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Abstract: Splitting identifiers is a task that has been addressed in the past 

few years in order to contribute toward improving the Feature Location 

task. Feature Location aims at determining the exact position of a specific 

feature within a source code. Several research studies have addressed the 

process of splitting multi-word identifiers. However, one of the endure gaps 

that still face the use of machine learning lies on using probabilistic 

algorithms which may seem insufficient compared to other sophisticated 

algorithms such as the Backpropagation Neural Network (BPNN). Therefore, 

this paper proposes a BPNN for the splitting identifiers task. A benchmark of 

source code dataset has been used in the experiments. In addition, different 

objective functions have been used including Tanh, Sigmoid and Softmax. 

Results showed that Softmax has outperformed the other objective funciton 

by achieving a 71.4% of f-measure. This results implies the usefulness of 

BPNN in terms of handling character-based problems. 
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Introduction  

With the dramatic expansion of information over 
web, nowadays, numerous websites are providing vast 
amount of source code to support developers 
(Alshaikhdeeb and Ahmad, 2015). Splitting identifiers is 
a task that has been addressed in the past few years in 
order to contribute toward improving the Feature 
Location task. Feature Location aims at determining the 
exact position of a specific feature within a source code 
(Thomas, 2011). Generally, analyzing source codes 
have been considered in the software engineering 
literature by proposing approaches that may facilitate 
the process of re-using a source code (Sjøberg et al., 
2005). This can be represented by improving the 
efficiency of a source code for specific system.  

Any software code would definitely contain 

identifiers which are the entities used to declare a feature 

(Feild et al., 2006). Assume a system that is intended to 

manage a college, one of the important identifiers that 

could be declared is the student. Such student would 

have an Id which can be declared as ‘intStudentId’, as 

well as, a name which also can be declared as ‘string 

StudentName’. However, declaring these identifiers is 

mainly depending on the developer who may use 

different strategies to separate the multi-words. For 

instance, developer may use CamelCase such as 

‘StudentId’, special characters such as ‘Student_Id’, or 

even an abbreviated form such as ‘StudId’ (Lawrie et al., 

2007). Since there is no a standard way to declare these 

identifiers therefore, the multi-word identifiers are still a 

significant challenge face the feature location task 

(Lawrie and Binkley, 2011). In this vein, the need of 

separating such multi-word identifiers is imperative.  

Several research studies have addressed the process 

of splitting multi-word identifiers. The state of the art of 

these studies have concentrated on machine learning 

techniques especially with the emergence of some 

benchmark datasets that contain both the multi-word 

identifiers associated with their appropriate separation. 

Machine learning aims to build a statistical model based 

on example data or historical data for the purpose of 

classifying new and unseen data (Alshaikhdeeb and 

Ahmad, 2016; 2017). However, one of the endure gaps 

that still face the use of machine learning lies on using 

probabilistic algorithms which may seem insufficient 

compared to other sophisticated algorithms such as the 

Backpropagation Neural Network (BPNN). BPNN has 

been addressed in similar tasks such retrieving roots of 

words where the terms are being stemmed to their actual 

root (Mezher and Omar, 2015; Al-Serhan, 2008). Hence, 
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this study aims to examine the capability of BPNN for 

the task of splitting identifiers.  

Related Work 

Different research efforts have been proposed for the 

process of feature location. Maletic and Marcus (2001) 

proposed a method for feature location using Latent 

Semantic Indexing (LSI). The proposed method aimed at 

identifying the matches within the source code in order to 

classify its components. One of the significant 

components that the authors have focused on is the 

identifiers. LSI has been applied on the source code in 

order to identify the similar identifiers. Furthermore, 

Poshyvanyk et al. (2005) proposed a search tool for the 

.Net framework programming environment. The proposed 

tool has been inspired by the Natural Language Processing 

(NLP) tasks aiming to find the similar portions of the code 

in accordance with the query posted by the developer.  

