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Abstract: A new approach to the use and implementation of Optical Flow 

technique is presented. The technique extracts features from presented images 

as a function of reference image and produces percentage of matching between 

the reference and tested images. The new approach in using Optical Flow lies 

in replacing the motion part of the algorithm with differential time related 

changes in an infrared thermal image sequence with frames of images taken as 

a result of applying the Pulse Video Thermography (PVT) technique. The 

sequence of images or frames is obtained for the tested structures of composites 

before and after impact damage. The resulted data of the tested images is used 

to establish mathematical model that can be used to predict impact energy from 

collected features or predict expected features from knowing impact damage 

level. To optimize the mathematical model, a new way of using Neural 

Networks is employed, which aims at obtaining a best fit for the used variables 

in the mathematical model, hence resulting in a better testing interpretation and 

more accurate prediction and classification of image features to improve future 

composite structures designs. The Neural Network Weigh Elimination 

Algorithm (WEA) is used and proved effective in predicting areas of damage. 
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Introduction 

Composite materials are a function of their internal 
structures, which is optimized to obtain desired 
mechanical properties. The fibres on their own are 
generally of little practical use but with a well-
designed combination of fibres and matrix a reliable 
component with good performance is produced and 
vitally used in demanding environments such as 
vehicles, airplanes and space craft industries. 

Integrity of a material is based on quality of 
fabrication as the designed specifications are fulfilled. 
Hence, it is important to be able to control the 
manufacturing and to inspect the materials for their 
structural arrangements of fibres, matrix and defects 
which most often have a detrimental effect on the 
composite properties and contributes to the readiness of 
a manufactured structure to easily be damaged. 

For practical and economical use of composites, it is 
very important to know not only the level of damage in 
the material but also its effect on the properties and 
functionality of the material, so that enough evidence 
will be available for accepting or rejecting a component. 

Testing a composite structure involves:  

 

• During manufacturing inspection 

• During service inspection 
 

The object of both tests is to determine an existing 
damage to the structure and its effect on the 
component performance and functionality, thus 
specify its limits. 

Two main areas of importance when testing structures: 

 

• Damage detection and identification 

• Analysis and monitoring of damage progression 

 
Thus, in order to develop appropriate inspection 

technology for fiber-reinforced composite materials, it 
is necessary that the development of detection 
capabilities be coupled with development of the 
technology that is capable of assessing the influence 
of damage upon strength and stiffness. 

Optical Flow is a known method of estimating field 

deviation between two similar images. It measures the 
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spatial and temporal variations. It looks for changes over 

time and for surface and composition changes over a period 

of time, where two images or more are taken.  

Neural networks play a critical role as data analysis and 

optimization tool, developed to speed the damage detection 

process. The Optical Flow feature extraction method 

utilizes a reference sample with Weight Elimination 

Algorithm operating on a designed Neural Network 

structure. The new approach is used for pattern recognition 

and impact energy correlation to extracted features in a 

PVT image (Usmantiagar et al., 2013; Katunin et al., 

2014; Ma and Liu, 2016; Wang et al., 2016; Liang et al., 

2016; Yang et al., 2016; Balcıoğlu et al., 2016; 

Hessamodin et al., 2016; Rajendran and Srinivasan, 2015).  

Background 

Composite structural testing helps to ensure that 

materials enter service in a functional condition. Too 

little sensitivity in the testing process would allow failure 

to occur and too much sensitivity would waste perfectly 

good structures.  

The basic contributions to the effectiveness and 

reliability of testing comes from the nature of the 

structure itself, the environment in which the structure is 

expected to operate and the kinds of defects expected to 

occur. From this information it is possible to estimate the 

damage type and level, which might lead to failure. 

Having estimated the nature of damage, which could 

lead to failure, suitable techniques is developed and 

based on understanding of the way in which damage 

mechanism occurs and the best way for its detection. The 

chosen technique needs to be calibrated using reference 

structures. This includes undamaged samples and 

artificially damaged ones. 

The developed technique needs to be able to detect 

damage at three major stages: 

 

• Material processing  

• Through manufacturing  

• In service 

 

This is essential since damage have the tendency to 

occur over time and under load applications.  

Testing can be employed to detect inclusions and 

flaws that differ in their heat transfer properties from the 

undamaged structure. When external heat is applied, the 

presence of damage affects the normal heat flow pattern of 

the structure. If this heat propagation is altered sufficiently, 

a temperature distribution profile can be realized.  

Thermal Imaging (Electronic Thermography) is 

essentially an infrared radiation from the sample which 

subsequently converted into an electrical signal 

generating a real-time thermal image. 

