

 © 2018 Ahmed Sabah Ahmed Al-Jumaili, Huda Kadhim Tayyeh and Ruqaia Jawad Kadhem. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

A Backpropagation Neural Network for Splitting Identifiers

1
Ahmed Sabah Ahmed AL-Jumaili,

2
Huda Kadhim Tayyeh and

2
Ruqaia Jawad Kadhem

1Department of Business Information Technology (BIT), College of Business Informatics,

University of Information Technology and Communications, Baghdad, Iraq
2Department of Informatics Systems Management (ISM), College of Business Informatics,

University of Information Technology and Communications, Baghdad, Iraq

Article history

Received: 23-07-2018
Revised: 24-09-2018
Accepted: 29-10-2018

Corresponding Author:
Huda KadhimTayyeh,
University of Information
Technology and
Communications, Baghdad,
Iraq
Email: haljobori@uoitc.edu.iq

Abstract: Splitting identifiers is a task that has been addressed in the past

few years in order to contribute toward improving the Feature Location

task. Feature Location aims at determining the exact position of a specific

feature within a source code. Several research studies have addressed the

process of splitting multi-word identifiers. However, one of the endure gaps

that still face the use of machine learning lies on using probabilistic

algorithms which may seem insufficient compared to other sophisticated

algorithms such as the Backpropagation Neural Network (BPNN). Therefore,

this paper proposes a BPNN for the splitting identifiers task. A benchmark of

source code dataset has been used in the experiments. In addition, different

objective functions have been used including Tanh, Sigmoid and Softmax.

Results showed that Softmax has outperformed the other objective funciton

by achieving a 71.4% of f-measure. This results implies the usefulness of

BPNN in terms of handling character-based problems.

Keywords: Splitting Identifiers, Feature Location, Source Code Mining,

Neural Network, Backpropagation

Introduction

With the dramatic expansion of information over
web, nowadays, numerous websites are providing vast
amount of source code to support developers
(Alshaikhdeeb and Ahmad, 2015). Splitting identifiers is
a task that has been addressed in the past few years in
order to contribute toward improving the Feature
Location task. Feature Location aims at determining the
exact position of a specific feature within a source code
(Thomas, 2011). Generally, analyzing source codes
have been considered in the software engineering
literature by proposing approaches that may facilitate
the process of re-using a source code (Sjøberg et al.,
2005). This can be represented by improving the
efficiency of a source code for specific system.

Any software code would definitely contain

identifiers which are the entities used to declare a feature

(Feild et al., 2006). Assume a system that is intended to

manage a college, one of the important identifiers that

could be declared is the student. Such student would

have an Id which can be declared as ‘intStudentId’, as

well as, a name which also can be declared as ‘string

StudentName’. However, declaring these identifiers is

mainly depending on the developer who may use

different strategies to separate the multi-words. For

instance, developer may use CamelCase such as

‘StudentId’, special characters such as ‘Student_Id’, or

even an abbreviated form such as ‘StudId’ (Lawrie et al.,

2007). Since there is no a standard way to declare these

identifiers therefore, the multi-word identifiers are still a

significant challenge face the feature location task

(Lawrie and Binkley, 2011). In this vein, the need of

separating such multi-word identifiers is imperative.

Several research studies have addressed the process

of splitting multi-word identifiers. The state of the art of

these studies have concentrated on machine learning

techniques especially with the emergence of some

benchmark datasets that contain both the multi-word

identifiers associated with their appropriate separation.

Machine learning aims to build a statistical model based

on example data or historical data for the purpose of

classifying new and unseen data (Alshaikhdeeb and

Ahmad, 2016; 2017). However, one of the endure gaps

that still face the use of machine learning lies on using

probabilistic algorithms which may seem insufficient

compared to other sophisticated algorithms such as the

Backpropagation Neural Network (BPNN). BPNN has

been addressed in similar tasks such retrieving roots of

words where the terms are being stemmed to their actual

root (Mezher and Omar, 2015; Al-Serhan, 2008). Hence,

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1413

this study aims to examine the capability of BPNN for

the task of splitting identifiers.