As mentioned earlier, one of the serious limitations 

face the feature location task is the multi-word identifiers 

therefore, some researchers have attempted to introduce 

approaches that have the ability to separate such 

identifiers. Lawrie et al. (2007) presented a method for 

splitting identifiers automatically. The proposed method 

has utilized the regular expression in order to address the 

punctuations, numbers and capitalized letters within the 

multi-word identifiers.  

On the other hand, Lawrie et al. (2007) has presented 

a method for splitting identifiers based on dictionary. In 

fact, the authors have used a dictionary that contains the 

splitted identifiers. Hence, a lexical similarity has been 

performed between the dictionary contents and the 

source code in order to extract the similar identifiers.  

Enslen et al. (2009) presented a statistical method 

for splitting identifiers using term frequency. The idea 

behind such method lies on the possibility of frequent 

occurrence of a particular identifier. For example, the 

identifier ‘Patient’ would be frequently occurred with 

other words such as ‘PatientID’, ‘PateintName’ and 

‘PatientAge’. In this manner, addressing the frequent 

occurrence of such identifier may help the process of 

splitting its instances. 

Lawrie and Binkley (2011) presented a normalization 

method for the vocabulary within the source code. The 

proposed method was intended to extend the abbreviations 

with their corresponding words. Consequentially, a 

matching process has been conducted between the source 

codes with a dictionary in order to perform the splitting.  

Recently, more interests have been shown toward 

utilizing the machine learning techniques in the 

process of splitting the identifiers. Basically, machine 

learning techniques have showed superior 

performance regarding to its powerful mechanism of 

learning from examples. An example data of the 

multi-word identifiers along with their splitting form 

can be used by the machine learning to build a model 

that has the ability to separate new data.  

Based on such concept, Alanee and Murad (2017) has 

proposed a machine learning method based on Naïve 

Bayes (NB). The authors have utilized different textual 

features along with the NB in order to split identifiers. 

These features consist of camel case, numbering, 

punctuations and spell checker.  

The Proposed BPNN 

Basically, the proposed method of this paper is 

composed of different phases as shown in Fig. 1. Such 

phases discuss the data used in the experiments. In addition, 

the preprocessing tasks that have been conducted to make 

the BPNN works properly. Finally, carrying out the BPNN. 

Next sub-sections will discuss each phase in further 

detail.  

Dataset 

Apparently, addressing the multi-word identifiers 

requires acquiring a benchmark dataset that contains 

massive source code syntaxes. In this manner, the dataset 

of Enslen et al. (2009) has been used in this paper. This 

dataset is composed of numerous source code syntaxes 

written by different programming languages such as 

Java, C and C++. The dataset has been processed using 

experts in the domain of feature location in order to 

annotate each multi-word identifiers with its actual 

separation. Therefore, the dataset has been formed with 

different features such as the type of programming 

language, type of browsers that extract such code, actual 

separation of identifiers and the number of characters 

needed to separate the identifiers. Figure 2 shows a 

sample of such dataset. 

 

 
 
Fig. 1: Proposed method 

Dataset 

Normalization 

Character encoding 

BPNN classification 
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Fig. 2: Sample of the dataset 

 
Table 1: Output of normalization phase 

 Class (required  
Identifier number of separation 

CreateProcess 1 
DrawThemeTab 2 
GetFrontWindowOfClass 4 
GetPrivateProfileSection 3 
GetScriptManagerVariable 3 
GetTokenAt 2 
JS_DefineUCProperty 3 
SetMenuItemHierarchicalID 4 
SetResLoad 2 
fread 0 

 

Normalization 

Basically, the data has different attributes that are 

irrelevant to the BPNN. In contrast to other machine 

learning techniques that may need these attributes to 

construct a statistical model, BPNN in this study will 

work by addressing the characters encoding of the 

identifiers. Therefore, normalization task aims to filter 

out the irrelevant attributes, meanwhile, maintaining 

the identifier attribute and class label attribute (i.e., 

which represented by the number of separation 

required to split the identifiers). Table 1 shows the 

output of this phase. 

