

 © 2017 Jaafer Al-Saraireh. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license

Journal of Computer Science

Original Research Paper

An Efficient Approach for Query Processing Over Encrypted

Database

Jaafer Al-Saraireh

Department of Computer Science, Princess Sumaya University for Technology, Amman, Jordan

Article history

Received: 16-04-2017

Revised: 2-10-2017

Accepted: 13-10-2017

Email: j.saraireh@psut.edu.jo

Abstract: A novel approach proposes in this research to improve the

performance of the query over encrypted database. This approach based on

using hash map function to generate a unique hash value for each and

every sensitive data. In this a proposed approach, there are no relationship

between the hashed value and encrypted value. This method can reduce the

cost of the encryption and decryption operations and improve the query

performance. Results of the set of experiments show that the query

performance over encrypted data reduces the response time to 25s, 51s,

34s, 61s and 31s for queries 1, 2, 3,4 and 5; respectively. The comparison

with other methods are carried out when database size is ranging from

50,000 to 100,000 rows.

Keywords: SQL, Database Security, Encryption, Hash Map

Introduction

Database is a collection of related data, data is a fact

can be recorded and have implicit meaning. Data can be

classified as sensitive data and insensitive data. The

sensitive data is protected in database by using

encryption mechanisms. The encryption mechanisms can

be classified as symmetric and asymmetric encryption. In

symmetric encryption technique the single or shared key

is used to provide the confidentiality service in database;

while in asymmetric encryption technique two keys,

public and private key are used to provide the security.

The tradition security polices such as access control,

physical security and network security don’t sufficiently

provide a secure support for storing and processing

sensitive data in a secure way. The encryption technique

provides an efficient method to store sensitive data in

secure way (Rathod and Dhote, 2014; Nassar et al.,

2017; Ali and Afzal, 2017).

Cryptographic has been widely used to support

database security. However, as in any case where

information security was addressed, performance

directly affected. The cost of encryption and decryption

data being inserted or retrieved from database adds to the

regular cost of storing and retrieving data from an

unencrypted database.

The traditional method to retrieve an encrypted data

is to decrypt all the sensitive data to plain text then

find the target records. This method obviously cost

time and has a bad performance especially with a

large number of records.

This work addresses the problem of securing data in

database while preserving the performance of the

database system without major degradation. We explore the

possibility of improving on existing work by proposing an

approach that combines security with performance and can

be used for different types of databases.

Therefore; a new proposing method to query

encrypted sensitive data. The propose method has a good

comparable response time with the traditional method.

Literature Review

The factors related to encrypting databases to protect

them against attacks was presented by (Bouganim and

Guo, 2011). The first factor was related to the levels of

encryption was performed. The researchers identified

three levels of encryption were performed on storage-

level, database-level and application level. The next

factor was related to the encryption algorithm used, e.g.,

DES and AES and the key management methods

involved in the respective algorithm.

Salama et al. (2010) evaluated set of encryption

algorithms by studying their effects on the performance

of the involved systems from the viewpoint of different

data block size, different data types, battery power

consumption, different key size and

encryption/decryption speed.

The evaluated algorithms are AES (Rijndael), DES,

3DES, RC2, Blowfish and RC6. The experiments

conducted lead to conclude that AES leads in terms of

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

549

speed while Blowfish is performing better when packet

size is varied. Meanwhile, the type of the data used in the

encryption/decryption does not have a visible effect

on the performance of the different algorithms.

Finally, the experiments show that one of the most

important factors affecting power consumption of an

encryption algorithm is the key size.

In this research work, we will consider these results

into consideration when it comes to evaluating the

performance of the methods developed in this work to

enhance the security of database systems while preserving

the performance level of the targeted database system.

Sharma et al. (2013) presented an approach for

achieving data confidentiality, balancing between

security and performance by retrieving the data in a

quick way. The approach consists of using two tables:

Encrypted Data Table which is used to save the desired

(usually the primary) column in encrypted form and the

Query Search Table which stores the key in encrypted

form together with the same column from the Encrypted

Data Table, but in plaintext form. The key column is

stored under two different names in both tables. This

approach removes the confusion happening in range and

fuzzy match queries and enhances the performance of

query processing. Then, in order to increase

confidentiality, the order of the records in the Query

Search Table is randomized to add to the confusion in

the data. To disguise the relationships, they put the Query

Search Table in secure schema and add some noise to the

records to prevent inference. Then, only authorized users

are allowed to access it. Another advantage is that upon

execution of query sentences, it will not need to decrypt

all the values in the encrypted column.

