

© 2017 Somia Belaidouni, Moeiz Miraoui and Chakib Tadj. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Using MVCA to Improve Architecture Modularity

of Smart Spaces

1
Somia Belaidouni,

2
Moeiz Miraoui and

1
Chakib Tadj

 1École de Technologie Supérieure, Montreal, Canada
2High Institute of Applied Sciences and Technology, University of Gafsa, Tunisia

Article history
Received: 06-03-2017
Revised: 28-08-2017
Accepted: 20-10-2017

Corresponding Author:
Somia Belaidouni
LATIS Laboratory, École de
Technologie Supérieure,
Montreal, Canada
Email: belaidounisoumia@yahoo.fr

Abstract: There has been increasing interest in the use of context
awareness, as a technique for designing architectures dedicated to smart
spaces in order to adapt and produce suitable services according to user
context. In recent years, various architectures have been developed to
support context-aware systems. The major challenge with these systems is
decomposing the entire architecture into smaller, modular components that
facilitate the comprehension and modification of the architecture. In this
study, we propose the Model View Controller Adapter (MVCA)
architecture, derived from the model-view-controller pattern, which is
modular, flexible and capable of adapting services autonomously on behalf
of users. The main concept of MVCA architecture is that it decomposes the
overall functionalities into modular components with high cohesion and
low coupling, which facilitates reusability and maintainability of the
system. The MVCA architecture is essentially composed of four
components that are responsible for sensing and managing the
environmental context in order to adapt and produce services proactively
according to user context. To clarify and show the usability of our
architecture, we present a scenario-based simulation of MVCA architecture
using the Java Agent Development Framework platform.

Keywords: Pervasive Computing, Smart Space, Architecture, Context-
Awareness, MVC Pattern, Modularity

Introduction

The diverse nature of pervasive computing makes
it difficult for software designers to adopt one
common model that can meet all requirements
(Abdualrazak et al., 2010). Designing context-aware
smart spaces is a challenging task for two main
reasons: Firstly, supporting different devices and
multiple interacting platforms is difficult; and
secondly, it is difficult to achieve environmental
context awareness and to proactively adapt services to
dynamic changes. Addressing these issues means that
systems should be capable of providing a uniform and
efficient architecture for communicating the entirety
of entities within the environment to meet people’s
needs and adapt to their preferences.

In view of these requirements, our project aims to
create a modular and flexible architecture, which
takes the context as the first input as the most
important element for reasoning, adapting and

providing a service in a more suitable form. Modularity is a
significant quality attribute in the design of large system
architectures (Knoernschild, 2012). Modularity is
considered as a key feature to improve several quality
attributes such as maintainability, portability, reusability,
interoperability and flexibility (Galin, 2004). In the case
of our smart environment, modularity is the key to
facilitating management of the design complexity and
ensuring the development of the overall components.
Moreover, the degree of modularity is proportional to
the degree of loose coupling and high cohesiveness of
a system’s software elements (Sharafi et al., 2012).
Therefore, the benefit of modularity is dividing the
architecture into loosely coupled and highly cohesive
modules, which interact in a collaborative manner to
achieve the requirements.

The Model-View-Controller (MVC) is considered
as an architectural pattern in software engineering. It
adopts the idea of “divide and conquer,” (Zhang and
Zhu, 2013), which involves dividing the entire

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

461

architecture into three separate components: Model,
view and controller, based on the principle of
separating the act controllers, data presentation and
user’s actions. This facilitates modification and
change in each component without significantly
disturbing the others. The benefits of the MVC design
have been demonstrated in various interactive
applications (Sarker and Apu, 2014).