As shown in Table 1, the class label is a numeric 

where it reflects the number of operations required to 

split an identifier. For example, the first row which 

yields ‘CreateProcess’ identifier requires a one operation 

to split ‘Create’ from ‘Process’.  

Character Encoding 

In this phase, both the identifier and class label 

attributes will be encoded in order to be processed by 

the BPNN. Such encoding aims to convert the 

characters in the identifier attribute into a binary 

representation. For this purpose, this study has brought 

the mechanism of encoding the letters from different 

studies (Mezher and Omar, 2015; Al-Serhan, 2008). 

This has been performed by converting the characters 

into their equivalent ASCII code. Table 2 shows the 

equivalent binary values for each letters. 

As shown in Table 2, every letter will be replaced 

with its equivalent encoding. In terms of dealing with 

the numbers, all the digits will be replaced with a 

unified encoding. Similarly, all the punctuation will 

be replaced with a unified encoding, this will include 

symbols such as ‘=’ and ‘+’. 

Now, in order to encode the class label attribute, it 

is necessary to identify all the possibilities of class 

labels. From the observation of the dataset, it turns out 

that the classes are ranging from 0 to 13 in addition to 

another class label which is 16. In this manner, each 

class will be encoded using binary representation. 

However, unlike the letters encoding, class encoding 

will takes a form of one-hot-encoding where a 15 bit 

is being used (i.e., number of classes). Every bit will 

be encoded as 0 with an exception for the bit that 

reflects the occurrence of the selected class label 

which will be encoded as 1. Table 3 shows the 

encoding mechanism for each class label.  

After explaining the mechanism of encoding both 

characters and class label, let us consider the last row in 

Table 1 from the normalized dataset. Figure 3 shows the 

mechanism of processing the identifier with its class 

label of such row via the network of backpropagation.  

Adjusting the Network 

In order to adjust the neural network, it is necessary 

to identify multiple parameters including input neurons, 

hidden layer, hidden neurons, output neurons, training 

mechanism and the objective function. First, the input 

neurons have been identified using the unified length 

mechanism that has been used by Hashim and Omar 

(2016). Such mechanism aims to find the longest token 

within the identifier attribute. Then, using the length of 

such token to unify the input size with the remaining 

bits. Note that, the remaining bits will be encoded with 

zero values. After observing the dataset, it turns out 

that the longest token had a length of 72 characters. 

This will lead to 432 bit due to each character has a 

corresponding 6 bit encoding. In this manner, the input 

neurons size will be 432. Consider an example of 

‘010110’ as an input, if we want to unify its length to 

be matched with the longest one, it is necessary to add 

extra zeros bits as shown in Fig. 4.  

1 CreateProcesscpp mozilla-source-1.1 Create-Process 1 Create-

Process 1 

2 DrawThemeTabcpp mozilla-source-1.0 Draw-Theme-Tab 1 
Draw-Theme-Tab 2 

3 GetFrontWindowOfClasscpp mozilla-source-1.0 Get-Front-

Window-Of-Class 1 Get-Front-Window-Of-Class 4 
4 GetPrivateProfileSectioncpp mozilla-source-1.0 Get-Private-

Profile-Section 1 Get-Private-Profile-Section 3 

5 GetScriptManagerVariablecpp mozilla-source-1.0 Get-Script-
Manager-Variable 1 Get-Script-Manager-Variable 3  

6 GetTokenAtcpp mozilla-source-1.0 Get-Token-At 1 Get-

Token-At 2 
7 JS_DefineUCPropertycpp mozilla-source-1.0 JS-Define-UC-

Property 1 JS-Define-UC-Property 3 
8 SetMenuItemHierarchicalIDcpp mozilla-source-1.0 Set-

Menu-Item-Hierarchical-ID 1 Set-Menu-Item-Hierarchical-ID 4 

9 SetResLoadcpp mozilla-source-1.0 Set-Res-Load 1 Set-Res-
Load 2 

10freadcpp eMule0.46c-Sources fread 1 fread 0 
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On the other hand, the output size has been 

determined based on the length of the class labels 

which was 15. However, for the hidden layer, a single 

hidden layer has been used in this study. Regarding to 

the number of hidden neurons, this study has been 

using the mechanism of Haykin and Network (2004) 

for identifying an initial number of hidden neurons. 

