requests

and load on computer resources, were collected by server

monitoring tools (Observium and Munin). In our

preliminary research four different Web farms were used

as a reference test sample, encompassing between 50 and

100 Web pages. Web farms differed according to the

type of content: Business, video games, adult content

and information. The following chart (Fig. 2) shows the

ratio of requests and resource utilization in the course of

24 h for all the four Web farms.

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

288

Fig. 1: Detailed schematic representation of the information flow in a Web farm environment

Fig. 2: System load by Web farms for 24 h

It is important to note that the results in a one-year

period are very similar to the results for a 24 h period –

i.e., there are no major deviations. The analysis of the

results revealed that none of the Web farms was

overload, in other words, that computer resources

utilization did not exceed 65%, which is an argument for

ensuring the capacity that will be available during peaks.

In Fig. 2 the load on computer resources is expressed in

percentages. The ideal state of a server would be its

100% utilization, but in practice this is very difficult to

achieve and is usually not good for the business system.

This would mean that all resources are being fully

utilized and that each subsequent request is in queue for

execution. In other words, any load exceeding 100%

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

289

would represent a situation in which system overload is

likely to occur that may result in system shutdown,

which is unacceptable in today’s business. In this case,

system load depends on the number of user requests,

which is an external (and thus unpredictable) variable.

For this reason, security mechanisms need to be

implemented to prevent system overload and enable as

maximum possible resources utilization not exceeding

100%. The analysis of the preliminary research results

also showed that all the four Web hosts had a different

number of visits within the 24 h period, with some of

them requiring a greater amount of resources during the

day (information and business) and others being more

active at night (video games and adult content). It is

therefore evident that the resource load is not always

linear and each farm has extra resources for situations

when an increased number of requests is being made.

Consequently, the question arises of how to utilize

resources that are free, that is, how to distribute or

transfer them to a part of the system where they are

needed. Therefore, the problem to be addressed does not

concern increasing the resources or grouping Web pages

within a Web portal regardless of the type of content, but

allowing the existing free resources to be better utilized,

which is an issue still to be resolved.

Existing Solutions and Related Works

During our investigation of scientific literature, we
found a large body of research in this field proposing
numerous methods, concepts and approaches as well as
solutions to the problem of insufficient utilization of the
existing computing resources (CPU and memory). Most
studies that focus on better utilization of computing
resources use a combination of their own algorithms and
mechanisms for controlling Quality of Service (QoS).
Such mechanisms enable prioritization of resources or
services between different applications, users or data
flows. However, the existing solutions focus solely on
CPU resources and not on working memory, which is
another important aspect of computer resources (You et al.,
2011; Zhanjun et al., 2000). This issue can be resolved
by using a variety of network algorithms and
architectures for the distribution of traffic across the
network (Pham et al., 2010). This approach does not
represent the entire solution since resources remain
assigned to specific servers and in the case of an increase
in requests, they are immediately forwarded to another
system, without increasing or optimizing the utilization
of the existing systems (Pham et al., 2010). Most
research on the topic of multiple utilization of computer
resources has a completely different goal – achieving
higher system availability so as to perform the virtual
migration of servers from one physical server to another.
This approach creates an increase in indirect costs
(electric energy, larger number of servers, network

complexity, maintenance etc.) because the main
objective is only to keep the system working, without
making a better use of resources (Ma et al., 2012;
Marrone and Nardone, 2015; Ichikawa and Komoda,
2016). Similarly, this issue can be approached by a
combination of various methods and algorithms that
enable the scaling of the system in order to ensure its
availability (Corsava and Getov, 2003; Frachtenberg et al.,
2002). The opposite approach to scaling and increasing
of resources is the grouping of virtual servers with the
aim of minimizing physical servers so that the remaining
(currently free) physical servers could shut down,
enabling less power and other resources to be spent
(Beloglazov et al., 2012). However, combining methods
and algorithms for system scaling is not adequate,
because even when they are shut down they occupy an
expensive rack space in data centers. In addition to its
major limitations, such an approach instigates other
issues like potential unavailability of the entire system in
cases of a sudden increase in the number of requests. In
that case, there a sudden need for computer resources
would occur that are not available at a given moment
because of the time it takes the physical server to start up.
This problem can be solved through prioritization of
CPU resources by employing one of numerous
mechanisms and algorithms that allow individual virtual
servers to gain higher priority over the physical server's
CPU resources. However, by establishing process
execution priority, the number of processor cores still
does not increase (Song et al., 2013; Guan et al., 2014).
During our study of the literature, several problems related
to the existing research were identified as follows:

• Partial analyses – most studies are not fully elaborated

– i.e., they do not present any way of evaluating the

proposed models and solutions. Their authors mostly

only state their assumptions and introduce concepts

that should solve the research problem

• Solutions applicability – proposed solutions are

usually not applicable in practice and are developed

only at the conceptual level. Solutions that are

applicable in practice are not used widely due to

various technological constraints

• Testing repeatability – in most research the

environment in which the tests and measurements

were performed are described poorly or not at all,

whereas test samples are quite specific, meaning that

it is not possible to do further research drawing on

the existing results

• Solutions availability – even if certain solutions and

suggestions on how to solve the research problem

are provided, they are usually realized through

modification or expansion of the existing models

and tools that are commercial or not accessible to

everyone, making their verification, implementation

and further improvements difficult

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

290

There are several solutions for the distribution of

computing resources that are used in practice and are

described in the current professional literature. A

common characteristic of all these solutions is that they

are based on virtualization platforms (KVM, VMware,

Hyper-V etc.) since virtualization is a prerequisite for the

sharing of resources. Today there are numerous

platforms that combine these solutions and technologies,

the best known of which are OpenStack and Eucalyptus.