 In this study, we propose a Model View
Controller Adapter (MVCA) architecture that is a
variation of the established MVC pattern and provides
a new perspective on modularization. It divides the
overall functionalities of the system into a
modularized architecture. MVCA introduces a new
component, the adapter, to provide suitable services
with a robust and extensible infrastructure in order to
provide environmental context awareness and meet
the user’s needs. Mainly, it is responsible for
reasoning regarding the sensed context and adapting
services proactively. In general, the adapter is a set of
rules which have to be specified for the possible
contextual configurations about user interactions and
their preferences and each rule triggers a specific set of
services according to the current context. In such
adapter, we have to imagine and predict all possible
context configurations before deploying the system. This
set of rules will then be static and can not be modified
when the system is operational. Such approach has two
main drawbacks: (a) it is impossible to predict all
possible context configurations and (b) the adaptation
system is not dynamic and cannot evolve as the system
operates (it is limited to the static set of rules). Instead of
rule base approach, the component contains also learning
engine in order to adapt services to all possible and
meaningful context configurations. This machine
learning approach can select a previous choice about the
service and can adapt itself by another new choice about
service from user feedback, which make it adaptative.

The remainder of this paper is organized as
follows. In the next section, we provide an evaluation
of some existing software architectures. In section 3,
we describe our proposed architectural pattern to
overcome the identified problems. In section 4, we
present a scenario implementation and report the main
results from the simulation studies. Finally, our
conclusion and future work are presented in section 5.

Related Work

A wide variety of context-aware schemes have
been proposed over the past few years. However, most
of these provide only partial context-awareness
functionality (Zhang et al., 2013) and aim to satisfy
certain quality attributes, such as interoperability, flexibility
and maintainability. The CASS tool (Clarke and Fahy,
2004) is middleware for supporting the development of
context-aware applications. It divides the entire

architecture into independent components and achieves
effective abstraction of contextual information. This
architecture provides efficient modularity that facilitates
the modification of server components; in particular, the
inference engine. Octopus (Firner et al., 2012) is
dynamically extensible middleware for facilitating smart
home/office domain-specific applications. It is
constructed on a simple layered architecture to tackle the
problems of data management and fusion; however, it
appears to have a lower tolerance for problems.
FlexRFID (El Khaddar et al., 2015) aims to provide a
policy-based middleware solution for facilitating the
development of context-aware applications and
integrating heterogeneous devices. Authors have
furthermore proposed a multi-agent (Miraoui et al.,
2016) for a smart living room that focuses on context-
awareness, which is a key enabler for service adaptation
in smart spaces. The project aims to provide architecture
with a high degree of modularity; that will have a
positive impact on several software qualities, such as
modifiability, reusability, maintainability and extensibility.
The architecture proposed in (Aloulou et al., 2012) provides
an adaptable and dynamic platform that integrates new
assistive services at runtime and enables their binding to
specific patients. This system adopts modularity by using
the Service-Oriented Approach (SOA), which improves
its flexibility, scalability and configurability. The
FIWARE (FIWARE Project, 2016) aims to provide
cutting-edge infrastructure in which the creation and
delivery of services, high quality of service and effective
security are achieved. It is a generic platform that could
adaptively be applied to various usage areas.
Preuveneers and Berbers (2007), authors have proposed
a resource-aware and context-driven application
middleware for mobile devices that has a layered design
and provides introspection and intercession capabilities
within each layer to support a more flexible self-
adaptation strategy at runtime. The MUSIC project
(Rouvoy et al., 2009) is a middleware Support for Self-
Adaptation in ubiquitous and service-oriented
environments, which addresses aspect-oriented
adaptations. To accomplish this, authors uses
computations and evaluations of alternative application
configurations in response to context changes and the
selection of a feasible configuration. The SECAS
(Chaari et al., 2008) is a project that ensures the
deployment of adaptive context-aware applications. The
authors aim to develop a platform, which makes the
services, data and the user interface of applications
adaptable to different context situations. Focuses on this
point by providing the necessary tools to adapt existing
applications to new contextual situations that were not
taken in consideration at their design stage. The Chisel
system (Keeney and Cahill, 2003) is an open framework
for dynamic adaptation of services using reflection in a
policy-driven, context-aware manner. The system is
based on decomposing the particular aspects of a service
object that do not provide its core functionality into

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

462

multiple possible behaviours. The principal aim of this
project is to build a framework supporting unanticipated
dynamic adaptation that will take account of contextual
information from as many sources as possible. The
PACE middleware (Henricksen et al., 2005) is used to
support the development of a context-aware vertical
handover application which investigates a variety of issues
related to pervasive computing, including the design of
context-aware applications and solutions for modeling and
managing context information. Il offers a toolkit that
facilitates interaction between application components and
the context and preference management systems.