Related Work

Different research efforts have been proposed for the

process of feature location. Maletic and Marcus (2001)

proposed a method for feature location using Latent

Semantic Indexing (LSI). The proposed method aimed at

identifying the matches within the source code in order to

classify its components. One of the significant

components that the authors have focused on is the

identifiers. LSI has been applied on the source code in

order to identify the similar identifiers. Furthermore,

Poshyvanyk et al. (2005) proposed a search tool for the

.Net framework programming environment. The proposed

tool has been inspired by the Natural Language Processing

(NLP) tasks aiming to find the similar portions of the code

in accordance with the query posted by the developer.

As mentioned earlier, one of the serious limitations

face the feature location task is the multi-word identifiers

therefore, some researchers have attempted to introduce

approaches that have the ability to separate such

identifiers. Lawrie et al. (2007) presented a method for

splitting identifiers automatically. The proposed method

has utilized the regular expression in order to address the

punctuations, numbers and capitalized letters within the

multi-word identifiers.

On the other hand, Lawrie et al. (2007) has presented

a method for splitting identifiers based on dictionary. In

fact, the authors have used a dictionary that contains the

splitted identifiers. Hence, a lexical similarity has been

performed between the dictionary contents and the

source code in order to extract the similar identifiers.

Enslen et al. (2009) presented a statistical method

for splitting identifiers using term frequency. The idea

behind such method lies on the possibility of frequent

occurrence of a particular identifier. For example, the

identifier ‘Patient’ would be frequently occurred with

other words such as ‘PatientID’, ‘PateintName’ and

‘PatientAge’. In this manner, addressing the frequent

occurrence of such identifier may help the process of

splitting its instances.

Lawrie and Binkley (2011) presented a normalization

method for the vocabulary within the source code. The

proposed method was intended to extend the abbreviations

with their corresponding words. Consequentially, a

matching process has been conducted between the source

codes with a dictionary in order to perform the splitting.

Recently, more interests have been shown toward

utilizing the machine learning techniques in the

process of splitting the identifiers. Basically, machine

learning techniques have showed superior

performance regarding to its powerful mechanism of

learning from examples. An example data of the

multi-word identifiers along with their splitting form

can be used by the machine learning to build a model

that has the ability to separate new data.

Based on such concept, Alanee and Murad (2017) has

proposed a machine learning method based on Naïve

Bayes (NB). The authors have utilized different textual

features along with the NB in order to split identifiers.

These features consist of camel case, numbering,

punctuations and spell checker.

The Proposed BPNN

Basically, the proposed method of this paper is

composed of different phases as shown in Fig. 1. Such

phases discuss the data used in the experiments. In addition,

the preprocessing tasks that have been conducted to make

the BPNN works properly. Finally, carrying out the BPNN.

Next sub-sections will discuss each phase in further

detail.

Dataset

Apparently, addressing the multi-word identifiers

requires acquiring a benchmark dataset that contains

massive source code syntaxes. In this manner, the dataset

of Enslen et al. (2009) has been used in this paper. This

dataset is composed of numerous source code syntaxes

written by different programming languages such as

Java, C and C++. The dataset has been processed using

experts in the domain of feature location in order to

annotate each multi-word identifiers with its actual

separation. Therefore, the dataset has been formed with

different features such as the type of programming

language, type of browsers that extract such code, actual

separation of identifiers and the number of characters

needed to separate the identifiers. Figure 2 shows a

sample of such dataset.

Fig. 1: Proposed method

Dataset

Normalization

Character encoding

BPNN classification

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1414

Fig. 2: Sample of the dataset

Table 1: Output of normalization phase

 Class (required
Identifier number of separation

CreateProcess 1
DrawThemeTab 2
GetFrontWindowOfClass 4
GetPrivateProfileSection 3
GetScriptManagerVariable 3
GetTokenAt 2
JS_DefineUCProperty 3
SetMenuItemHierarchicalID 4
SetResLoad 2
fread 0

Normalization

Basically, the data has different attributes that are

irrelevant to the BPNN. In contrast to other machine

learning techniques that may need these attributes to

construct a statistical model, BPNN in this study will

work by addressing the characters encoding of the

identifiers. Therefore, normalization task aims to filter

out the irrelevant attributes, meanwhile, maintaining

the identifier attribute and class label attribute (i.e.,

which represented by the number of separation

required to split the identifiers). Table 1 shows the

output of this phase.