They are free open source platforms that allow for easier

administration and distribution of computing resources

in cloud computing (OpenStack, 2016; HPED, 2016;

HPE Helion Eucalyptus, 2015). These platforms as such

are not an independent solution but represent a set of

various technologies that complement the existing

solutions, including the aforementioned virtualization

platforms. On the other hand, the disadvantages and

limitations regarding the distribution of computer

resources that are originally found in virtualization

platforms themselves are transferred to a higher level –

i.e., to solutions such as OpenStack and Eucalyptus.

Several commercial solutions are being used, whose

advantages and disadvantages are as follows.

VMware

One of the most popular virtualization platforms that
offers several models of computing resources
distribution. The most common way is to start new
instances of Web servers by monitoring the resources of
the existing servers. Such a solution depends on the
inventory of computing resources that are not being used
but must be reserved to achieve a high level of system
availability. In other words, when the system is not
overload, these resources are not utilized, resulting in
non-optimal utilization of total resources (VMware,
2015; 2009). This virtualization platform also allows you
to add resources to existing Web servers, but under two
conditions: This must be defined before starting the
server and must be allowed by the operating
system.Working memory may be allocated and taken
away by defining the maximum and minimum level of
resources. In this case, the working memory is either
added or subtracted, depending on the system load. As
for the CPU, one can only add resources and only for
specific operating systems, while seizing CPU resources
is not included as a possibility on the VMware platform.
The reason why this has not been developed yet is that
almost none of the operating systems supports the
possibility of seizing a number of cores of a system that
is in working condition (Boche, 2009; Lowe, 2013;
VMware, 2011). This again means that sub-optimal
utilization of the system will occur when the system load
is no longer present, because once the CPU resources are
allocated (if that is possible for a given operating
system) they can no longer be deducted without
restarting the Web server.

Hyper-V

This Microsoft virtualization platform works on a
similar principle as VMware. When loaded, the system
creates new instances of the Web server as long as there
are computing resources available (Coughlin, 2016;
Halbe, 2015). Maximum and minimum levels within
which it is possible to add or subtract RAM can also be
defined. The manipulation of CPU resources is resolved
in such a way that Web servers are assigned
prioritization of CPU resources of the physical server
(e.g., if there are two Web servers which have been
allocated 400 and 100% of CPU resources respectively,
this means that four requests from the first Web server
will be resolved prior to one request from the other)
(Larson, 2016 n.d.) (Microsoft, 2014). This solution is
not optimal because it is limited to prioritizing of the
number of cores in a Web server, meaning that it is not
possible to add or subtract CPU resources (i.e., –
increase or decrease the capacity).

Other commercial solutions are mostly even more
limited. In addition to the virtualization platforms above,
there are many cloud computing solutions which partially
solve this problem. The best known among them is Amazon
Web Services (AWS) – one of Amazon's cloud computing
solutions where optimization of computer resources is
performed by automatically or manually triggering Web
server instances on and off, depending on the load of the
system which must be defined in advance (Amazon Web
Services, 2017; Rodge et al., 2015). This solution has two
shortcomings. The first one is that server profiles are
predefined and it is therefore not possible to have a linear
increase or decrease in resources, only exceptionally,
according to predefined specifications. Thus, the system is
not flexible, so users, in spite of the availability of profiles
that are optimal for their needs, often use profile servers
with more computing resources which ultimately results in
non-optimal utilization of resources. Another disadvantage
of this solution is system scaling – i.e., optimization of
resources which is performed by turning new instances of
Web servers on or off, which results in dedicated resources
for each new server-every operating system requires
specific computer resources (CPU, memories, disk, etc.) in
order to function properly, which prevents those
resources from being allocated to the Web server.
Needless spending of other resources – each new instance
of the Web server requires additional resources such as an
IP address, consumes additional drive IOPS (Input/Output
Operations Per Second), which ultimately results in
higher CPU load on physical servers owing to instruction
execution queues, operating system licenses etc. Higher
maintenance costs – a larger number of Web servers
requires greater monitoring and control by the
professional staff as well as additional supporting tools
that are usually limited (depending on the number of
servers) etc. System complexity – a larger number of Web
servers increases the complexity of the system, which can
ultimately result in a longer period of repair.

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

291

Another commercial solution is DigitalOcean – one
of the better known companies that deals with cloud
computing and an alternative to Amazon. However,
compared to Amazon's, their solution is even more
limited because it does not provide the automatic scaling
of resources, only the modification of existing, for which
it is necessary to first turn off the Web server (Mitchell
Anicas n.d.).

IBM PowerVM – a very expensive solution which
allows for the distribution of computer resources, but
only in IBM processors or microchips (IMB, 2016).

Xen VMM a virtualization platform that uses Credit
Scheduler. It represents a mechanism for prioritizing CPU
resources, but not for their increase and the decrease in the
number of processors (Cherkasova et al., 2007).

Non-commercial solutions are mostly even more

limited. One such option is Docker – unlike previously

described solutions, this one is free and open source. It

ensures resources for Web servers by reserving scalable

computing resources on all Web servers in form of

containers which are later used as required. Therefore, a

high level of availability of the system is achieved by an

advanced use of existing computer resources (Docker

Inc, 2015; Ismail and Sheikh, 2016). However, resources

are still not exploited in an optimal manner because they

are assigned and reserved for a certain Web server and

cannot be transferred to other Web servers when not

used. Research on other non-commercial solutions has

established that there are many approaches to solving the

problem of optimizing resources utilization by

combining various scripts and programs, which still

results in a lesser optimization of resources compared to

commercial solutions (Ivan, 2008).

The currently available solutions, whether commercial

or non-commercial, do not solve the problem of resources

utilization optimization in its entirety. This is mainly due to

the fact that these solutions do not allow for multiple

utilization of the existing resources which are already

allocated to a specific server, but most often allocate new

resources reserved for such extraordinary situations

(Herrmann et al., 2015; VMware, 2012). New resources

are often allocated through an excessive increase in the

existing resources or by creating additional replicas of

servers that are overload.