Overview of MVCA

The MVCA architecture is based on the MVC
pattern, with an additional component, namely the
adapter, which is used to adapt services in unforeseen
situations. This architecture is modular and based on
the separation of the four components that represent
the functionalities of a smart space. These modules
interact and collaborate to handle contextual data in
order to produce the most suitable service.

The context is the key element to take into account
because it represents the main input data on which our
architecture functionalities are based. As illustrated in
Fig. 1, we have decomposed the smart space into three
main parts: The context is represented by the
contextual model, the adaptation part is realized by
the adapter and controller and the service part is
represented by the view component.

Detailed MVCA Architecture

In terms of software, the system consists of four main
components: The controller, contextual model, adapter
and view, as shown in Fig. 2. (1) The controller receives
a variety of contexts sensed from the environment. The
context is then interpreted in a suitable form to be
comprehensible and used by other components. (2) The
contextual model represents the storage of all context

information. This component contains sensed data
associated with the appropriate services, as well as a pre-
installed list of user preferences. Moreover, it is
responsible for responding to controller requests by
sending the appropriate services, if they are found. It can
also receive new services that have been adapted by the
adapter component due to unforeseen circumstances. (3)
The adapter module is the core component of the
architecture, as it maintains the overall mechanisms and
rules to adapt services to new situations. Firstly, the
adapter receives contexts from the controller and
attempts to reason and adapt suitable services. Then, it
sends the adapted services, accompanied by their context
information, to the contextual model, to be saved for
future utilization. (4) Finally, the view component is
responsible for determining the system output. It
receives queries from the adapter to execute services
such as displaying data or requests sent to actioners.

Controller

The controller is the first component to interact with
the environment. Thus, it is related to sensors and
devices implanted in the environment in order to
intercept and collect any context information or situation
changes. This component is the backbone of the
architecture because it provides the main support for
context to be used by others components. Therefore, it
includes procedures for interpreting and reasoning, in
order to transform gathered low-level raw data into
higher- level information. The controller component
performs three major interactions:

• Transfers the appropriate service from the

contextual model component to the actual context
• If the service is found, sends the service in question

to the view component for execution
• Otherwise, sends the context information to the

adapter component

Fig.1. MVCA architecture

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

463

Fig. 2. MVCA components

Contextual Model

The contextual model acts as data storage for all
contexts collected by the controller component. This
component incorporates a context history accompanied
by particular service criteria that may be used to
establish trends and predict future services. It also saves
also users’ information and preferences in order to
satisfy their needs. The contextual model is responsible
for the following interactions:

• Checks in the base if there is a match between the

context received from the controller and the
recorded context

• Sends a message response to the controller
component containing the appropriate service
to execute (if found), else sends a negative response

• Saves the adapted services with their context
information received from the adapter component

Adapter

The adapter component contains the domain-level
logic of the system. It holds a database of adaptation
rules. This rules define the adaptation operations that the
adapter has to compute on the service it adapts and the
context parameters related to it.