As shown in Table 1, the class label is a numeric

where it reflects the number of operations required to

split an identifier. For example, the first row which

yields ‘CreateProcess’ identifier requires a one operation

to split ‘Create’ from ‘Process’.

Character Encoding

In this phase, both the identifier and class label

attributes will be encoded in order to be processed by

the BPNN. Such encoding aims to convert the

characters in the identifier attribute into a binary

representation. For this purpose, this study has brought

the mechanism of encoding the letters from different

studies (Mezher and Omar, 2015; Al-Serhan, 2008).

This has been performed by converting the characters

into their equivalent ASCII code. Table 2 shows the

equivalent binary values for each letters.

As shown in Table 2, every letter will be replaced

with its equivalent encoding. In terms of dealing with

the numbers, all the digits will be replaced with a

unified encoding. Similarly, all the punctuation will

be replaced with a unified encoding, this will include

symbols such as ‘=’ and ‘+’.

Now, in order to encode the class label attribute, it

is necessary to identify all the possibilities of class

labels. From the observation of the dataset, it turns out

that the classes are ranging from 0 to 13 in addition to

another class label which is 16. In this manner, each

class will be encoded using binary representation.

However, unlike the letters encoding, class encoding

will takes a form of one-hot-encoding where a 15 bit

is being used (i.e., number of classes). Every bit will

be encoded as 0 with an exception for the bit that

reflects the occurrence of the selected class label

which will be encoded as 1. Table 3 shows the

encoding mechanism for each class label.

After explaining the mechanism of encoding both

characters and class label, let us consider the last row in

Table 1 from the normalized dataset. Figure 3 shows the

mechanism of processing the identifier with its class

label of such row via the network of backpropagation.

Adjusting the Network

In order to adjust the neural network, it is necessary

to identify multiple parameters including input neurons,

hidden layer, hidden neurons, output neurons, training

mechanism and the objective function. First, the input

neurons have been identified using the unified length

mechanism that has been used by Hashim and Omar

(2016). Such mechanism aims to find the longest token

within the identifier attribute. Then, using the length of

such token to unify the input size with the remaining

bits. Note that, the remaining bits will be encoded with

zero values. After observing the dataset, it turns out

that the longest token had a length of 72 characters.

This will lead to 432 bit due to each character has a

corresponding 6 bit encoding. In this manner, the input

neurons size will be 432. Consider an example of

‘010110’ as an input, if we want to unify its length to

be matched with the longest one, it is necessary to add

extra zeros bits as shown in Fig. 4.

1 CreateProcesscpp mozilla-source-1.1 Create-Process 1 Create-

Process 1

2 DrawThemeTabcpp mozilla-source-1.0 Draw-Theme-Tab 1
Draw-Theme-Tab 2

3 GetFrontWindowOfClasscpp mozilla-source-1.0 Get-Front-

Window-Of-Class 1 Get-Front-Window-Of-Class 4
4 GetPrivateProfileSectioncpp mozilla-source-1.0 Get-Private-

Profile-Section 1 Get-Private-Profile-Section 3

5 GetScriptManagerVariablecpp mozilla-source-1.0 Get-Script-
Manager-Variable 1 Get-Script-Manager-Variable 3

6 GetTokenAtcpp mozilla-source-1.0 Get-Token-At 1 Get-

Token-At 2
7 JS_DefineUCPropertycpp mozilla-source-1.0 JS-Define-UC-

Property 1 JS-Define-UC-Property 3
8 SetMenuItemHierarchicalIDcpp mozilla-source-1.0 Set-

Menu-Item-Hierarchical-ID 1 Set-Menu-Item-Hierarchical-ID 4

9 SetResLoadcpp mozilla-source-1.0 Set-Res-Load 1 Set-Res-
Load 2

10freadcpp eMule0.46c-Sources fread 1 fread 0

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1415

On the other hand, the output size has been

determined based on the length of the class labels

which was 15. However, for the hidden layer, a single

hidden layer has been used in this study. Regarding to

the number of hidden neurons, this study has been

using the mechanism of Haykin and Network (2004)

for identifying an initial number of hidden neurons.