Furthermore, the lack of a solution that would enable a

multiple use of the existing computer resources can also be

accounted for by the fact that most virtualization platforms

are commercial solutions whose producers (VMware,

Hyper-V etc.) wish to use as many servers as possible since

software licenses are usually charged by the number of

servers. On the other hand, even in non-commercial

solutions, which do not require licenses and take a different

approach, this problem has not yet been fully resolved.

Proposing a model for automated and improved

utilization of existing computer resources on an example

of Web servers.

The previous chapter focused on the issue of

insufficient utilization of the existing computing

resources. To solve this problem, in this chapter we

introduce a model that would enable automated and

improved utilization of the existing computing resources.
The metamodel of the automatic control system in

Fig. 3 shows the functioning of the system at the system
level. System generalization is needed to allow for a
wide application of the model, independently of the
virtualization platform and programming language.

The system consists of two input components –

requests (applications or user requirements) and

resources (CPU and memory). The central part of the

system are the servers that process requests and convert

them into output components: Operations (resulting from

the processing of requests) and load (during the

processing of requests).

The main component of this automated control system

is a negative backlink in the form of a closed loop that

performs a constant system load check and allocates the

resources based on special parameters (configuration,

constraints and methods). The leading value in this case is

system load. The next step in designing the model is the

elaboration of the model at a higher level, where the main

components of the system are presented with their

parameters and interconnections (Fig. 4).
This approach allows for the application of the model

independently of the virtualization platform and coding
program. The layered architecture of the new model
consists of two levels (physical and virtual) and a two-
step integrative process that is being continually
executed (Fig. 5).

Fig. 5 shows a single physical server with a

virtualization platform (the same principle applies to

multiple servers) including an agent as an important

component of the new model. The new model consists of

two types of agents:

• HOST agents – located on physical servers; their

main task is to check and allocate computer
resources across the entire physical server

• VM agents – located on virtual servers; their main
task is sending reports on the state of their own
computer resources

In this way communication between all virtual

servers and their respective physical servers is made that

makes it possible to determine if one of the servers has a

shortage or surplus of computer resources. This

information exchange results in the last step – the

distribution of computer resources between the servers.

For better understanding of the entire process, a diagram

of activity is provided in Fig. 6.

The entire process shown in Fig. 6 is executed

according to pre-defined time iterations and consists of

two main steps – Initialization and Resource reallocation.

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

292

Fig. 3: Automatic control system metamodel

Fig. 4: ERA model of the new model

Fig. 5: The layered architecture of the new model

Requests

Resources (CPU

and memory)

Servers

Operations

 Load

System control

Method

Limitations

Configuration

Request

User

Application

Server
Virtual

Physical

Computer_resources

Processor

Memory

System_control

System_load

Vm_agent
Host_agent

Processor_load
Memory_load

Resource_allocation_method
 Increment
Load_average

Server_limitations

Maximum_processor

Minimum_processor

Maximum_memory

Minimum_memory

Configuration
 Server_name

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

293

Fig. 6: Activity diagram of the new model

Initialization begins by verifying the total amount of

resources allocated to virtual servers. After that, the
HOST agent, or the main script, checks the main
configuration file and based on it determines: A list of all

virtual servers, default parameters for maximum and
minimum levels of CPU and memory limits (if defined)
and profiles of resources for CPU and memory (if
defined). In this step, the HOST agent checks each virtual

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

294

server separately by capturing its name and corresponding
configuration. The HOST agent first checks if the virtual
server has specifically defined parameters in the main
configuration and uses them accordingly. Otherwise, the
HOST agent will use the parameters of the main scripts
which are the same for all virtual servers.

Resources reallocation – after determining the

configuration parameters, a six-step process ensues that

involves only one virtual server, which means that there

will be no interruptions in the functioning of other

virtual servers, enabling their continuous operation.

The first step starts with the process of checking
resources on the virtual server. Computing resources

that are checked are: Random Access Memory (RAM),
which is expressed in gigabytes (GB) and Central
Processing Unit (CPU), which is expressed in the number
of its cores. In this step, the main script captures the
information on resources calculated by the script from the
virtual servers (VM agent). By using a server daemon

(xinetd), the VM agent calculates the average load on the
CPU and the percentage of free memory that, together
with the cache, make up the unused memory. Once the
VM agent retrieves the information on the resources, it
forwards it to the HTTP port (in this case, arbitrary port
number 9299) to enable the HOST agent to reach it.

In the second step, the process of calculating free

resources on the virtual server is performed. In this step,

the HOST agent compares the retrieved information on

the status of resources on virtual servers with the

resources allocated to those virtual servers. Based on

that, it calculates the CPU and memory usage.
The third step starts with the comparison of the

obtained results with the initial configuration and
deciding whether resources will be subtracted or added.
In this step, checking and comparison of the maximum
and minimum limits of the CPU and memory defined in
the configuration occurs. These values are arbitrary and
can be changed depending on the system needs. The
values that were used in this research are: Maximum CPU
limit, minimum CPU limit, maximum memory limit and
minimum memory limit. These limits will vary depending
on whether the virtual server is allocated less or more
resources. For example, if a virtual server is allocated 2
GB of memory, its limits are 0.8 GB or 1.6 GB. In other
words, a virtual server has 0.8 GB of ‘workspace’ and
these resources are allocated to it. However, if a virtual
server is allocated 10 GB, its limit is 4 GB or 8 GB, which
means that its ‘workspace’ is 4 GB. Consequently, in spite
of a minimum/maximum limit, there are still too many
allocated resources. Therefore, additional measure called
minimum free memory is applied to further increase the
utilization of computing resources. It also controls the
distance between the minimum and the maximum limit,
while providing resources for the proper functioning of the
virtual server. This step also includes making a decision
on whether to add or subtract resources and if so, how
many of them. There are two ways of adding or

subtracting resources are implemented: LA (Load
Average) and INCREMENT.