Such mechanism can be emphasized using Equation 1: 
 

  hidden neurons input size output size= ×  (1) 

 

 
 

Fig. 3: Example of representing the identifier ‘fread’ over the network 

 

 
 

Fig. 4: Unified input length 

 

                           1  2  3  4 5  6 

Sample of input: 0 1 0 1 1 0 

                                                                Extra bits 

 

                         1  2  3  4 5  6  7 8  9       430  431  432 

Unified length: 0 1 0 1 1 0 0 0 0  � 0   0   0 

 

Input: fread → 000101 010001 000100 000000 000011 

Output: 0 → 100000000000000 

Input encoding 
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Table 2: Letters encoding using binary representation 

Letter Decimal Binary Letter Decimal Binary 

a 0 000000 A 27 011011 

b 1 000001 B 28 011100 

c 2 000010 C 29 011101 

d 3 000011 D 30 011110 

e 4 000100 E 31 011111 

f 5 000101 F 32 100000 

g 6 000110 G 33 100001 

h 7 000111 H 34 100010 

i 8 001000 I 35 100011 

j 9 001001 J 36 100100 

k 10 001010 K 37 100101 

l 11 001011 L 38 100110 

m 12 001100 M 39 100111 

n 13 001101 N 40 101000 

o 14 001110 O 41 101001 

p 15 001111 P 42 101010 

q 16 010000 Q 43 101011 

r 17 010001 R 44 101100 

s 18 010010 S 45 101101 

t 19 010011 T 46 101110 

u 20 010100 U 47 101111 

v  21 010101 V  48 110000 

w 22 010110 W 49 110001 

x 23 010111 X 50 110010 

y 24 011000 Y 51 110011 

z 25 011001 Z 52 110100 

Digit 26 011010 Punctuation 53 110101 

 
Table 3: Classes encoding 

Classes Encoding 

0 100000000000000 

1 010000000000000 

2 001000000000000 

3 000100000000000 

4 000010000000000 

5 000001000000000 

6 000000100000000 

7 000000010000000 

8 000000001000000 

9 000000000100000 

10 000000000010000 

11 000000000001000 

12 000000000000100 

13 000000000000010 

16 000000000000001 

 

In addition, the training mechanism has been 

adjusted based on 80% for training and 20% for 

testing. Note that, the network has been trained with a 

learning rate η = 0.2. Training was performed until an 

acceptable convergence was found for 515 epochs 

with mean squared error less than 0.01. 

Finally, regarding to the objective function, three 

functions have been used including Tanh, Sigmoid and 

Softmax. 

BPNN 

Backpropagation is one of the famous architectures 

of Artificial Neural Network (ANN) (Yin et al., 

2011). It was used vastly in the literature of text 

categorization. BPNN composed of input layer, single 

hidden layer and output layer. In order to make BPNN 

work properly, the data should be encoded like in the 

previous sections. After encoding the data, an 

initialization process will be conducted in order to 

generate the weights' values between the input and the 

hidden layers. A multiplication process will be 

applied where the inputs' values will be multiplied by 

the initiated weights. Similarly, the weights' values 

between the hidden layer and the output layer will be 

generated randomly. As well as, the same 

multiplication process will be held by multiplying the 

hidden values by the weights. Now, the acquired value 

will undergo a normalization task using the objective 

function which aims to limit the value between 0 and 

1. Consequentially, a comparison will be conducted 

between the achieved value, which represents the 

predicted output, with the actual output. Such 

comparison aims to compute the error rate. If the error 

rate is acceptable then, the weights will be generalized 

onto all the data instances. 
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Fig. 5: Workflow of BPNN 

 

Otherwise, BPNN will return back and update the 

weights with new values and the procedures will be 

iteratively accommodated until reaching an acceptable 

error rateure Fig. 5 shows the workflow of BPNN. 

