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Abstract: Carpooling consists of sharing individual vehicle space among 
people with comparable trajectories. Although there are some software 
initiatives to help carpooling practice, none of them really implements 
features similarly to searching for people with similar trajectories and 
profile. In this study, we propose an innovative approach to generate 
clusters of users that share similar trajectories and profile for carpooling 
purposes based on Optics, K-means algorithm and ensemble learning. First, 
we provide a proper definition of fundamental elements of the carpooling 
context in order to contribute to a standardization of the concerning 
nomenclatures. Next, we perform four different experiments for the purpose 
of showing the feasibility of the approach. We also contribute to the 
construction of a real dataset (donated to UCI), properly depicted, used in 
two of these experiments. Results with Davies-Boulding index indicate that 
the generated clusters are feasible to the design of a carpooling 
recommendation system. Time performance evaluation of the approach has 
been also performed for both dynamic program analyses via software 
profiling method and time complexity analysis according to Big O notation.  
 
Keywords: Carpooling, Trajectory Similarity, User Profile Similarity, 
Clustering 

 
Introduction  

Traffic jams are a serious concern in metropolitan areas 
(He et al., 2012). Economic losses, health issues and 
environmental damages are some of the known 
consequences (Resende and Sousa, 2009; Currie and 
Walker, 2010; Levy et al., 2010; Hart et al., 2009). 
According to the DENATRAN (Brazilian National 
Department of Traffic), the number of vehicles has 
increased more than 100% in the last 10 years 
(DENATRAN, 2013). An alternative to avoid the 
congestion is to adopt the policy of restricting traffic for 
private cars. For example, in Beijing, China, the 
government has adopted these solutions to solve the 
problem of the one worst traffic in the world. Although it is 
a solution, the traffic is still critical in peak hours. (He et al., 
2014). Since the USA suffered a loss of almost $78 billion 
in 2007 due to traffic jam issues (Schrank and Lomax, 
2007), a lot of measures has been adopted to reduce the 
problem such as: Improve traffic light synchronization 
(He et al., 2014), building new roads/avenues, 
encouraging the use of bicycles as daily transportation and 

improvements in public transportation. 
Carpooling (share individual vehicle space among 

people with similar destinations) is a typical solution 
used by some nations to avoid the problems generated by 
the increase traffic condition. However, this solution is 
strongly related to some cultural aspects (Gowri, 2008; 
Matos et al., 2014). Sharing cars’ empty seats may be 
seen as an optimization method if we consider, for 
instance, the low occupancy rate per vehicles in traffic 
(He et al., 2014). In 2011, a research conducted by the 
Michigan University has shown an occupancy rate of 1.5 
in the U.S.A. Such occupancy rate is easily decreased to 
1.4 if we consider only ”home->work” or ”work->home” 
trajectories. In other words, there are plenty of vehicles 
with just the driver inside (Ghoseiri et al., 2011).  

There are software initiatives to facilitate the 
carpooling’s practice. Caronas Brasil (Azzam and Bellis, 
2008), Zumpy, Poolmyride, BlaBlaCar (Mazzella, 2004), 
Go! (Matos et al., 2014), Carma (O’Sullivan, 2015), 
Carticipate (Frost, 2015), BeepMe, Lyft (Zimmer and 
Logan, 2012) and Bynd are some examples. However, to 
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date, few of them have had commercial success 
(Ghoseiri et al., 2011). Some services provided by that 
software require that interested users execute a search for 
people who offer a ride with the same or alike 
trajectories. In some cases, it’s not so simple to find this 
trajectory. Another problem is the fact that the driver and 
the passenger are unfamiliar. This kind of information 
contributes to the increasing of trust among users of the 
services (Furuhata et al., 2013). There are other factors that 
may discourage carpooling: The presence of a smoker, 
features of the vehicle itself, some aspects of the driver’s 
profile (Agatz et al., 2012) and gender (Levin et al., 1977). 
The ridematching procedure has been proposed to deal 
with these issues and suggest the carpooling formation 
instantaneously (Agatz et al., 2012). It promises to 
facilitate the matching process among candidates by 
correctly attributing users who want to get a ride to 
users that offers. 