LA (Load Average) – advanced allocation of resources

(only possible for the CPU) expressed as an average load,

which enables their precise and rapid growth of resources.

For instance, if the average load is 500%, it is necessary to

add five cores to enable the system to operate normally. The

number by which we increase the number of cores

(multiplier) is also a variable that allows for a better

allocation of resources. For example, if the multiplier is 1.2

and the load is 500%, it will be allocated to six cores

(1.2×5=6). This allows for the allocation of an additional

reserve of resources when the system is under unexpected

load. In addition to the multiplier, it is possible to choose

more than one way of rounding the result (the number of

required cores): HALF UP – standard rounding (e.g., 0.5 is

rounded up to 1), UP – rounding (e.g., 0.1 is 1) DOWN –

rounding down (e.g., 1.7 is 1).
INCREMENT – default rules used to define the way

of allocating and seizing of resources for all virtual
servers. They apply to both the CPU and memory. The
system is designed to first check the main configuration
in which the following values are set: vm – name of the
virtual server; cpu_min – minimum CPU value (number
of cores); cpu_max – maximum CPU value (number of
cores); mem_min – minimum memory value (in GB);
mem_max – maximum memory value (in GB);
cpu_balance_logic – increase/decrease CPU resources
profile (X:Y, where X represents system load and Y
represents increase/decrease in resources);
mem_balance_logic – increase/decrease memory profile
(calculated in the same manner as the previous values).

The purpose of the main configuration is that all
values can be individually manipulated, in accordance
with the needs of particular virtual servers. If the values
of virtual servers are defined in the main configuration,
they are determined from the main scripts and these
parameters are thus valid for all virtual servers. Here are
some examples of memory profiles (the same rules apply
to the CPU): 2:1 – if the memory is larger than 2GB,
increment (or decrease) by 1; 4:2 – if the memory is
larger than 4GB, increment (or decrease) by 2; 16:4 – if
the memory is larger than 16GB, increment (or decrease)
by 4. This can be illustrated by the following example:
At the moment of verification, the virtual server has GB
of memory and if additional resources are necessary, it
will increment by 2GB. If the virtual server initially has
18GB of memory and additional resources are necessary,
it will increment by 4GB. If the CPU for the LA
resources allocation is not defined, it will be calculated
according to the INCREMENT principle. It is important
to note that these calculations comply with the minimum
and maximum values allowed for virtual servers, as
defined in the configuration.

The fourth step starts with the process of verification
of physical server resources. Before subtracting or
adding resources, physical servers are verified so as to

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

295

prevent the load of the entire system. If it is necessary
to add resources and if they are available on the
physical server, the procedure continues to the
following step. Otherwise, the verification of the next
virtual server takes place, meaning that the whole
process starts from the beginning.

The fifth step starts with adding or subtracting of

resources. In this step, the resources are added or subtracted

depending on the load of the virtual server. The procedure

is done simultaneously for the CPU and the memory. In

other words, it might be possible to add resources to the

CPU and decrease them from memory and vice versa.

The last step starts with the process of verifying

whether the virtual server is working. While the process

of adding or subtracting resources is carried out, it is

necessary to make sure that there are no interruptions or

errors in the operation of the main service. Since the

validation of the model is to be performed on an example

of Web servers, the verification will be done using the

HTTP status code. This means that after each resource

operation (addition or subtraction) a Web server check

will be performed. In other words, if the system control

receives HTTP 200 code from the Web server, the

system operation is not compromised, for instance,

returns HTTP 500 code, there is an error in the

functioning of the Web server.

After the second step, verification of the main

configuration is done by checking whether more virtual

servers exist. If they do, the entire procedure is repeated

from the beginning. Otherwise, the process ends and

waits for a predefined time interval until it is restarted. In

this research, the whole process on one physical server

with three virtual servers was always completed within

ten seconds. The proposed model was developed in such

a way that it is possible to define how many times the

process is to be performed.

For the new model to function flawlessly, several

control and monitoring mechanisms have been

implemented: Continuous execution system, resource

monitoring and possibility of warning.

Continuous execution system – the system (new

solution) is executed periodically and it is possible to

modify the time when it will start. Before the new

start (repetition of the two main steps above), the

verification of the existing process takes place. If the

process is still running, the next launch is delayed

until the process is completed.

Resource monitoring – there are two levels of resources

verification and monitoring. At the level of a physical

server, prior to allocating resources to a virtual server, the

HOST always verifies available resources of the physical

server to ensure proper functioning of the system. At the

level of a virtual server, the HOST agent ensures that the

virtual server has continuously available resources, using

minimal value parameters (CPU min and mem min).

Possibility of warning – there are two levels of

verification systems that send alerts (e-mails) if there is

an error or an interruption in the operation of the system.

One of them is activated during the execution of the

process and the other in case of congestion or errors that

occur on a single virtual server during the process of

adding or subtracting computer resources.

One of the motives for this research is the inefficient

use of computing resources in Web servers.

Consequently, they were selected as a concrete case for

the application and validation of the new model. Figure 7

contains a graphical representation of the entire solution

or model that should be applicable to n Web servers or n

Web clusters. The model was designed in a way that

supports the existing requirements and Web Farm

architecture. In other words, it is possible to scale all

system components if necessary.
As can be seen from Fig. 7, each one of the physical

servers has a new model component called the HOST
agent, whose main task is to verify and allocate
computer resources to the entire physical server. To do
this, it continually checks the other component of the
model called the VM agent. It is located on all virtual
servers and its task is to send reports about the status of
its own computer resources.

Evaluation

The environment on which the initial testing and
measurement of resource consumption was carried out is
shown in Figure 7. The main focus of the new model
will be on Web servers, in which, according to our
previous research research, the highest amount of
allocated resources whose consumption or occupancy is
not optimally utilized will be found. This is why the
other components of Web farms (classifiers of databases,
tools and supporting services) are marked in a lighter
shade (Fig. 8).