Besides, it is based on user’s behavior learning using
different types of procedures for automatic learning of the
best possible services to execute, as well as a decision-
making process, which is responsible for determining which
service should be performed in a given situation in order to
provide personalized and relevant information to end-user.
Then, mainly this process involves two general
requirements that form cycle. First gathering preferences of
the user (with feedback or history of interaction for
instance) and then adapting the engine to produce a suitable
service (for instance by adjusting parameters related to
preferences). For example, an inhabitant that gets up

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

464

generally at 7 in the morning. One day, since he has a
meeting in another city, his alarm rings at 6 ‘o’clock
because the inhabitant set the adaptation system on the
adaptation server before he went to sleep. Based on this
example, we deduce that. That is why the system must be
aware to the context and react to changes of this context in a
continuous way. In order to get the right context of the user
and his environment to fulfill adaptation process, the
adapter component continuously interacts with the other
components to perform the following operations:

• Receives the context information from the

controller component
• Adapts suitable services according to situation changes
• Retrieves useful information during the adaptation

process as required
• Sends adapted services that are found, along with

their context information, to the contextual model
to be saved for future use

• Sends adapted services to the view component for
execution

When the adaptation process was performed and the

service is executed, the user must have the option to accept
or reject the service providing a feedback that will be used
to adjust the parameters of the techniques implemented.

View

The view component aims to generate and provide
services to the user. It mainly contains mechanisms for
interacting with actuators, which perform services at the
final stage. These services are in the form of notifications or
recommendations forwarded to user devices and can also be
queries performed by actuators to execute services. The
view component is responsible for the following operations:

• Receives services from the adapter component
• Sends notifications or recommendation to user devices
• Sends queries to actuators to perform received services

In this study, the MVCA architecture is implemented
using the Java Agent Development Framework (JADE)
platform (Bellifemine et al., 2005). Figure 3 shows the
four different types of agents representing the MVCA
architecture components. It should be noted that we have
added a new agent, “context,” which represents the
context information sensed from the environment.

The interaction between different agents follows a
process, consisting of the following phases:

• When a contextual agent obtains external information,

it informs the controller agent of the available context
in order to find the appropriate service

• The controller agent reads and processes the
received information and requests the appropriate
service from the contextual model

• When the contextual model receives context
information, it checks its base to determine whether

there is a match between the received and saved
contexts. A negative response is sent when no match
is found and a positive response when a match
between service and context elements is identified.

• If the service is identified by the contextual model
agent, the controller agent sends a query to the view
agent with the service’s criteria in order for

• It to be executed, as an appropriate service for
user needs

• If the service is not identified, the controller agent
informs the adapter agent about the identified
context requiring an adaptation service

• The adapter agent uses mechanisms to adapt and
determine suitable services, which are then transferred
to the view agent. Moreover, it communicates the new
adapted service to the contextual model agent
according to its context information, to be added to the
database for future work

• The adapter agent retrieves certain information from
the model contextual agent that will be used in
learning processes, such as historical or preference
data, in order to determine the appropriate service.

• Once the view agent receives the specific service, it
responds to orders received from the adapter agent
and sends notifications, recommendations, or
queries to actioners installed in the environment.

In order to verify the performance of the MVCA

architecture, we implement a simple scenario using
JADE agents. The scenario describes the daily routine of
an employee in his office from 8:00 a.m. until 4:00 p.m.

The entire scenario can be divided into five scenes.
The basic concept of each scene is that the context agent
is the first to sense the context that will be interpreted
and processed by the controller agent in order to infer the
appropriate action to be taken, either directly by the
contextual model agent or by the adapter agent. Then, the
view agent receives the services to be executed.
Parameters reflecting all contextual variation in the
environment are taken into account; for example, working
day, time, place, temperature, light and device interaction.

JADE Agents

The scenario describes the daily routine of an
employee in his office from 8:00 a.m. until 4:00 p.m.

The entire scenario can be divided into five scenes.
The basic concept of each scene is that the context agent is
the first to sense the context that will be interpreted and
processed by the controller agent in order to infer the
appropriate action to be taken, either directly by the
contextual model agent or by the adapter agent. Then, the
view agent receives the services to be executed.
Parameters reflecting all contextual variation in the
environment are taken into account; for example, working
day, time, place, temperature, light and device interaction.