Currently, the propagation and the facility of use of 
smartphone apps, the Global Position System (GPS) and 
APIs like GoogleMaps allow people to track their own 
trajectories and share them broadly: GPS-Way-Points, 
Share-My-Route, Bikely, Facebook (Shang et al., 2012). 
These shared data can be used to the development of a lot of 
impressive characteristics such as: Mining frequent 
trajectories (Savage et al., 2010), finding similar trajectories 
(Pelekis et al., 2007), mining Points of Interests (POIs) 
(Telles et al., 2012), find out sub-trajectories and so on. 
He et al. (2014) and Lee et al. (2007) have tried different 
approaches of mining trajectory to provide ridematching 
among users. Surely, most research centers on the 
improvement of the trajectory mining process, but few 
propose an effective approach to define the suitable 
granularity level of GPS-based trajectory and none have 
properly formalized central elements and features of 
carpooling context. As a consequence, a range of terms with 
the same meaning is used in different works and may 
confuse the reader: Route (He et al., 2014) or trajectory 
(Lee et al., 2007), a driver (Furuhata et al., 2013), passenger 
or riders (Agatz et al., 2012), etc. Finally, in the context of 
carpooling, few academic types of research consider both 
similarity of profile and trajectory (Furuhata et al., 2013; 
Yan and Chen, 2011). 

Cruz et al. (2015) propose a clustering approach to 
trajectories in the context of carpooling. This paper aims 
to extend the work of (Cruz et al., 2015) along three axes: 
(i) Propose (semi-formal definition of the elements of the 
carpooling context, towards a standardized nomenclature, 
(ii) Add users’ profiles to the clustering approach and (iii) 
Provide a proper evaluation of the trajectories’ dataset 
(GO! Track) used to train the clustering model.  

In section 2 we provide proper definitions to the 
elements of carpooling context. In Section 3, we describe 
our approach to generating user’s clusters with similar 
profiles and trajectories. In Section 4, we present the 

experiments and discuss the results. We conclude the 
work in section 5.  

Formalization 

Definition 1: 

Trajectory is a sequence of multi- dimensional points. 
These points are discrete and finite and they are 
represented by Tr = {p1, p2, p3,...,pn}. Here, p is a 3-
dimensional point: Latitude, longitude and time-stamp, p 
= {lat, lng, t}.  

Definition 2: 

Driver is the user who shares a vehicle with the 
passenger and has similar trajectory with all passengers. 
Tr(d) is a trajectory that pertains to the driver. In this 
study, Tr(d) ~ U = {T r(a1), (a2), ..., T r(an)} means that 
the driver's trajectory and passengers’ trajectory are 
similar. In such case, dist(Tr(d), Tr(ai)) ≤ r, where dist() 
is some distance function and r is a limit constant. 

Definition 3: 

A vehicle is defined as any means by which someone 
may travel: A car, a motorcycle, etc. Here, a vehicle is 
represented by V, where V(d) is a vehicle that belongs to 
the driver d.  

Definition 4: 

Passenger is a user who shares a vehicle with a 
driver. Tr(a) is a trajectory that belongs to a passenger a. 
In this study, Tr(a)  ≃ T r(d) means that the driver's 
trajectory and passenger Os trajectory are similar. 

Definition 5: 

Ride is described as a form to share a private vehicle 
space among people with similar trajectory and interests. 
A ride is represented by R = (V (d), d, Tr(d), A), where 
V(d) is driver’s vehicle, d is a driver, Tr(d) is a driver’s 
trajectory and A is the set of passengers.  

Definition 6: 

Origin is defined as the first point p1∈Tr of each 
trajectory.  

Definition 7: 

Destination is defined as the last point pn∈Tr of each 
trajectory. 

Method 

Our approach extends clustering trajectory proposed 
by (Cruz et al., 2015) with K-means (Macqueen, 1967) 
algorithm as follows. Given a set of users, U = {S1, S2, 
…, Sn}, where each Si is denoted by a tuple set by a 
user’s trajectory Tri and user’s profile Pi, Optics* 
generates a set of cluster A = {C1, C2, ..., Cn}, where each 
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Ci = {Tr1, Tr2, ..., Trn} denotes a set of user’s trajectory 
and it has at least one trajectory from a user called driver 
d that gives a ride. Next, K-means produces a set of 
cluster B = {X1, X2,..., Xn}, where each Xi = {P1, P2, ..., 
Pn} represents a set of user’s profiles. Finally, the set of 
clusters A and B are combined using an ensemble 
approach. The result is a set of clusters R of users related 
profile and trajectory. 