As already mentioned, one of the main goals of this

research is to provide an open source solution as well as

a detailed description of the overall environment in

which the research was done. The testing environment

encompasses three physical servers (HP ProLiant DL360

G7). All the three physical hosts feature the same

characteristics: 2 CPUs, both of them quad-core, 32GB

of RAM and a 140GB local hard drive.

Physical servers contain a total of nine virtual servers

with the following specifications: Two load balancers

(single-core CPU, 1 GB of RAM, 10GB local hard

drive), six web servers (single-core CPU, 0.6 GB of

RAM, 10GB local hard drive) and one database (quad-

core CPU, 4 GB of RAM, 20GB local hard drive).

Having described the testing environment, we will

describe the process of model validation. For the purpose of

validation, an application was developed based on the

model. Also, tests were carried out to simulate user requests

which account for the computer server resources load.

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

296

Fig. 7: Representation of the new solution on an example of Web servers

Fig. 8: An overview of the environment on which the testing and building of the new model was performed

The purpose of these tests was to verify whether it
is possible to add and subtract computer resources
(CPU and memory) without the need to restart the
server. Today, almost all operating systems have
implemented mechanisms to determine how much of
the system is active – i.e., when the system was last
booted. This mechanism was used to establish
whether the server would be resumed after the
allocation of resources. The experiment was
performed by means of the following tools for the
simulation of requests:

• ApacheBench – allows for simple and rapid tests

without an advanced configuration. The tool was

used in the first version of the model

• Apache JMeter – allows for advanced (parallel)

testing between multiple Web sites located on more

Web clusters. This tool was applied in the three

main evaluation tests

The main tests were developed on the basis of the
aforementioned preliminary research in which data
provided by several IT companies were used. Drawing on

End user

(Web client)

HTTP/

HTTPS

protoc

Reauest

Answer

Web farm 1

Web servers 1

Web servers 2

Web servers 3

 Web cluster
Web content

(static or dynamic)

Database cluster

Supporting tools

and services

Web farm 2

Web servers 1

Web servers 2

Web servers 3

Web cluster

Load

balancers

Database

cluster Supporting tools

and services

HOST agent

VM

agent
VM

agent

VM

agent

Web

server 11
Web

server 12
Web

server In

W
e
b
 c

lu
s
te

r 1

W
e
b
 c

lu
s
te

r 1

W
e
b
 c

lu
s
te

r n

VM

agent
VM

agent

VM

agent

Web

server m1
Web

server m2
Web

server mm

Physical server n

Web content

(static or dynamic)

Databse cluster
Supporting tools

and services

Load balancers

Physical server 1

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

297

the data such as the number of simultaneous users at a
given time, we defined tests that would yield results on
computer resources load (CPU and memory). Next, we
developed several groups of tests to verify the following
three options: Adding and subtracting computer resources,
advanced addition and subtraction of computer resources
and application on multiple Web clusters.

It should be noted that almost all system monitoring
tools gather data every five minutes, registering the
average value for the said period. This value is
predefined and fixed. Consequently, it is possible that at
particular times the intervals of values are even larger,
but are not displayed.

During the tests, the same algorithm was used in the
HTTP/HTTPS traffic load balancer. This algorithm, entitled
Weighted Least Connections, is mostly used when the
number of requests that a system can take is known. Based
on this information, the co-called focus is defined, that is
the maximum number of requests (connections) that a
single node (Web server) can process. The process takes
place cyclically, wherein are first taken to the node with the
highest number of free resources available for processing.
This approach ensures an equal load on all Web servers, a
single representative sample of which will be shown.

In the following subsection, tests will first be performed
without the usage of the new application that was developed
on the basis of the new model for automated and improved
utilization of the existing computing resources.
Subsequently, the same tests will be conducted again, this
time using the developed application. In both cases, the
computer server resources will be monitored. After the tests
have been completed, a comparison of the results will be
made to establish if the use of the existing computer

resources has been improved. If the new model proves
satisfactory, improved utilization of the existing computing
resources, when compared to the original solution (CPU –
i.e., the number of cores and memory) should be reflected
in the figures that represent the experiment results.

Conducting the Experiment

Following the analysis of real-world systems (taking
the number of user requests and resource load in a given
time as parameters), a more comprehensive experiment
consisting of several scenarios drawing on examples
from practice was defined, encompassing: A linear
increase or decrease in user requirements, sudden
increase or decrease in user requirements and sleep
(when there are few or no user requirements).

Figure 9 shows the parameters of the experiment in
the Jmeter tool that involved a number of simultaneous
users (user requests) alternating within a sixty-minute
period. As already mentioned, the time unit (or the
duration of the experiment) was not important, since in
this case value was system load. The main goal of this
experiment was to check the three aforementioned
scenarios identified in the real-world practice in a given
period (in this case, sixty minutes).

As can be seen in Fig. 9, the design of the experiment

allowed for all the three aforementioned scenarios to be

tested, namely: A linear increase or decrease in user

requirements, sudden increase or decrease in user

requirements and sleep.

Figure 10 shows the results of the conducted

experiment – i.e., the distribution of requests for

computing resources in the conducted experiment.

Fig. 9: Parameters of the experiment in Jmeter tool

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

298

Fig. 10: Number of requests in the conducted experiment

Fig. 11: Number of loadings per second in the conducted experiment

As can be seen in Fig. 10, the defined experiment

parameters match the figures showing the executed

requests, which is in accordance with our expectations.

The results of the executed requests (or the number of

loads per second) are shown in Fig. 11.

The results of the experiment performed with and

without the application that was developed on the basis of

the new model are presented in the following subsection.

Results

In order to verify whether the implementation of the
new model would allow for better utilization of the existing
computer resources (CPU and memory), two tests were
performed (with and without the usage of the application
developed on the basis of the new model, respectively).

In continuation, the load of only one virtual Web server

will be observed, since the Web farm architecture, which

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

299

consists of the HTTP/HTTPS system for the distribution of

requests, which ensures that each Web server receives the

same number of requests based on an algorithm.