Results 

Prior to show the results of the proposed BPNN, it 

is necessary to highlight the evaluation method used 

in this study. In fact, the common evaluation metrics 

that have been used for machine learning techniques 

are being used in this study including precision, recall 

and f-measure. First, precision aims to calculate the 

number of correctly classified identifiers (i.e., True 

Positives TP) in accordance to the incorrectly 

classified identifiers (i.e., False Positives FP). 

Equation 2 shows how precision is computed: 

 

TP
Precision

TP FP
=

+

 (2) 

 

On the other hand, recall aims to calculate the 

number of correctly classified identifiers (i.e., True 

Positives TP) in accordance to the number of instances 

that have not been classified (i.e., False Negatives FN). 

Equation 3 shows how recall is being computed: 

 

TP
Recall

TP FN
=

+

 (3) 

 

Finally, f-measure is the final accuracy that is 

being computed by finding the harmonic between 

precision and recall. Equation 4 shows how f-measure 

is being calculated: 

 

2Pr Re

Pr Re
F measure

×

− =

+

 (4) 

 

Based on the evaluation metrics, the results of BPNN 

will be assess based on different objective functions 

including Tanh, Sigmoid and Softmax. Table 4 and Fig. 6 

show such results. 

As shown in both Table 4 and Fig. 6, the highest 

values of precision, recall and f-measure have been 

obtained by the Softmax function by achieving 73.1%, 

69.8% and 71.4% respectively. This has been followed 

by the Tanh where the precision was 72.6%, recall was 

65.3% and f-measure was 68.7%. The lowest values 

have been achieved by the Sigmoid function by 

obtaining 70.1%, 64.9% and 67.3% for precision, recall 

and f-measure respectively. 

In order to declare the novelty of this study, it is 

necessary to mention the accuracy of the state of the art. 

Lawrie et al. (2007) have obtained an f-measure of 62% 

using regular expression method. While Enslen et al. 

(2009) have obtained 60% of f-measure using statistical 

method based on term frequency. Moreover, Lawrie and 

Binkley (2011) have achieved 61% of f-measure using a 

semantic method based on a dictionary for abbreviations. 

Finally, Alanee and Murad (2017) have achieved an f-

measure of 64.7% using a probabilistic method of Naïve 

Bayes. Comparing these results with all BPNN functions 

used in this study, it is clear that BPNN has 

outperformed the state of the art in terms of splitting the 

multi-word identifiers. This emphasized the usefulness 

of BPNN when handling character-based problems 

compared to other methods such as probabilistic, 

semantic or statistical. 

Encode the data 

Initiate weights between 

input and hidden layers 

Multiply the input values 

by the weights’ values 

Initiate weights between 

hidden and output layers 

Multiply with hidden values 

by the weights’ values 

Process the resulted value 

by the objective function 

Computer error rate by comparing 

predicted output with actual output 

Error acceptable? 

No 

Yes 

Generalize the weights for all data instances 
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Fig. 6: Results of precision, recall and f-measure for each function 

 
Table 4: Results of BPNN with different functions 

Objective function Precision Recall F-measure 

Tanh 0.726 0.653 0.687 
Sigmoid 0.701 0.649 0.673 
Softmax 0.731 0.698 0.714 

 

Conclusion 

This paper has proposed a backpropagation neural 

network for the task of splitting identifiers. A benchmark 

of source code dataset has been used in the experiments. In 

addition, different objective functions have been used in 

the process of carrying out BPNN including Tanh, 

Sigmoid and Softmax. Softmax has achieved the highest f-

measure value by obtaining 71.4%. Comparing such 

results with the related work which utilized probabilistic, 

semantic and statistical methods has revealed a superior 

performance of BPNN. Future work may address the use 

of word embedding in accordance with BPNN or other 

ANN architectures.  
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