As a result of damage, the thermal characteristics of 

the materials evidently affect the resulting image which 

has dynamic characteristics depending on the thermal 

diffusivity of the material. 

To provide sufficient temperature contrast, the 

material requires a sufficient quantity of heat. The actual 

temperature rise of a structure is affected by: 

 

• The level of energy applied to the structure under test 

• The rate of absorption 

• The dynamic thermal properties of the material 

 

Since the steepness of the temperature gradient 

provides the required "contrast" between damaged and 

undamaged areas, a fast pulse as a source of heat must be 

used for a rapid temperature rise.  

Temperature difference is greatest shortly after the 

initial absorption of thermal energy and decreases over 

time. Therefore, it is necessary to measure temperature 

over an adequate time period. 

The previous highlights the need for an intelligent 

classification system, which is flexible enough to 

accommodate different boundary conditions with 

complex non-linear behavior with capabilities of 

generalization and prediction.  

Quality monitoring of structures requires automated 

test and assessment technique, which can be further 

enhanced using an Intelligent Assessment (IA), where an 

automated inspection system is used to assess the quality 

of images obtained for structures in relation to reference 

images and also predict future structural behavior under 

different conditions. 

Neural Networks can directly map the characteristics 

of a material. Work has been carried out to build and 

apply Neural Networks models to characterize, map and 

predict parameters such as, temperature, effective strain, 

strain rate, creep, among others.  
Optical Flow is a popular method of estimating the 

difference between two images due to a time related 
function that correlate between two successive 
images. It measures intensity changes. In general, 
there are three common assumptions to approximate 
Optical Flow values:  
 

• Brightness constancy  

• Spatial coherence  

• Temporal persistence 

 

Optical Flow can be represented as: 

 

0
t

I f I∇ • + =

�

  (1) 

 

Where: 

 

I(x,y,t) is the image intensity at time t located at 

spatial point (x,y). ∇I = (Ix, Iy) is the spatial gradients and 

It is the temporal gradient of the intensity function. If 
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point of interest in the image is initially positioned at (x,y) 

and it moves through a distance (dx,dy) after the change in 

time of dt. The flow vector f
�

will consist horizontal and 

vertical components, 
f
�

= ,

dx dy
p q

dt dt

 
= = 

 
 which denotes 

the horizontal and vertical components of the optical flow. 

Such point of interest and its movement can represent 

different types of damage propagating through a structure 

over time. In addition using object subtraction as part of 

the Optical Flow algorithm can represent the presence of 

damage and more specifically, impact damage, fiber 

extraction, cracks, foreign bodies in the structure, 

chemical interaction with the structure. 
Weight Elimination Algorithm is used to carry out 

weight decay process. It minimizes a modified error 
function which is formed by adding an extra term 
related to training error to the original error function.  

The added error term controls the dynamics of large 

weights, as it causes weights under consideration to 

converge with a much smaller values. Large weights 

can adversely affect network generalization depending 

on their position in the network. If the weights with 

large values are between input layer and hidden layer, 

they can result in the output function to be too rough. 

However, if they lie between the hidden layer and the 

output layer, they can result in outputs beyond the 

range of the data. Hence, large weights can cause 

excessive variance of the output, which cause the 

neural structure to be unstable with values outside the 

range of the output activation function (Peng et al., 

2015; Salazar et al., 2012; Qingsong et al., 2014; Duchi 

et al., 2011; May et al., 2013; Bahadorinia et al., 2014; 

Kumar and Harikumar, 2015; Dai et al., 2015;        

Barry et al., 2016; Ashwini and Yuvaraju, 2016).  

Weight Elimination mathematical model describes 

the dynamic changes in Neural Network convergence in 

relation to error functions. The overall weight 

elimination error function is presented by Equation (2) 

and it consists of two parts represented in the overall 

expression in Equation (2): 
 

• Original error function described by Equation (3) 

• Training error function described by Equation (4) 
 

overall original trainingE E E= +  (2) 

 

( )
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Where: 

Eoverall: The combined overhead function that includes 

the initial overhead function, Eoriginal and the 

weight-elimination term Etraining 

β :  Weight-Reduction factor  

wjk: Represents the individual weights of the neural 

network model  

wnet: Scale parameter 

dk: Desired output 

Ok: Actual output 
 

The dynamic weight changes is calculated using 

Equation (5): 
 

original training

jk

jk jk

E E
w

w w
η β

   ∂ ∂
∆ = − −      ∂ ∂   

 (5) 

 
Where: 
 

η : Learning rate  
 

The parameter, wnet, is a scale parameter and chosen 
to be the smallest weight from the last epoch or set of 
epochs to force small weights to zero wnet guides the 
computing algorithm to find solutions with either fewer 
large weights or many small weights, depending on the 
wnet values small or large.  