The load of the processor and the number of cores

allocated for the test conducted without the usage of

the application developed on the basis of the new

model is shown in Fig. 12. The observed Web server

features four cores.

Figure 12 confirms the main premise of this research,

which is that there are times when the existing allocated

computer resources (in this case, the processor) are not

sufficiently used. It is also evident that there are two

periods when the system was overloaded, i.e., when the

allocated number of cores was insufficient to process the

number of user requests, which ultimately resulted in the

system running more slowly.

The memory load and memory allocation for the

experiment conducted without the usage of the

application developed on the basis of the new model can

be seen in Fig. 13.

Figure 13, the memory load is given in GB to show the

portion of the resources that were never used. The reason

why oscillations in memory load are not visible in the

figure is that their amplitudes are expressed in MB. The

memory load is fairly low because generic Web pages

were used to make the test repeatable for the purpose of

further research and improvement of the model.

From the results in Fig. 13 it can be concluded that

the system is never overload. However, such a state is

not efficient because there are resources (in this case, the

memory) that are under-utilized, which also confirms the

main premise of this research.

We further show the results of the test in which the

application developed on the basis of the new model

was used.

It is important to note that the same experiment

parameters (number of simultaneous users in a sixty-

minute period) were used here as in the first test.

The model was developed in such a way that it is

adaptable to particular systems – i.e., the administrator

himself decides on the system input parameters (global

parameters, initial parameters etc.). Since the system

administrator has the freedom to define the input

parameters, they are configured to utilize the processor

more efficiently as well as to increase or decrease the

memory at a given moment. These features of the model

again support the claim made in the first phase of the

experiment – i.e., that it is possible to add or decrease

not only the processors (number of cores), but also the

memory. Figure 14 represents the processor load and the

number of cores allocated for the conducted experiment

with the usage of the application developed on the basis

of the new model.

Figure 14 shows that a sufficient number of cores

were allocated throughout the experiment to execute user

requests, i.e., there were no periods in which a large

number of unused processors or overloads occurred. Fig.

15 represents the memory load and the memory allocated

to the conducted experiment using the application

developed on the basis of the new model.

Although it was already mentioned that the observed

system – i.e., Web sites, does not require a large amount

of memory, it is evident that in this case it was used far

more efficiently.

Namely, the deviations were below 2 GB (as defined by

the administrator), which is much better than the case when

the application developed on the basis of the new model

was not used. The periods in which a memory increase or

decrease occurred were intentionally adjusted by setting the

input parameters (upper and lower permissible load limits)

to once again prove that it is possible to add or decrease

memory during server operation.

Fig. 12: Processor load and the number of allocated cores for the experiment conducted without the usage of the application

developed on the basis of the new model

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

300

Fig. 13: Memory load and memory allocation for the experiment conducted without the usage of the application developed on the

basis of the new model

Fig. 14: Processor load and the number of allocated cores for the experiment conducted using the application developed on the basis

of the new model

Fig. 15: Memory load and memory allocation for the experiment conducted using the application developed on the basis of the new model

From all of the above, we can conclude that the usage

of the proposed model in virtualized systems allows for

better utilization of the existing computing resources

(CPU and memory) with respect to the original state.

Discussion

In comparison with the existing solutions, the new
model proposed in this study should provide: More

efficient use of the existing resources, higher system
availability, advanced resource allocation, open source
solution, higher financial profitability, simplicity of use
and environment friendliness.

More Efficient use of the Existing Resources

The model enables higher resource utilization with a
smaller number of virtual servers because it is possible
to add and subtract resources (CPU and working

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

301

memory) without the need to restart the virtual server. In
other words, the system always uses as much resources
as needed for proper operation and does not need to start
another instance of the virtual server that would cause
additional energy consumption.

Higher System Availability

the system has a faster response – i.e., a faster
increase in resources in the case of system load. This is
because it is not necessary to restart the virtual server in
order to change the resources.

Advanced Resource Allocation

Within the existing solutions, resources are allocated
linearly to the maximum permissible limit. Based on the
speed of seizing free resources, the new model should be
able to assess the level of resources necessary for the
optimal functioning of the system. This method of
allocation of resources is intended to allow virtual
servers to more easily manage emergency situations
when a sudden increase in requests occurs.

Open Source Solution

Today there are many commercial solutions that do not
only fail to solve the problem, but are very expensive and
demanding in terms of computing resources needed for
their proper functioning. For the sake of social contribution,
the entire solution will be open source, which is also one of
the main goals of this research. The overall test
environment in which our research will be conducted will
be described in detail so that the application and model
verification can be repeated as easily as possible for the
purpose of further improvement and research by other
authors that may be interested in this topic.

Higher Financial Profitability

Multiple use of the existing resources enables a lower
number of required servers, both virtual and physical. A
smaller number of servers in turn results in: Simpler
infrastructure, lower maintenance and hardware
replacement costs, lower monthly expenses of the data
center (e.g., electricity and air conditioning) etc. All of
these are ultimately reflected in lower OPEX costs.

Simplicity of Use

The new solution applies only to automated and

optimized allocation of computing resources, as opposed to

existing solutions that are usually expensive, complex and

unspecialized. For their proper use and configuration,

experts with years of experience in particular

aforementioned areas are often needed, or it is necessary to

provide additional staff training and certification. Such

complex systems and platforms usually consume additional

system resources to function normally, unlike the new

solution which does not feature restrictions such as the

minimum necessary computer resources in order to work.

Environment Friendliness

Last but not least, an indirect effect of the new
solution is its environment friendliness, owing to a
smaller number of servers. Electricity which is used in
most data centers does not comply with ecological norms
and standards as it does not come from renewable
sources of energy. The new solution operates with fewer
servers, enabling greater efficiency and better results,
which ultimately results in lower power consumption.