Alhanjouri and Al Derawi (2012) proposed the use of

Hash Maps to improve the performance of encrypted

databases. The authors claim to have devised a method

to enhance the response time for queries on encrypted

databases. The proposed method involves building an

additional layer on top of the DBMS. The layer consists of

metadata, a query processor, a hash map and an

encryption/decryption function. The authors do not discuss

their approach to protect the layer itself, which poses

questions on the efficiency of the proposed method in

preserving the confidentiality of the data in the first place.

A Reverse Encryption Algorithm (REA) represents a

significant improvement over the encrypted databases is

proposed by (Mousa et al., 2012). The results of REA can

reduce the cost time of the encryption/decryption operations

and improve the performance, but the encryption of the

database is not optimally truthful and it needs some extra

security by encrypting the data with another algorithm, to

tighten security without degrading performance.

A new approach proposed by (Arasu et al., 2014)

introduces a system with data encryption where sensitive

columns are encrypted before they are stored to address

data security.

Zheng-Fei et al. (2005; Wang et al., 2004) poposed a

function to support fuzzy query over the encrypted

character data. Their scheme converts every adjacent two

characters in the sequence and converts the original

string directly to another character string by a hash

function. This method cannot deal with some characters

and could perform badly for larger character strings.

A novel approach is proposed in this research to

improve the performance of the query over encrypted

databases based on generating unique hash values for

each and every sensitive field and translating the SQL

clauses into an appropriate form to execute over an

encrypted database. This approach reduces the cost of

encryption/decryption and improves query performance.

Architecture Design

Database Management System (DBMS) is a software

system that enable users to define, construct, manipulate

and share databases between users and applications.

Database instances are stored in database; while

metadata (data type, structure, constraints, etc.) are

stored in data dictionary/database catalog.

DBMS supports set of functions such as: querying

the database to retrieve specific data, updating (i.e.

insert, update, delete) database. Also DBM provide

sharing a database allows multiple users and programs to

access the database concurrently.

Users use an application program to access the

database by sending queries or requests for data to the

DBMS. A query typically causes some data to be

retrieved; a transaction may cause some data to be read

and some data to be written into the database.

The proposed architecture design is presented in

Fig. 1. The clients write his query by using an

application program or SQL editor; then the DBMS is

responsible to validate and manipulate the user requests

to access data. In the propose framework a new layer is

used to determine the query has sensitive data or not

based on the metadata. If query has sensitive data a

new two functions are used; encryption/decryption

function and hash map function to retrieve the sensitive

data from database.

The proposed approach is divided into two phases.

The first phase to store sensitive data by using insert or

update statement in SQL. The second phase related to

retrieve sensitive data by using select statement in SQL.

Each phase is described below:

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

550

Fig. 1. Database architecture design

Storing Sensitive Data

Storing sensitive data has four steps as following:

Step 1: Generate hash value for sensitive data as

following:

• Select two relative prime numbers p, q where

p ≠ q.

• Compute the ASCII code for sensitive field

• Compute hash value H(v) as following:\

H(v)= [v*Power (p, q)] mod (37*37*37)

Where

 H(v) is map hash function

 p and q are two relative prime number

Step 2: Encrypt the sensitive data v by using Advance

Encryption Standard (AES) with key size 256

bits as following:

c= Enc(v, k)

Where

c: cipher text

Enc: Advance Encryption Standard algorithm

v: sensitive data

k: secrete key with size 256 bits

Step 3: Store the encrypted sensitive data in the original

table.

Step 4: Store the hash value and the primary key in the

new hash table.

Table 1. Plaintext Customer Table

CustKey Name AccBal ………...

2935 John 794 ………...

4257 Nancy 500 ………...

1278 Mike 380 ………...

730 Laura 853 ………...

Table 2. Encrypted Hash Customer Table

CustKey Name Enc_AccBal Hash_AccBal …….

2935 John Tl?5gfd 272342 …….
4257 Nancy 0(*hf8 171500 …….
1278 Mike W3b674 130340 …….
730 Laura xLnbr1 291550 …….

The propose approach uses a new column to store
hash map value. When a table is created and contains a
sensitive data (s). The DBMS created hash columns
include all hash values for sensitive columns. The
encryption performed by using AES-256.