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

465

Fig. 3. Interaction agents in MVCA architecture

Table 1 illustrates the different scenes, each of which
describes a particular service. We choose to identify
scenes according to the three most important pieces of
information: (1) contextual data, which can either be
planned situations in the system or unanticipated
situations requiring an adaptation process; (2) the
equipment performing the action; and (3) the performed
service, identified by its nature, which can be either a
default service (predefined service according to a pre-
established context in the system) or adapted service
(new service resulting from an adaptation process in an
unanticipated situation).

We take the third and fourth scenes, representing two
different situations, as an example. The first is a planned
situation; that is, a situation with a known service. The
sensed context relates to the day (working day), time
(8:00 a.m.) and interaction of equipment (door). This
information is identified as the main input of the MVCA
architecture, to be transmitted to the controller
component, which in turn attempts to retrieve the
appropriate service from the contextual model module.
In response, the contextual model sends an adequate

service description located in its local database. This is
based on the fact that, in the case of planned situations,
the contextual model component has already saved
different context information, such as preferences or
known conditions associated with suitable services, to be
executed in the future. Finally, the service will be
transmitted directly to the view component, which is
responsible for sending orders to turn the light on.

The second scene involves unanticipated situations
that have not been previously saved in the system. The
context agent senses that the conference room is
occupied, a situation that is not predefined in the system.

Therefore, the controller agent receives a negative
response (service not found) from the contextual model.

The controller then communicates this context
information to the adapter, which can reason and adapt a
suitable service; in this case, a notification about
changing the conference room.

Accordingly, the view sends notifications to the user’s
cell phone to inform them about the alternative room where
the conference can be held. Table 2 illustrates different
interactions between agents in the two scenes.

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

466

Table 1. Description of scenario scenes
 Contextual data Executed service
 -- --
 Planned situation Unanticipated Equipment Nature Description
 situations
Scene 1 Working day Light Request sent to Lamps are
 Time: 8:00 a.m. system lamps (Default service) turned on
Scene 2 Door opens Alternative Cell phone Notification Message indicating
 Conference room: B30 (Adapted service) the new conference
 room: A50 room
Scene 3 Ali leaves Portable PC Requests sent to PC and light
 his office Light system portable PC and system enter
 light system power save mode
 (Default service)
Scene 4 Ali returns to The temperature Air-conditioning Request sent to air Air conditioning
 the office is higher than system -conditioning system turned on to reach
 25 degrees (Adapted service) the desired
 temperature
Scene 5 Time: 4:00 p.m. Portable PC Requests sent to Equipment is
 Door closes Light system equipment switched off
 Ali lefts his office Air-conditioning (Default service)
 system

Table 2. Interactions between agents in two different scenes
Scene Context A. Ctxt A. Contr A. MDL A. Adap A. View Query

Scene 1 Working day E R Inform
 Time: 8:00 a.m. E R Request
 Door opens R E Respond
 (Service found)
 E R Execute service
Scene 2 Conference room E R Inform
 occupied
 E R Request
 (Service not found)
 E R Respond
 E R Request
 R E Respond
 (adaptable service)
 E R Execute service

We now discuss the implementation results. We

developed a simple application to test our
architecture. Fig. 4 displays a snapshot of the
application interface, which is designed to load a
scenario in a text format and launch the creation of
agents for the simulation. Furthermore, the interface
shows different scenes extracted from the associated
scenario, with the elapsed time between the start and
completion of each scene. The interface also
presents an automat diagram that shows the various
interactions between agents in each scenario. An agent
that is known to simply receive a message is colored
red. This explains the communication flow among
agents in the MVCA architecture.

The sequence diagram shown in Fig. 5 depicts the
scenario execution, which is carried out by the exchange
of messages between different agents composing the
MVCA architecture. The diagram is also used to show

how the different components of our architecture
cooperate to accomplish the proposed scenes.

The diagram illustrates the occurrence of events for
invoking specific operations using different behavior
messages like “inform, request.” Execution times,
sender, location and context are annotated in the
sequence diagram, as shown in Fig. 6.