Such mechanism can be emphasized using Equation 1:

 hidden neurons input size output size= × (1)

Fig. 3: Example of representing the identifier ‘fread’ over the network

Fig. 4: Unified input length

 1 2 3 4 5 6

Sample of input: 0 1 0 1 1 0

 Extra bits

 1 2 3 4 5 6 7 8 9 430 431 432

Unified length: 0 1 0 1 1 0 0 0 0 � 0 0 0

Input: fread → 000101 010001 000100 000000 000011

Output: 0 → 100000000000000

Input encoding

f: 000101
r: 010001
e: 000100
a: 000000
d: 000011

Output Encoding

0: 100000000000000

0
0

0
1

0
1

0

1
0

0
0

1

0

0
0

1
0
0

0
0

0
0

0
0

0

0
0

0
1

1

1
0

0
0
0

0
0

0
0

0
0

0
0

0
0

Input Output

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1416

Table 2: Letters encoding using binary representation

Letter Decimal Binary Letter Decimal Binary

a 0 000000 A 27 011011

b 1 000001 B 28 011100

c 2 000010 C 29 011101

d 3 000011 D 30 011110

e 4 000100 E 31 011111

f 5 000101 F 32 100000

g 6 000110 G 33 100001

h 7 000111 H 34 100010

i 8 001000 I 35 100011

j 9 001001 J 36 100100

k 10 001010 K 37 100101

l 11 001011 L 38 100110

m 12 001100 M 39 100111

n 13 001101 N 40 101000

o 14 001110 O 41 101001

p 15 001111 P 42 101010

q 16 010000 Q 43 101011

r 17 010001 R 44 101100

s 18 010010 S 45 101101

t 19 010011 T 46 101110

u 20 010100 U 47 101111

v 21 010101 V 48 110000

w 22 010110 W 49 110001

x 23 010111 X 50 110010

y 24 011000 Y 51 110011

z 25 011001 Z 52 110100

Digit 26 011010 Punctuation 53 110101

Table 3: Classes encoding

Classes Encoding

0 100000000000000

1 010000000000000

2 001000000000000

3 000100000000000

4 000010000000000

5 000001000000000

6 000000100000000

7 000000010000000

8 000000001000000

9 000000000100000

10 000000000010000

11 000000000001000

12 000000000000100

13 000000000000010

16 000000000000001

In addition, the training mechanism has been

adjusted based on 80% for training and 20% for

testing. Note that, the network has been trained with a

learning rate η = 0.2. Training was performed until an

acceptable convergence was found for 515 epochs

with mean squared error less than 0.01.

Finally, regarding to the objective function, three

functions have been used including Tanh, Sigmoid and

Softmax.

BPNN

Backpropagation is one of the famous architectures

of Artificial Neural Network (ANN) (Yin et al.,

2011). It was used vastly in the literature of text

categorization. BPNN composed of input layer, single

hidden layer and output layer. In order to make BPNN

work properly, the data should be encoded like in the

previous sections. After encoding the data, an

initialization process will be conducted in order to

generate the weights' values between the input and the

hidden layers. A multiplication process will be

applied where the inputs' values will be multiplied by

the initiated weights. Similarly, the weights' values

between the hidden layer and the output layer will be

generated randomly. As well as, the same

multiplication process will be held by multiplying the

hidden values by the weights. Now, the acquired value

will undergo a normalization task using the objective

function which aims to limit the value between 0 and

1. Consequentially, a comparison will be conducted

between the achieved value, which represents the

predicted output, with the actual output. Such

comparison aims to compute the error rate. If the error

rate is acceptable then, the weights will be generalized

onto all the data instances.

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1417

Fig. 5: Workflow of BPNN

Otherwise, BPNN will return back and update the

weights with new values and the procedures will be

iteratively accommodated until reaching an acceptable

error rateure Fig. 5 shows the workflow of BPNN.

Results

Prior to show the results of the proposed BPNN, it

is necessary to highlight the evaluation method used

in this study. In fact, the common evaluation metrics

that have been used for machine learning techniques

are being used in this study including precision, recall

and f-measure. First, precision aims to calculate the

number of correctly classified identifiers (i.e., True

Positives TP) in accordance to the incorrectly

classified identifiers (i.e., False Positives FP).