For example, as presented in Table 1, let us consider
a Customer table. The Customer table contains eigh
fields: CustKey, Name, Address, NationKey, Phone,
AccBal, MktSegment and Comment. The AccBal
considered as sensitive fields as represented in Table 1.
To provide database security, the sensitive data in the field
AccBal is encrypted by using AES with key size 256 bits.
As shown in Table 2. The field Enc_AccBal represent
encrypted AccBal value and Hash_AccBal represented the
hash value for AccBal value by using hash map function.

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

551

Fig. 2. Architecture design for storing sensitive data

The Table 1 is extended by adding two fields one for
encrypted AccBal and the other for hash value. Indexes are
created for the fields Enc_AccBal and Hash_AccBal.
Figure 2 illustrates the process of storing sensitive data

into encrypted database.

Query Over Encrypted Database

When where clause in select statement has encrypted

field the following steps are executing:

Step 1: Compute hash value for input data as

following:

Retrieve the prime numbers p, q which stored in

database in secure manner.

• Compute the ASCII code for input data

• Compute hash value H(v) as following:

• H(v)= [v*Power (p, q)] mod (37*37*37)

Step 2: Translate and modify the query conditions of

SQL by using the metadata.

Step 3: Execute the modified SQL query

Step 4: Retrieve all records that satisfy the hash value of

query condition which computed in step 1

Step 5: Decrypt all records that retrieved from step 4.

Step 6: Return results.

Figure 4 illustrates the SQL query over encrypted

database. For example, if you have the following SQL

query:

Select CustKey, Name, AccBal

From Customer

Where AccBal >= 563;

The proposed approach translates the above SQL

query as following:

Select CustKey, Name, Decrypt(AccBal)

From Customer

Where Hash_AccBal >= Hash(563);

Experiments

In this section, a set of experiments were carried out

to validate the performance and effectiveness impact of

the proposed approach.

Experiments Environment

The experiments were carried out on a server intel

Xeon 5600 series with 2 processor 3.46 GHz, cache 8

MB L3, 192 GB RAM. The operating system that was

used is Microsoft Windows Server 2012 R2. Oracle 12c

R2 was used as a DBMS. The programming task in the

proposed approach was implemented by Java

programming language. Each experiment was executed 5

times and the average of results were considered. The

database was generated automatically by using Dbgen

tool according to TCP-H benchmark (TPC-H Benchmark

Specification, 2017). TCP-H database contains eight

tables. Customer table was used in our experiment. The

AccBal was considered as sensitive field. The column of

AccBal was encrypted by using AES-256 to provide

confidentiality service.

The proposed approach and set of related approaches

from literature were examined; to quantity the CPU

execution time of SQL operations over the encrypted

column in customer table, which has a number of tuples

ranging from 50,000 to 100,000. The following queries

were carried out in those experiments:

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

552

Fig. 3. Architecture design for SQL query over encrypted database

Query 1: Select Statement

The where clause in the query statement has an

encrypted field.

Select CustKey, Name

From Customer

Where AccBal between 2564 and 8729

Based on our approach the above query was

transformed to:

Select CustKey, Name, Dccrypt(AccBal)

From Customer

Where Hash_AccBal between Hash(2564) and

Hash(8729)

Query 2: Select Statement

The query statement has an encrypted field and

where clause has encrypted field.

Select CustKey, Name, AccBal

From Customer

Where AccBal between 2564 and 8729

Based on our approach the above query was

transformed to:

Select CustKey, Name, Dccrypt(AccBal)

From CustKey, Name, Dccrypt(AccBal)

Where Hash_AccBal between Hash(2564) and

Hash(8729)

Query 3: Update Statement

The where clause in update statement has an
encrypted field.

Update Customer
Set Phone = Phone + 5
Where AccBal between 2564 and 8729
According to the propose approach the update
statement was transformed to:
Update Customer
Set Phone = Phone + 5
Where Hash_AccBal between Hash(2564) and

Hash(8729)

Query 4: Update Statement

The update statement and where clause have an

encrypted field.