In this system, modularity is realized by separating
the MVCA functionality into independent parts, so that
each module focuses only on one or a small number of
interactions. This method contributes to maximizing the
interaction within each component (cohesion) and
minimizing dependencies (coupling) between
components. It also facilities the modification of
components to satisfy local requirements. Moreover, it
contributes to reducing system maintenance efforts and
maximizing the system’s reusability.

Figure 6 shows four tracking tables for the

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

467

components, and shows interactions during the pre-
established scenes at each instant. For example, in the
controller table report, the first interaction shows that
at 5:40:12, the controller component receives a
message from the context agent with sened
information (working day, time: 8:00 a.m., door
opens), and the user location is “office.” This context

is transferred to the contextual model agent at 5:40:14
to determine the appropriate service (turn on lamps),
which is executed by the view agent at 5:40:20.

The execution times of the different component
interactions components highlight the progress of the
MVCA architecture. Moreover, we can retrace errors
that are a result of poor component operation.

Fig. 4. Interface of MVCA implementation

Fig. 5. Sequence diagram for MVCA architecture agent interactions

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

468

Fig. 6. Component event report

Conclusion

Smart environments are characterized by complex
systems that require a balance between transparency
and context awareness. Architectures for such systems
must respond to requirement space and should integrate
a modular and flexible design that can produce
appropriate services at the right time. In this article, we
propose MVCA architecture, derived from the MVC
pattern. The main idea behind this system is to
decompose the overall functionalities of into four
separate components, which are responsible for
sensing, managing context information and reasoning
to execute the most suitable service for users. This
approach allows for high cohesion and low coupling,
which are important measures of architecture quality.
Therefore, this method facilitates system reusability
and maintainability. In future works, we plan to extend
the MVCA architecture to handle and process various
complex scenarios and to evaluate the performance of
the architecture and its implementation in depth.

Acknowledgement

 This work has been achieved at the École de
technologie supérieure (Montréal, Canada).

The author would like to thank everyone who has
contributed to the progress of this research.

Author’s Contributions

Somia Belaidouni: The development of the Model
View Controller Adapter (MVCA) architecture for
smart spaces.

Moeiz Miraoui: Simulation and evaluation of the
proposed architecture.

Chakib Tadj: The state of the art and work
supervision.

Ethics

This article is the original contribution of the authors
and is not published elsewhere. There is no ethical issue
involved in this article.

References

Abdualrazak, B., Y. Malik and H.I. Yang, 2010. A
taxonomy driven approach towards evaluating
pervasive computing system. Proceedings of the
International Conference on Smart Homes and Health
Telematics, (HHT’10), Springer Berlin Heidelberg, pp:
32-42, DOI: 10.1007/978-3-642-13778-5_5

Aloulou, H., M. Mokhtari, T. Tiberghien, J. Biswas and
P. Yap, 2014. An adaptable and flexible framework
for assistive living of cognitively impaired people.
IEEE J. Biomed. Health Informat., 18: 353-360.
DOI: 10.1109/JBHI.2013.2278473

Bellifemine, F., F. Bergenti, G. Caire and A. Poggi,
2005. Jade - A Java Agent Development
Framework. In : Multi-Agent Programming,
Bordini, R.H., M. Dastani, J. Dix and A. El Fallah
Seghrouchni (Eds.), Springer, Boston, MA, ISBN-
10 : 978-0-387-24568-3, pp: 125-147.

Chaari, T., F. Laforest and A. Celentano, 2008.
Adaptation in context-aware pervasive
information systems: The SECAS project. Int. J.
Pervasive Comput. Communications, 3: 400-425.
DOI: 10.1108/17427370710863130

Somia Belaidouni et al. / Journal of Computer Science 2017, 13 (10): 460.469
DOI: 10.3844/jcssp.2017.460.469

469

Clarke, P. and S. Fahy, 2004. CASS-middleware for
mobile context-aware applications. Proceedings of
the Workshop on Context Awareness, (WCA’04),
CiteSeerX, pp: 1-6.