Equation 2 shows how precision is computed:

TP
Precision

TP FP
=

+

 (2)

On the other hand, recall aims to calculate the

number of correctly classified identifiers (i.e., True

Positives TP) in accordance to the number of instances

that have not been classified (i.e., False Negatives FN).

Equation 3 shows how recall is being computed:

TP
Recall

TP FN
=

+

 (3)

Finally, f-measure is the final accuracy that is

being computed by finding the harmonic between

precision and recall. Equation 4 shows how f-measure

is being calculated:

2Pr Re

Pr Re
F measure

×

− =

+

 (4)

Based on the evaluation metrics, the results of BPNN

will be assess based on different objective functions

including Tanh, Sigmoid and Softmax. Table 4 and Fig. 6

show such results.

As shown in both Table 4 and Fig. 6, the highest

values of precision, recall and f-measure have been

obtained by the Softmax function by achieving 73.1%,

69.8% and 71.4% respectively. This has been followed

by the Tanh where the precision was 72.6%, recall was

65.3% and f-measure was 68.7%. The lowest values

have been achieved by the Sigmoid function by

obtaining 70.1%, 64.9% and 67.3% for precision, recall

and f-measure respectively.

In order to declare the novelty of this study, it is

necessary to mention the accuracy of the state of the art.

Lawrie et al. (2007) have obtained an f-measure of 62%

using regular expression method. While Enslen et al.

(2009) have obtained 60% of f-measure using statistical

method based on term frequency. Moreover, Lawrie and

Binkley (2011) have achieved 61% of f-measure using a

semantic method based on a dictionary for abbreviations.

Finally, Alanee and Murad (2017) have achieved an f-

measure of 64.7% using a probabilistic method of Naïve

Bayes. Comparing these results with all BPNN functions

used in this study, it is clear that BPNN has

outperformed the state of the art in terms of splitting the

multi-word identifiers. This emphasized the usefulness

of BPNN when handling character-based problems

compared to other methods such as probabilistic,

semantic or statistical.

Encode the data

Initiate weights between

input and hidden layers

Multiply the input values

by the weights’ values

Initiate weights between

hidden and output layers

Multiply with hidden values

by the weights’ values

Process the resulted value

by the objective function

Computer error rate by comparing

predicted output with actual output

Error acceptable?

No

Yes

Generalize the weights for all data instances

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1418

Fig. 6: Results of precision, recall and f-measure for each function

Table 4: Results of BPNN with different functions

Objective function Precision Recall F-measure

Tanh 0.726 0.653 0.687
Sigmoid 0.701 0.649 0.673
Softmax 0.731 0.698 0.714

Conclusion

This paper has proposed a backpropagation neural

network for the task of splitting identifiers. A benchmark

of source code dataset has been used in the experiments. In

addition, different objective functions have been used in

the process of carrying out BPNN including Tanh,

Sigmoid and Softmax. Softmax has achieved the highest f-

measure value by obtaining 71.4%. Comparing such

results with the related work which utilized probabilistic,

semantic and statistical methods has revealed a superior

performance of BPNN. Future work may address the use

of word embedding in accordance with BPNN or other

ANN architectures.

Acknowledgement

This study has been funded by the University of

Information Technology and Communications.

Author’s Contributions

Ahmed Sabah Ahmed Al-Jumaili: Identifying the

domain and the exact gap. In addition, proposing a

method to solve such gap.

Huda Kadhim Tayyeh: Implementing the proposed

method by identifying the dataset and applying the method.

Ruqaia Jawad Kadhem: Writing the manuscript

and analyzing the results.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Alanee, N. and M.A.A. Murad, 2017. A hybrid method

of feature extraction and Naive Bayes classification

for splitting identifiers. J. Theoretical Applied

Inform. Technol., 95: 1549-1557.

Al-Serhan, H.M., 2008. Extraction of Arabic word roots:

An approach based on computational model and

multi-backpropagation neural networks. PhD Thesis,

De Montfort University-UK.

Alshaikhdeeb, B. and K. Ahmad, 2015. Integrating

correlation clustering and agglomerative hierarchical

clustering for holistic schema matching. J. Comput.