Update Customer

Set AccBal = AccBal + 730

Where AccBal between 2564 and 8729

The above query was transformed to:

Update Customer

Set Decrypt(AccBal) = Encrypt(AccBal) + 730

Hash_AccBal = Hash(Encrypt(AccBal)+730)

Where Hash_AccBal between Hash(2564) and

Hash(8729)

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

553

Query 5: Delete Statement

The where clause has encrypted field in delete statement.

Delete Customer

Where AccBal between 2564 and 8729

This query was transformed to:

Delete Customer

Where Hash_AccBal between Hash(2564) and

Hash(8729)

Query 6: Insert Statement

The insertion execution time was computed to

determine the time that was consumed by insertion

operation with encryption process.

Insert into Customer

values (CustKey, Name, Encrypted(AccBal),….);

Evaluation Metric

In this research, the CPU execution time (second)

was considered. The evaluation performance encryption/

decryption process and hash map function process

conducted in term of the CPU execution time of select,

update, delete and insert statement. In this research work

the all above queries were executed on the Customer

table by using the following approaches:

1. Traditional approach: which decrypt all encrypted

data before applying the SQL query.

2. Sharma et al.’s method.

3. Alhanjouri and Al Derawi approach.

4. Wang et al.’s approach

5. Proposed approach.

To obtain fair and fixed comparison between all

above approaches, same data and same functions that are

responsible for accessing the database were used in all

experiments. Each experiment was tested with following

data size 50,000 and 100,000 records.

Results Analysis and Discussion

The results of our experiments in term of CPU

execution time or query was presented in following sub

sections.

Execution Time for Query 1: Select Statement

The select statement in this query does not contain
any encrypted field; while where condition has encrypted
field. As showed in Fig. 4 and 5, the average of CPU
execution time 18s, when select statement was executed
over customer table with datasize 50,000 records. While
the CPU execution time was 32s when the same query
executed in data size 100,000 records.

There is a significant improvement in execution
query over the encrypted database compared with other
approaches, as shown in Fig. 4 and 5. The CPU
execution time was 30s, 26s and 23s for traditional
approach, Sharma et al. and Alhanjouri and Al Derawi
methods; respectively when data size is 50,000 records.
While the CPU execution time was 58s, 47s and 42s
when data size is increased to 10,000 records.

Execution Time for Query 2: Select Statement

In this scenario select statement and where condition,
both of them contain encrypted field. Therefore; the
execution time will be increased compared with previous
scenario in Query 1.

When Query 2 was executed over customer table
with data size 50,000 and 100,000 records, the response
time was 40s, 62s; respectively in the proposed
approach. The response time is increased, when other
approaches were executed over encrypted database as
presented in Fig. 4 and 5.

Fig. 4. Execution time for select statement (Query 1 and 2)

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

554

Fig. 5. Execution time for select statement (Query 1 and 2)

Fig. 6. Execution time for Update statement (Query 3 and 4)

Fig. 7. Execution time for Update statement (Query 3 and 4)

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

555

Execution Time for Query 3: Update Statement

Update statement is not containing any sensitive data,
while where statement has sensitive data. Therefore; the

proposed approach translates the query to compute the
hash value for sensitive data. In this case the average of
execution time for this query was less than 28s and 41s
when database size is 50,000 and 100,000 records;
respectively. The results of this experiment was
presented in Fig. 6 and 7.

Execution Time for Query 4: Update Statement

Both update statement and where condition have

encrypted data. Therefore; the proposed approach

translates the query to compute the hash value for

sensitive data to retrieve the records that satisfy the

where condition, then decrypt the sensitive value and

then encrypt the results. In this case the average of

execution time for this type of query greater than the

previous query 3 because there were two operations are

performed. The CPU execution time was 58s for

database size 50,000 rows; while for 100,000 records,

the execution time was 65s. The results of experiment

illustrated in Fig. 6 and 7.

Execution Time for Query 5: Delete Statement

In delete SQL statement, only where condition

contains encrypted data. Therefore; the proposed

approach calculated hash value, then find all rows satisfy

the condition. For this scenario, the response time was

28s for database size 50,000 rows; while for 100,000

records, the response time is 54s. The results of this

scenario presented in Fig. 8 and 9.

Execution Time for Query 6: Insert Statement

Figure 10 shows the relationship between encryption

time during insertion the row in the encrypted database

and the number of rows for each approaches. When the

size of data increases, the CPU execution time also

increase. From experiment results, it is obvious that the

proposed approach consumes the longest time for

encrypting and hashing; while the traditional approach

consumes least time for that; because the traditional

method perform only encryption, no need for hashing the

sensitive data. The proposed approach need extra time

for hashing sensitive data, but has better execution time

than Sharma et al. for insertion operation.