Figure 1 describes the entire method. Perceive that the 
clustering process takes into account proper distances 
between trajectories and social distance between user’s 
profile. The method is split into five principal steps: (i) 
Defining the granularity of user’s trajectory, (ii) Temporal 
filter, (iii) Optics clustering, (iv) K-means clustering and 
(v) Relabel and intersection clusters. Since the first three 
steps are properly described in (Cruz et al., 2015), we 
present them briefly. 

Trajectory’s Granularity 

Considerer U a set of user’s trajectories. Each trajectory 
contains points that was collected in the short time 
interval. Because of this, it’s necessary to reduce it. 
RotaFacil (Telles et al., 2012; 2013) dramatically reduces 
the number of trajectory’s points by detecting Points of 
Interest (POIs) (Fig. 2). A new subset U’ is thus generated. 

Temporal Filter 

Figure 2 POIs within a circumference for a given radius. 
A temporal filter is a way of processing a pipeline in 

other to find similar trajectories with similar departure 
and destination times. Surely, it is irrelevant clustering 
together Tr(d) and Tr(a) if departure and/or destination 
times of users d and a are very different, even though 
Tr(d) ≃ Tr(a). Regarding t the time of departure ride 
and x as a bound that user is prepared to accept requests 
for a ride, the width of the filter is the interval [t − x, t + 
x]. For instance, a user d can offer a ride with departure 
time at 6 am and inform a boundary of 30 min earlier or 
later t to accept a request for a ride in an interval of [5: 
30, 6: 30]. 

Optics Clustering 

The clustering trajectory is performed by an 
adaptation of Optics* algorithm (Ankerst et al., 1999). 
Figure 3 illustrates algorithm’s behavior. Tr(a) belongs to a 
passenger a who wishes to get a ride whereas Tr(d) belongs 
to the driver. The similarity only takes into account origin 
and destination points of the passenger Os trajectory. 

 

 
 

Fig. 1: The method illustrates the step-by-step to reach three types of clusters 
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Fig. 2: POIs within a circumference for a given radius 
 

 
 

Fig. 3: The approach used to define the similarity between two trajectories 

 
Cosine function has been used to compute the similarity 

(Theodoridis et al., 2010) between two users sim(Pi, Pj): 
 

( , ) cos( )
,

i j

i j

i j

P P
sim P P

P P

⋅
= θ =  (1) 

 
Relabel and Intersection 

Relabel strategy is a way to arrange clusters granted 
similar as exhibited in Fig. 4. 

The result obtained by Optics* and K-Means are two 
partitions (A and B) that are processed by Hugarian 
Algorithm. These algorithms will have relabeled the 
partitions to verify which clusters have more users in 
common. Consider, for instance, that cluster C1 has 4 
users with comparable trajectories and cluster X2 has 10 
users with similar profiles. If we are in mind that all 
combinations between A and B, X2 and C1 are clusters 

that have more users in common.  
Figure 5 illustrates relabeling process. The columns and 

rows represent the partitions and the users respectively. The 
permutation is used to align the most alike clusters. Users 
that belong to alike clusters will make part of the final 
clusters. This work uses trajectory partition as a reference 
partition which is used as the support to align other 
partitions. As Fig. 4 and 5 show, the voting approach is not 
used fully because, in our context, there is no need to vote 
to generate final clusters with just two partitions.  

The consensus functions (represented by τ on Fig. 4) 
considers the intersection between clusters:  
 
( , )

i j i j
C X C Xτ = ∩  (2) 

 
because the partition D is resulted from two others 
partitions: A and B. These final partition is composed by 
clusters with users that have similar trajectory and profile. 

 POIs 
Tr(d) 

 
User d  Tr(a) 

 User a 
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Experiments 

We have conducted four experiments to prove the 
feasibility of the ridematching with trajectory and profile. 
The first two experiments were based on (Cruz et al., 2015). 
The difference is that we will use a larger real dataset and 
show the result produced using Optics*. Third experiment 
shows the results of Optics and K-means using the clusters 
of user’s profile. Finally, the fourth experiment presents 
results that were obtained from clusters with users that have 
both trajectory and profile similarity.  

Datasets 

Three different datasets have been used. The first 
consists of trajectories of users driving cars or taking 
buses collected by the Go!Track app. The second 
consists of trajectories that were roduced by Rota Facil 
artificially. It was produced 500 trajectories. The third 
dataset consists of 500 registers of profile attribute also 
artificially produced. 