From the above, it can be seen that the new model
should be able to address many of the disadvantages of the
existing solutions, since it allows for automated and
improved distribution of the existing computing resources.

Conclusion

This paper presents a new model for automated and
improved utilization of existing computer resources on an
example of Web servers. In the literature review at the
beginning of this paper, it was established that servers are
the main cause of high costs of data centers, which was
subsequently argumented. Additional analysis revealed
that there are systems such as Web farms where the
existing computer resources are underused. Ultimately,
such a solution should not only enable easier maintenance
of the system, but also result in large financial savings.

A detailed study of previous scientific research and
solutions from practice led us to conclude that the
problem of insufficient utilization of existing computer
resources has so far not been effectively resolved, which
also motivated us to conduct this research. One of the
disadvantages of the existing solutions is that they do not
address the issue of using the existing resources more
efficiently. Instead, they usually add new servers or
migrate virtual servers to other physical servers in
critical situations, for which even more computer
resources are needed. The second common approach to
solving this problem is the process prioritization,
whereby servers that require resources are given the
highest priority in executing the process. The
disadvantage of this approach is that resources cannot be
increased or reduced, only prioritized, which still results
in inclusion of resources that are not being used. Another
shortcoming of the existing solutions is that it is not
possible to add or decrease computer resources (CPU
and memory) without restarting the server. Furthermore,
a large number of the existing solutions focuses only on
CPU or memory, but not on both. Finally, the existing
solutions do not provide an advanced resource allocation
option that would enable resources to be decreased or
added faster during critical moments.

In order to validate the new model, an application
was developed to be applied to Web servers, where the
problem of inefficient use of computer resources had
been recognized. Several tests were run that showed
highly satisfactory results because it was possible to
subtract and add resources (CPU and memory) without

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

302

the need to restart the server. This new application, unlike
the currently available solutions solutions, uses the existing
computer resources more efficiently and does not depend
on the number of user requests. The only limitation in
this case are the resources of the physical server itself,
which was to be expected. Although the main objectives
of this research were achieved, it is possible to further
improve and upgrade the system. This may be done by
developing a Graphical User Interface (GUI) that would
make it easier to manage parameters such as the
maximum and minimum limits of resources per Web
server, selectable models of resource exchange (LA or
INCREMENT), minimum of free memory etc.

The target audience for this research includes small

and mid-sized IT companies, which cannot afford a

variety of commercial solutions, often spending a great

deal of money on computer resources. The other target

group is the academic community with regards to further

research on this topic. In our future work we therefore

intend to describe the entire solution in detail, from its

infrastructure to the description of the system and the

test environment. It is important to note that the entire

solution will be open source in order to be more

accessible for further improvements and enhancements.

Author’s Contributions

Dino Alagić: The main responsible author for the

literature review. Contributed in preparation and writing.

Ivan Magdalenić: The author responsible for review

preparation and improvements. Contributed in preparation,

organization and supervision.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Amazon Web Services, 2017. Amazon EMR developer

guide. Amazon Web Services.

Beloglazov, A., J. Abawajy and R. Buyya, 2012.

Energy-aware resource allocation heuristics for

efficient management of data centers for Cloud

computing. Future Generation Comput. Syst., 28:

755-768. DOI: 1016/j.future.2011.04.017

Boche, J., 2009. vSphere Memory Hot Add/CPU Hot

Plug. Boche.

Celesti, A., F. Tusa, M. Villari and A. Puliafito, 2011.

An approach to enable cloud service providers to

arrange IaaS, PaaS and SaaS using external

virtualization infrastructures. Proceedings of the

2011 IEEE World Congress on Services, Jul. 4-9,

IEEE Xplore Press, Washington, pp: 607-611.

DOI: 10.1109/SERVICES.2011.92

Cherkasova, L., D. Gupta and A. Vahdat, 2007.

Comparison of the three CPU schedulers in Xen.

ACM SIGMETRICS Performance Evaluation Rev.,

35: 42-51. DOI: 10.1145/1330555.1330556

Corsava, S. and V. Getov, 2003. Intelligent architecture

for automatic resource allocation in computer

clusters. Proceedings of the International Parallel

and Distributed Processing Symposium, Apri. 22-

26, IEEE Xplore Press, Nice, France.

 DOI: 10.1109/IPDPS.2003.1213369

Coughlin, F., 2016. Onboarding Microsoft Hyper-V

resources. BMC Software, Inc.

Docker Inc., 2015. Building a Continuous Integration

Pipeline with Docker. Docker Inc.

Frachtenberg, E., F. Petrini, J. Fernandez and S. Coll,

2002. Scalable resource management in high

performance computers. Proceedings of the IEEE

International Conference on Cluster Computing, Sept.

26-26, IEEE Xplore Press, Chicago, pp: 305-314.

DOI: 10.1109/CLUSTR.2002.1137759

Gruber, C.G., 2009. CAPEX and OPEX in Aggregation

and Core Networks. Proceedings of the Conference

on Optical Fiber Communication - Incudes Post

Deadline Papers, Mar. 22-26, IEEE Xplore Press, San

Diego, pp: 9-11. DOI: 10.1364/OFC.2009.OThQ1
Guan, H., R. Ma and J. Li, 2014. Workload-Aware

Credit Scheduler for Improving Network I/O
Performance in Virtualization Environment. IEEE
Trans. Cloud Comput., 2: 130-142.

 DOI: 10.1109/TCC.2014.2314649
Halbe, S., 2015. Hyper-V. BMC Software, Inc.
HPED, 2016. Hewlett packard enterprise development

LP, 2016. Eucalyptus 4.2.2 Administration Guide.
Build 3221.

HPE Helion Eucalyptus, 2015. General purpose
reference architecture: HPE helion eucalyptus. HPE
Helion Eucalyptus.

Ichikawa, Y. and N. Komoda, 2016. Scenario-Based

Task Executor for IT Resource Management.