Sci., 11: 484-489. DOI: 10.3844/jcssp.2015.484.489

Alshaikhdeeb, B. and K. Ahmad, 2016. Biomedical

named entity recognition: A review. Int. J. Adv. Sci.

Eng. Inform. Technol., 6: 889-895.
 DOI: 10.18517/ijaseit.6.6.1367

0.74

0.72

0.7

0.68

0.66

0.64

0.62

0.6

Precision Recall F-measure

Tanh Sigmoid Softmax

Ahmed Sabah Ahmed Al-Jumaili et al. / Journal of Computer Science 2018, 14 (10): 1412.1419

DOI: 10.3844/jcssp.2018.1412.1419

1419

Alshaikhdeeb, B. and K. Ahmad, 2017. Feature selection

for chemical compound extraction using wrapper

approach with Naive Bayes classifier. Proceedings

of the 6th International Conference on Electrical

Engineering and Informatics, Nov. 25-27, IEEE
Xplore Press, Langkawi, Malaysia, pp: 1-6.

 DOI: 10.1109/ICEEI.2017.8312421

Enslen, E., E. Hill, L. Pollock and K. Vijay-Shanker,

2009. Mining source code to automatically split

identifiers for software analysis. Proceedings of the

6th IEEE International Working Conference on

Mining Software Repositories, May 16-17, IEEE

Xplore Press, Vancouver, BC, Canada, pp: 71-80.

DOI: 10.1109/MSR.2009.5069482

Feild, H., D. Binkley and D. Lawrie, 2006. An empirical

comparison of techniques for extracting concept

abbreviations from identifiers. Proceedings of the

IASTED International Conference on Software

Engineering and Applications, (SEA’ 06), Citeseer.

Hashim, B. and N. Omar, 2016. A back propagation

neural network for identifying multi-word

biomedical named entities. Int. Rev. Comput.

Software, 11: 682-690.

Haykin, S. and N. Network, 2004. A comprehensive

foundation. Neural Netw.

Lawrie, D. and D. Binkley, 2011. Expanding identifiers

to normalize source code vocabulary. Proceedings

of the 27th IEEE International Conference on

Software Maintenance, Sept. 25-30, IEEE Xplore

Press, Williamsburg, VI, USA, pp: 113-122.
 DOI: 10.1109/ICSM.2011.6080778

Lawrie, D., H. Field and D. Binkley, 2007. Quantifying
identifier quality: an analysis of trends. Empirical
Software Eng., 12: 359-388.

 DOI: 10.1007/s10664-006-9032-2
Maletic, J.I. and A. Marcus, 2001. Supporting program

comprehension using semantic and structural
information. Proceedings of the 23rd International
Conference on Software Engineering, May 19-19,
IEEE Xplore Press, Toronto, Ontario, Canada, pp:
103-112. DOI: 10.1109/ICSE.2001.919085

Mezher, K. and N. Omar, 2015. A backpropagation
neural network to improve Arabic stemming. J.
Theoretical Applied Inform. Technol., 82: 385-394.

Poshyvanyk, D., A. Marcus, Y. Dong and A. Sergeyev,
2005. IRiSS-a source code exploration tool.
Proceedings of the 21st IEEE International
Conference on Software Maintenance - Industrial and
Tool, Sept. 25-30, Budapest, Hungary, pp. 69-72.

Sjøberg, D.I.K., J.E. Hannay, O. Hansen, V.B. Kampenes
and A. Karahasanovic et al., 2005. A survey of
controlled experiments in software engineering. IEEE
Trans. Software Eng., 31: 733-753.

 DOI: 10.1109/TSE.2005.97

Thomas, S.W., 2011. Mining software repositories using

topic models. Proceedings of the 33rd International

Conference on Software Engineering, May 21-28,

ACM, Waikiki, Honolulu, HI, USA pp: 1138-1139.

DOI: 10.1145/1985793.1986020

Yin, F., H. Mao, L. Hua, W. Guo and M. Shu, 2011.
Back Propagation neural network modeling for

warpage prediction and optimization of plastic

products during injection molding. Mater. Design,

32: 1844-1850. DOI: 10.1016/j.matdes.2010.12.022