GO!Track Dataset 

The Table 1 presents the first dataset. A total of 445 
trajectories from 65 different mobile devices were collected 
between September 2014 and March 2016 in the city of 
Aracaju/SE. Each trajectory is a set of points obtained at an 
interval of 0.5 sec (for car) and 10 sec (for bus). The values 
of these parameters were defined empirically. 

Table 2 and 3 show the fields of the dataset. First 
table stores the collected trajectories and the second one, 
latitude and longitude mainly.  

Figure 6 a trajectory instance and corresponding data. 
The present version of the dataset includes an important 

set of streets and avenues of Aracaju city. We have plotted 
all the dataset points on Aracaju city map (Fig. 7).  

In addition, Table 4 lists the top-20 most visited 
traffic roads by GO! Track users, according to the 

number of trajectories (#T) that actually used it. This 
was accomplished by the Google Geocode API. The 
column number of points (#P) shows the number of 
points presented in that traffic road, regardless of the 
trajectory. We highlight the known principal city traffic 
roads according to traffic density during peak hours. 

Many useful applications use date-time data to 
predict traffic states or traveling time. Coming graphs 
provide relations between geographic points and the 
time. The graph of Fig. 8 presents the similarity between 
the trajectories and date-time. 

The x-axis represents the 163 trajectories and the y-
axis the time bands. Each line in the graph represents a 
trajectory: The higher the line, more time has been spent 
in the trajectory regardless of the traveled distance. 
Points represent the city in a diverse range of times, 
allowing to observe situations where the traffic is 
probably increased (peak time). 

 
 
Fig. 4: The approach used to relabel and realign clusters 
 

 
 
Fig. 5: Basic relabel and assembly final clusters 
 
Table 1: GO!Track dataset 

Measures Values 
Num. of trajectories  445.00 
Num. of different devices  65.00 
Mean of points by trajectory 111.08 
Num. of car trajectories  328.00 
Num. of bus trajectories  117.00 
Num. of points collected by cars 44715.00 
Num. of points collected by buses  3918.00 
Distinct Address visited  358.00 
 
Table 2: Collected trajectories  

Field Description 

id A unique key to identify each tra jectory. 
id_android An identifier for each device that was used to 
 collect trajectories. 
Time the duration of the pathway in minutes. 
Distance The distance of the trajectory in a kilometer. 
Speed Average speed during all pathway. 
Rating The user evaluation of the traffic. 
Line Information about the bus that does the pathway 
 (available just in bus case).  
car_or_bus indicates if the trajectory was collected by a car or 
 a bus. 
rating_weather indicates the conditions of the weather 
 available just in bus case). 
rating_bus indicates the quality of the travel (available 
 just in bus case).  
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Table 3: Geographic points 

Field Description 
Id A unique key to identify each point 
Latitude Latitude from where the point is  
Longitude Longitude from where the point is  
Track_id The trajectory to which the point belongs 
Time Date-time the point was collected  
 
Table 4: Most visited traffic roads in Aracaju according to GO!Track users 

Order Address #T #P 
1 R. Boa Viagem  48 527 
2 Av. Pres. Tancredo  38 1068 
3 Av. Beira Mar 34 1216 
4 Av. Ivo do Prado 23 581 
5 Av. Mário J. M. Vieira  22 571 
6 Av. Simeão Sobral 21 141 
7 Av. Des. Maynard  21 950 
8 BR-235 19 56 
9 Av. Confiança  18 137 
10 SE-100 18 280 
11 Av. Eng. Gentil Tavares 14 253 
12 Av. Adélia Franco 14 271 
13 Av. Filadelfo Dória 14 34 
14 Av. Dr. José S. R. Filho 14 184 
15 R. de Muribeca 14 117 
16 Av. Barão de Maruim 13 196 
17 Av. Antônio Cabral 13 123 
18 Av. Coelho e Campos 13 69 
19 Av. Farmacêutica C. R 13 158 
20 Av. João Ribeiro 13 265 
 

 
 

Fig. 6: A trajectory instance and corresponding data 
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Fig. 7: Streets and avenues of Aracaju city in the GO! Track dataset 

 

 
 

Fig. 8: The relationship between trajectories and the date-time 
 

Similarly, the graph of Fig. 9 shows the relation 
between each of the top-20 most visited traffic roads 
(street and avenues) and the specific instant it was 
visited. We have considered a daily time interval, in 
particular, at peak hours. 
The experiments were realized using the follow 
parameters adjustment. For experiments one and two 

the value of the parameter ε was set to 100, 150, 200 
and 300 m. The MinPts was set to 2 and 3. We have 
assumed that 100 to 300 m are moderate distance 
limits for a user who wants a ride to move towards the 
destination point of an offering ride. The values 50, 
150, 200 and 250 were set to parameter ε which is 
used in cluster extraction algorithm. 
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Fig. 9: The relationship between traffic roads and the date-time 
 