The results of all experiments validate the performance

of the proposed approach. There is a significant

improvement in execution query over the encrypted

database. This performance improvement in execution

query over encrypted database and minimized CPU time

cost; because the proposed approach being based on

computing a hash value for where clause conditions, then

selecting all records that satisfy the hash value for where

conditions. While other approaches based on decrypt all

records in the customer table then retrieve the records that

satisfy the where clause conditions. Also, Sharam et al.

used two tables for a single main table. The first table

contains the actual data (CustKey, Name, Encrypt

(AccBal),….), which has its sensitive data in encrypted

form, while the second table contains Encrypt (CustKey),

AccBal. This method consumes CPU time when executing

queries over the encrypted table.

Fig. 8. Execution time for delete statement (Query 5)

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

556

Fig. 9. Execution time for delete statement (Query 5)

Fig. 10. Execution time for Insert statement (Query 6)

Conclusion

This research has presented an enhancement to naïve
database encryption approach to achieve better response
time for the execution of SQL query. The experimental
results indicate that the adaptive approach improves the
performance of query response time for all cases,
providing excellent query response time and improve
query performance using a variety of records. The
outcomes demonstrate that the proposed methodology
gives better response time and performance.

Ethics

This article is the original contribution of the author
and is not published elsewhere. There is no ethical issue
involved in this article

References

Alhanjouri, M. and A.M. Al Derawi, 2012. A New

method of query over encrypted data in database

using hash map. Int. J. Comp. Appl., 41: 975-888.

DOI: 10.5120/5533-7580

Ali, A. and M.M. Afzal, 2017. Database security:

Threats and solutions. Int. J. Eng. Inventions, 6:

2278-7461.

Arasu, A., K. Eguro, R. Kaushik and R. Ramamurthy,

2014. Querying encrypted data. Proceedings of the

ACM SIGMOD International Conference on

Management of Data, June 22-27, ACM Press, New

York, USA, pp: 1559-1261.

 DOI: 10.1145/2588555.2588893

Jaafer Al-Saraireh / Journal of Computer Science 2017, 13 (10): 548.557
DOI: 10.3844/jcssp.2017.548.557

557

Bouganim, L. and Y. Guo, 2011. Database encryption.

Proceedings of the Encyclopedia of Cryptography

and Security, Boston, MA: Springer US, pp: 307-12.

DOI: 10.1007/978-1-4419-5906-5_677

Mousa, A., E. Nigm, S. El-Rabaie and O. Faragallah,

2012. Query processing performance on encrypted

databases by using the REA algorithm. Int. J.

Network Security, 14: 280-88.

Nassar, M., Q. Malluhi, M. Atallah and A. Shikfa, 2017.

Securing aggregate queries for DNA databases.

IEEE Trans. Cloud Comput.

 DOI: 10.1109/TCC.2017.2682860

Rathod, R.H. and C.A. Dhote. 2014. A literature survey

on performance evaluation of query processing on

encrypted database. Int. J. Eng. Comput. Sci., 3:

9637-9642.

Salama, D., A. Elminaam, H. Mohamed, A. Kader and

M.M. Hadhoud, 2010. Evaluating the performance

of symmetric encryption algorithms. Int. J. Network

Security, 10: 213-19.

Sharma, M., A. Chaudhary and S. Kumar, 2013. Query

processing performance and searching over

encrypted data by using an efficient algorithm. Int.

J. Comput. Appli., 62: 975-8887.

 DOI: 10.5120/10114-4781

TPC-H Benchmark Specification, 2017.

http://www.tpc.org/tpch/

Wang, Z.F., J. Dai, W. Wang and B.L. Shi, 2004 Fast

query over encrypted character data in database.

Communications Information Syst., 4: 289-300.

Zheng-Fei, W., W. Wang and B.L. Shi, 2005. Storage

and query over encrypted character and numerical

data in database. Proceedings of the 5th

International Conference on Computer and

Information Technology, Sept. 21-23, IEEE Xplore

press, Shanghai, China, pp: 77-81.

 DOI: 10.1109/CIT.2005.174