Proceedings of the 5th IIAI International Congress

on Advanced Applied Informatics, Jul. 10-14, IEEE

Xplore Press, Kumamoto, pp: 888-893.

 DOI: 10.1109/IIAI-AAI.2016.250
IMB, 2016. Server virtualization with IBM PowerVM.

IBM, Inc.
Islam, S.S., M.B. Mollah, I Huq and A. Ullah, 2012.

Cloud computing for future generation of computing

technology. Proceedings of the IEEE International

Conference on Cyber Technology in Automation,

Control and Intelligent Systems, May 27-31, IEEE

Xplore Press, Bangkok, pp: 129-134.

 DOI: 10.1109/CYBER.2012.6392539

Dino Alagić and Ivan Magdalenić / Journal of Computer Science 2018, 14 (2): 286.303

DOI: 10.3844/jcssp.2018.286.303

303

Ismail, U. and B. Sheikh, 2016. Continuous Integration

and Deployment with Docker and Rancher. 1st Edn.,

Rancher Labs.

Ivan, B., 2008. Samooblikujuća arhitektura sustava

zasnovanih na uslugama. PhD Thesis, University

of Zagreb.

Herrmann, J., D. Parker and S. Radvan, 2015. Red Hat

Enterprise Linux 7 Virtualization Tuning and

Optimization Guide. 1st Edn., Red Hat, Inc.,

North Carolina.

Larson, R., 2016. Controlling processor resources in

hyper-v guests. VirtualizationAdmin.

Li, Y., H. Wang, J. Dong, J. Li and S. Cheng, 2013.

Operating cost reduction for distributed Internet data

centers. Proceedings of the 13th IEEE/ACM

International Symposium on Cluster, Cloud and

Grid Computing, May 13-16, IEEE Xplore Press,

Delft, pp: 589-596. DOI: 10.1109/CCGrid.2013.106

Lowe, S., 2013. vSphere 5.1: Hot add RAM and CPU.

VirtualizationAdmin.

Ma, F., F. Liu and Z. Liu, 2012. Distributed load

balancing allocation of virtual machine in cloud data

center. Proceedings of the IEEE 3rd International

Conference on Software Engineering and Service

Science (ESS’ 12), pp: 20-23.

Marrone, S. and R. Nardone, 2015. Automatic

resource allocation for high availability cloud

services. Procedia Comput. Sci., 52: 980-987.

DOI: 10.1016/j.procs.2015.05.176

Microsoft, 2014. Hyper-V dynamic memory overview.

Microsoft.

Mitchell Anicas, How To Resize Your Droplets on

DigitalOcean. DigitalOcean.

OpenStack, 2016. OpenStack documentation.
Pham, V., E. Larsen, Ø. Kure and P.E. Engelstad, 2010.

Gateway load balancing in future tactical networks.
Proceedings of the IEEE Military Communications
Conference MILCOM, Oct. 31-Nov. 3, IEEE Xplore
Press, San Jose, pp: 1844-1850.

 DOI: 10.1109/MILCOM.2010.5679555
Rodge, A.S., C. Pramanik, J. Bose and S.K. Soni, 2015.

Multicast routing with load balancing using amazon
web service. Proceedings of the Annual IEEE India
Conference, Dec. 11-13, IEEE Xplore Press, Pune.
DOI: 10.1109/INDICON.2014.7030543

Sampson, J. and D.M. Tullsen, 2012. Battery
provisioning and associated costs for data center
power capping. UC San Diego.

Song, X., J. Shi, H. Chen and B. Zang, 2013. Schedule

processes, not VCPUs. Proceedings of the 4th Asia-

Pacific Workshop on Systems, Jul. 29-30,

Singapore, pp: 1-7. DOI: 10.1145/2500727.2500736

Soundararajan, V. and B. Herndon, 2014.

Benchmarking a Virtualization Platform.

Proceedings of the IEEE International

Symposium on Workload Characterization, Oct.

26-28, IEEE Xplore Press, Raleigh, pp: 99-109.

DOI: 10.1109/IISWC.2014.6983049

Teodoro, G., T. Tavares, B. Coutinho, W. Meira and D.

Guedes, 2003. Load balancing on stateful clustered

Web servers. Proceedings of the 15th Symposium

on Computer Architecture and High Performance

Computing, Nov. 12-12, IEEE Xplore Press, Sao

Paulo. DOI: 10.1109/CAHPC.2003.1250340

VMware, 2015. Performance best practices for VMware

vSphere.

VMware, 2009. Understanding memory resource

management in VMware® ESXTM server.

VMware, Inc.

VMware, 2011. vSphere 5 documentation center.

VMware, Inc.

VMware, 2012. vSphere resource management. EN-

000793-00.

Wiboonrat, M., 2014. Life cycle cost analysis of data

center project. Proceedings of the 9th International

Conference on Ecological Vehicles and Renewable

Energies, Mar. 25-27, IEEE Xplore Press, Monte-

Carlo. DOI: 10.1109/EVER.2014.6844139

Yanmaz, E., O.K. Tonguz and R. Rajkumar, 2005. Is

there an optimum dynamic load balancing scheme?

Proceedings of the GLOBECOM - IEEE Global

Telecommunications Conference, Nov. 28-Dec. 2,

IEEE Xplore Press, St. Louis, pp: 598-602.

 DOI: 10.1109/GLOCOM.2005.1577694

You, X., J. Wan, X. Xu and J. Zhang, 2011. ARAS-M:

Automatic resource allocation strategy based on

market mechanism in cloud computing. J. Comput.,

6: 1287-1296. DOI: 10.4304/jcp.6.7.1287-1296

Zhanjun, Z., Y. Xueliang and H. Chengde, 2000. Key

issues of resource management in distributed

multimedia computer systems. Proceedings of the

International Conference on Communication

Technology, Aug. 21-25, IEEE Xplore Press, Beijing,

pp: 1628-1632. DOI: 10.1109/ICCT.2000.890972