In the case of experiments three and four, it was 
adjustment five attributes: (i) Gender (binary), (ii) 
reputation (discrete), (iii) age (discrete) [child = 0, teenager 
= 1, juvenile = 2, adult = 3, elderly = 4], (iv) smoking 
(binary), (v) music (discrete) [poprock = 0, heavymetal = 1, 
classic = 2, jazz = 3, reggae = 4]. All the attributes have 
been normalized in order to provide variance 1 and mean 0. 
Evaluation Metrics 

Davies-Boundin Index (DBI) the clustering task. 
Equation 3 (Theodoridis et al., 2010) was used to 
evaluate defines the DB value:  
 

1

1
max

( , )

n i j

i j

i j

DBI
n d c c

≠

 σ + σ
=   

 
∑  (3) 

 
where, n is the number of clusters, ci and cj is the 
centroid of each cluster. The αi and αj are the similarity 
measures for clusters ci and cj.  

The values generated by Equation 3 reflect how 
similar the elements of the same cluster are, as well as 
the dissimilarity among different clusters. Smaller DBI 
values are better.  

Experimentation Results 

Table 5 shows the results of the first experiment. The 
radius used in granularity definition step was 25 m. The 
best result occurs when ε was 150 and MinPts were 
smaller than 3.  

Table 6 shows a little contrast compared with Table 

5. For example, the best results occur when MinPts was 
bigger than 2. The radius used in the granularity 
definition step was 30 m.  

Table 7 shows the results of the second experiment. 
The DBI values among three algorithms are similar. ε 
directly influences clusters’ size according to 
experimentation. One ε that is “big” enough will produce 
good results. Unlikely, small ε will generate a plenty of 
objects with a reachability-distance value equal to 
undefined. Here, as well as in the work (Cruz et al., 
2015) neither method was used to deduce the ideal ε.  

The results of the third experiment are shown in 
Table 8. The experiment presents a comparison of 
clustering methods in regard to the user’s profile. First, 
we show the results for Optics and next for K-means. 
We can verify that K-means has better results when the 
number of clusters grows up.  

As a consequence of such results, K-means has been 
used to generate profile clusters in the fourth experiment.  

Table 9 shows the results of ensemble learning 
approach to provide clusters of users with similar 
trajectories and profiles. The results have been achieved 
by the matching of trajectory clusters generated by 
Optics* and profile clusters got with K-means.  

Table 9 shows the Number of Final Clusters (NFC), 
Davies-Boulding Index related to the Trajectory (DBIT) 
and Davies-Boulding Index related to Profile (DBIP). It 
shows the results of the Optics* and K-means considering 
the Number of Clusters (NC) once the ensemble learning 
approach by DBI metrics is done. DBI metrics is 
better when a number  of  clusters  are larger (NC≥40). 
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Table 5: Results for the dataset with real trajectories and 
radius = 25 

ε  MinPts ε'  NC DBI 

100 2 50 29 0.9203 
100 3 50 7 0.9202 
150 2 100 46 0.6074 
150 3 100 16 1.1775 
200 2 150 57 0.6179 
200 3 150 24 1.4444 
300 2 250 61 0.6597 
300 3 250 25 0.7490 
 
Table 6: Results for the dataset with real trajectories and 

radius = 30 

ε  MinPts ε'  NC DBI 

100 2 50 27 1.261 
100 3 50 8 0.614 
150 2 100 35 1.234 
150 3 100 13 0.683 
200 2 150 49 1.141 
200 3 150 17 0.997 
300 2 250 51 1.119 
300 3 250 26 1.385 
 
Table 7: Results of 2nd experiment: Artificially generated dataset 

ε  MinPts ε'  NC DBI 

100 2 50 39 0.7868 
200 2 150 54 0.8860 
200 3 150 34 0.7235 
250 2 150 62 0.8968 
250 3 150 36 1.0164 
300 2 100 48 0.7946 
 
Table 8: Results of 3rd experiment: artificially generated dataset 

ε  MinPts ε'  NC DBI 

0.5 4 0.1 4 1.5949 
0.5 3 0.1 54 2.7418 
0.5 2 0.1 34 3.3514 
   k 
0 0 0.0 4 2.1671 
0 0 0.0 15 2.5023 
0 0 0.0 103 1.4670 
 