This work introduces a new method that maps motion 
used in the optical flow technique and algorithm to 
structural change in composites caused by impact damage. 
The mentioned two dimensional change which affects 
intensity due to motion can be mapped onto two 
dimensional changes in intensity due to impact damage in 
composites as a function of time. The developed 
mathematical model is further optimized by neural 
networks Algorithm (WEA) which is used in a new way to 
fine tune parameters in the model (Baghaie et al., 2017; 
Solari et al., 2015). 

Materials and Methods 

RIM composite components are shaped into 
rectangles (130×150 mm). Drop weight system is used to 
induce impact damage at various energy levels using 
1.35Kg weight. 

Images obtained for all tested components pre and 
post impact using PVT technique. Reference (prior to 
impact) sample images are used to cross correlate with 
the impacted samples, then optical flow technique is used 
and features extracted. The resulting feature maps for tested 
samples are used to derive mathematical expression 
governing the behavior of the Optical Flow technique in 
relation to extracted features and impact energies, then the 
resulting maps encoded into arrays of data to correlate 
Thermal Flow features with optical flow features. The 
reference encoding feature map is shown in Fig. 1. WEA is 
used to further improve the behavior of the obtained model.  
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Fig. 1. Encoding reference map 

 

For Pulse Video Thermography (PVT) the equipment 

used consisted of heat source and thermal imaging 

system. The heat source is adequately fast pulse, in order 

that there is a rapid temperature rise, as the steepness of 

the temperature gradient provided the differential 

required between damaged and undamaged areas. Pulse 

obtained by discharging several Kilojoules of energy 

through each of two Xenon flash tubes, which are 

directed at the component under test. The thermal 

imaging part of the experiment was carried out using an 

advanced thermal camera. Each thermal event was 

recorded directly on a specific storage. 

Results 

Figure 2 to 5 show the Optical Flow feature maps 

Images for the tested RIM composites, while Table 1 

show tolerances effect and Table 2 show the results of 

composite testing and feature extraction. 

Analysis and Discussion 

The process of analyzing and modeling the 

relationship between impact energy and extracted 

features is based on three elements: 

 

• Feature extraction tolerance  

• Impact energy level 

• Impact load incident angle 

 

Table 1 shows accuracy values for extracted features 

as a function of applied tolerance values. From the 

Table, it is clear that as tolerance values increase, 

extracted features accuracy decreases. This leaves 

only one usable value of tolerance, which is 0.05 that 

can be used safely for such optical flow images. 

Tolerance reduces the computing time and speeds up 

calculations, which is a favorable feature for real time 

testing, at the same time and for critical tests, the use 

of wide tolerance values is undesirable. 

Figure 6 shows a plot for the values in Table 2. The 

plot shows the power curve or exponential rise and decay 

curves. Within the curve are the real testing values with 

Table 3 showing the obtained values from the plot in 

Fig. 6, it is evident that as the impact energy increases, 

matched features decreases and a marked difference 

arises between the reference image and the tested image. 

From both Fig. 6 and Table 3, Equation are 

obtained covering both matched and mismatched 

features extracted as a function of impact energy 

presented in (6) and (7): 
 

0.63*

IE

F
Matched F e

 
− 
 

 
=  

  
 (6) 

 

0.63*
1
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F
Mismatched F e

 
− 
 

 
= − 

  
 (7) 

 
Where: 

IE = Impact Energy 

F = Extracted Features 
 

From Equation (6) and (7), Table 4 is obtained with 

Fig. 7 illustrate the simulated and approximated 
relationship between impact energy and extracted 
features. It is noticed that there is a difference in the 
produced values and that is due to the approximation 
effect, but still within acceptable limits. 

The approximation obtained through Equation (6) 

and (7) can further be optimized using the neural 

networks shown in Fig. 8. Table 5 presents values 

obtained using the designed neural structure. 

From Table (3) and (4), the two originally found 
values for the match and mismatch curves at which half 
the features are matched and the other half are 
mismatched are 15.75J and 17.5J. When used in the 
neural engine, the Engine predicted a value in between 

the two values, which is 16.15J. Hence, using neural 
networks with Weight Elimination Algorithm (WEA), both 
the original obtained values from the test data in Fig. 6 and 
the mathematically obtained plot in Fig. 7 are optimized,  
producing a stable and more accurate prediction curve, 
which also conforms to the mathematical expressions in 

Equation (6) and (7), as shown in Fig. 9. 