El Khaddar, M.A., M. Chraibi, H. Harroud, M. Boulmalf
and M. Elkoutbi et al., 2015. A policy-based
middleware for context-aware pervasive computing.
Int. J. Pervasive Comput. Communi., 11 : 43-68.

Firner B., R.S. Moore, R. Howard, R.P. Martin and Y.
Zhang, 2011. Smart buildings, sensor networks and
the internet of things. Proceedings of the 9th
Conference on Embedded Networked Sensor
Systems, Nov. 01-04, ACM, New York, USA, pp:
337-338. DOI: 10.1145/2070942.2070978

FIWARE Project, 2016. https://www.fiware.org/
Galin, D., 2004. Software Quality Assurance: From Theory

to Implementation. 1st Edn., Pearson Education
Limited, Harlow, ISBN-10: 0201709457, pp: 590.

Henricksen, K., J. Indulska, T. McFadden and S.
Balasubramaniam, 2005. Middleware for distributed
context-aware systems. Proceedings of the OTM
Confederated International Conferences on the
Move to Meaningful Internet Systems, Oct. 31-Nov.
04, Springer, Berlin, Heidelberg, Agia Napa,
Cyprus, pp: 846-863. DOI: 10.1007/11575771_53

Keeney, J. and V. Cahill, 2003. Chisel: A policy-driven,
context-aware, dynamic adaptation framework.
Proceedings of the 4th International Workshop on
Policies for Distributed Systems and Networks, Jun.
4-6, IEEE Xplore Press, Lake Como, Italy, pp: 3-14.
DOI : 10.1109/POLICY.2003.1206953

Knoernschild, K., 2012. Java Application Architecture:
Modularity Patterns with Examples Using OSGi. 1st
Edn., Prentice Hall Press, ISBN-10: 0321247132,
pp: 384.

Miraoui, M., S. El-etriby, A.Z. Abid and C. Tadj,
2016. Agent-based context-aware architecture for a
smart living room. Int. J. Smart Home, 10: 39-54.
DOI: 10.14257/ijsh.2016.10. 5.05

Preuveneers, D. and Y. Berbers, 2007. Towards
context-aware and resource-driven self-adaptation
for mobile handheld applications. Proceedings of
the Symposium on Applied Computing, Mar. 11-
15, ACM, Seoul, Korea, pp: 1165-1170.

 DOI: 10.1145/1244002.1244255
Rouvoy, R., P. Barone, Y. Ding, F. Eliassen and S.

Hallsteinsen et al., 2009. Music: Middleware
Support for Self-Adaptation in Ubiquitous and
Service-Oriented Environments. In: Software
Engineering for Self-Adaptive Systems, Cheng,
B.H.C., R. de Lemos, H. Giese, P. Inverardi and
J. Magee (Eds.), Springer Berlin Heidelberg,
ISBN-10: 978-3-642-02161-9, pp : 164-182.

Sarker, I.H. and K. Apu, 2014. MVC architecture driven
design and implementation of java framework for
developing desktop application. Int. J. Hybrid Inform.
Technol., 7: 317-322. DOI: 10.14257/ijhit.2014.7.5.29

Sharafi, S.M., M. Ghasemi and N. Nematbakhsh, 2012.
Using architectural patterns to improve modularity
in software architectural design. Proceedings of the
International Conference on Software and Computer
Applications, (SCA’ 12), IACSIT Press, Singapore,
pp: 65-70.

Zhang, D., H. Huang, C.F. Lai, X. Liang and Q. Zou et al.,
2013. Survey on context-awareness in ubiquitous
media. Multimedia Tools Applic., 67: 179-211.
DOI: 10.1007/s11042-011-0940-9

Zhang, H. and S. Zhu, 2013. B/S implementation of
internet-based electrical engineering lab with MVC
architecture. Proceedings of the 10th IEEE
International Conference on Control and Automation,
Jun. 12-14, IEEE Xplore Press, Hangzhou, China, pp:
551-555. DOI: 10.1109/ICCA.2013.6564862