Table 9: Results with an artificially generated dataset 

NC NFC DBIT DBIP 

68 10 0.6089 1.1867 
44 11 0.5095 0.9953 
66 11 0.6619 1.5094 
68 8 0.3772 3.3514 
 
Table 10: Profiling method analysis 

Function Number of call Total time Cumulative time 
Math.cos 13317696 1.846 1.8460 
Distance 1902528 16.182 22.2970 
Neighbors 408 150.000 24.2230 
Mean 40 0.040 0.0053 
 

These results are probably due to the artificial dataset which 
doesn’t have many user’s trajectories with the similarity 

less than 200 m or user’s profile aren’t so similar according 
to values used in this study. 

Complexity Analysis 

We have provided some time analysis for our approach. 
Firstly, we used the software profiling method which is a 
form of dynamic program analysis. Next, we calculated the 
time complexity estimation according to big O notation.  

The cProfile library enables software profiling analysis. 
The profiling was used with the purpose to determine which 
part of the method should be optimized. The analysis covers 
a set of features such as: A number of function calls 
NumofCall, the total time spent by functions or operations, 
the cumulative time spent by the functions C Time, etc. In 
addition, we could verify the overall time spent in each 
method. Table 10 shows the four most expensive functions. 
Results of Table 10 were obtained with the following setup: 
ε = 100, MinPts = 2, ε' = 150, k = 54.  

Table 10 shows that function math.cos has been 
called a lot of times, but the time spent by the function is 
less than 10% of neighbors’ function. The neighbor’s 
function is used by Optics algorithm and has 
fundamental importance. The neighbor’s function is a 
bottleneck of Optics algorithm because it consults the 
whole trajectories’ set when it is called. According to 
(Ankerst et al., 1999), an index structure like tree-based 
spatial index can be used and consequently decrease the 
overall runtime. 

The first complexity analysis of the method was 
done. According to (Ankerst et al., 1999), the Optics* 
algorithm has an overall runtime of O(n2. lg n) 
considering a spatial index and similarity algorithm. 
Additionally, K-means algorithm has an overall runtime 
of O(ndk+1. lg n) where d is the dimension and k the 
number of clusters. The ensemble approach used has an 
overall runtime of O(K3) considering that Hungarian is 
been employed. The runtime of ensemble approach can 
be considered constant because K is a number of the 
partition that is fixed in 2. Thus, the global runtime is 
O(n2. lg n + ndk+1. lg n). 

Conclusion 

Encouraging carpooling is an important effort towards 
the reduction of in-transit vehicles. Although there are 
some concerned research initiative and even some related 
software, they do not appropriately treat carpooling 
context specificities. In this study, we have proposed an 
extension to the method developed by (Cruz et al., 2015) 
in order to deal with some of these specificities: Find out 
groups of users that have similar profile and trajectory and 
consequently determine potential carpooling possibilities. 
Furthermore, clustering users’ trajectory and clustering 
users profile are results that can be considered separately 
in regard to the final interest of who desire to use the 
proposed approach as carpooling applications.  
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Density-based algorithm Optics was chosen due to 
some features like a minimal number of input 
parameters, ability to build non-spherical clusters and 
sturdiness to noise. These features are important to take 
into account in a task of finding similarity among 
trajectories. The well-known K-means was chosen 
because shows better results compared to Optics in a 
context of users' profile. 

Clustering results and corresponding Davies-Bouldin 
Index values obtained from a dataset of actual trajectories 
collected pervasively have shown the feasibility of the 
proposal. According to experimentation, POIs with 
different radius seem to not influence the quality of our 
approach. Initial runtime analysis indicates the elevated 
complexity. However, if we consider that the problem of 
finding out similarity among trajectories of users is a 
special case of the so-called pickup and delivery problem, 
which is NP-Complete (Agatz et al., 2012), the analysis 
result proves its feasibility.  

We are currently working on experiments that consider 
weighted profile Os attributes, so the users can define their 
weighted preferences. We are also currently embedding this 
similarity approach into a carpooling recommendation 
service so it could be integrated into some open-source 
carpooling software, such as the GO!Caronas (Matos et al., 
2014; Macedo et al., 2014). Finally, we intend to compare 
our ride and profile matching approaches with the 
approach of (Carvalho and Macedo, 2013), which uses 
coalition structure to provide proper group’s formation. 
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