From experiments and for all practical purposes, not 

all impacts occur at normal to the surface; hence 

Equation (8) and (9) describe the effect of impact at an 

incident angle φ. Both equations cover one aspect of 

incident angle effect and that is the normal to the surface 

part of the vector, which is suspected to cause not only 

internal damage, but also surface damage: 
 

( )
sin

0.63*

IE

F

incident angle
Matched F e

ϕ

ϕ

 
− 
 

 
=  

  
 (8) 
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Table 1. Tolerance effect on feature extraction 

 Extraction accuracy 

 -------------------------------------------------------------------------------------------------------------------------- 

Tolerance Ref S2 S3 S4 

0.00 100 100 100 100 

0.05 100 100 100 100 

0.10 100 70 65 61 

0.15 100 57 52 57 

0.20 100 53 44 52 

0.25 100 50 39 48 

0.30 100 47 35 44 

0.35 100 47 35 30 

0.40 100 40 30 26 

0.45 100 33 26 26 

0.50 100 27 26 17 

 

Table 2. Feature extraction as a function of impact energy 

Sample Impact energy (J) No of tests Features Matched  Mismatched 

Ref 0 1000 1008 1008 0 

S2 28.6 1000 1008 215 793 

S3 42 1000 1008 155 853 

S4 55.6 1000 1008 139 869 

 
Table 3. Impact energy and optical feature values obtained from figure 6 including real testing data 

Impact energy (J) Features Matched  Mismatched 

0.00 1008 1008 0 

5.00 1008 860 148 

10.0 1008 718 290 

15.0 1008 568 440 

17.5 1008 504 504 

20.0 1008 428 580 

25.0 1008 300 708 

28.6 1008 215 793 

30.0 1008 190 818 

35.0 1008 150 858 

40.0  1008 155 853 

42.0 1008 155 853 

45.0 1008 150 858 

50.0 1008 140 868 

55.6 1008 139 869 

 
Table 4. Impact energy and optical feature values obtained from Equation (6) and (7)  

Impact energy (J) Features Matched  Mismatched 

0 1008 1008 0 

5 1008 809 199 

10 1008 649 359 

15 1008 516 492 

15.75 1008 504 504 

20 1008 414 594 

25 1008 332 676 

28.6 1008 283 725 

30 1008 267 741 

35 1008 212 796 

40 1008 170 838 

42 1008 155 853 

45 1008 136 872 

50 1008 109 899 

55.6 1008 85 923 
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Table 5. Impact energy and optical feature values obtained using WEA 

Impact energy (J) Features Matched  Mismatched 

0.000 1008 1008 0 

5.000 1008 966 42 

10.00 1008 817 191 
15.00 1008 560 448 
15.75 1008 523 485 
16.15 1008 504 504 
17.50 1008 446 562 
20.00 1008 360 648 
25.00 1008 256 752 
28.60 1008 215 793 

30.00 1008 204 804 

35.00 1008 176 832 
40.00 1008 159 849 
42.00 1008  155 853 
45.00 1008 150 858 
50.00 1008 143 865 
55.60 1008 139 869 
 
Table 6. Impact energy and feature values obtained from equations (8) and (9) 

Impact energy (J) Features φ Matched  Mismatched 

0.00 1008 0 1008 0 
28.6 1008 30 532 476 
28.6 1008 45 410 598 
28.6 1008 60 336 672 
28.6 1008 90 283 725 
42.0 1008 30 398 610 
42.0 1008 45 269 739 
42.0 1008 60 202 806 
42.0 1008 90 155 853 
55.6 1008 30 292 716 
55.6 1008 45 175 833 

55.6 1008 60 120 888 

55.6 1008 90 85 923 
 

 
 
Fig. 2. Optical Flow map of PVT image of reference 

composite sample 
 

 
 
Fig. 3. Optical Flow map of   28.6 J impact damaged composite 

sample- S2 

 
 
Fig. 4. Optical Flow map of 42J impact damaged composite 

sample-S3 
 

 
 
Fig. 5: Optical Flow map of 55.6J impact damaged composite 

sample -S4 
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Fig. 6. Relationship between impact energy and extracted features 

 

 
 

Fig. 7. Approximation for the relationship between impact energy and extracted features 

 

 

  

Fig. 8. Neural networks using Weight Elimination Algorithm (WEA) to predict matching and mismatching features 

 

( )
sin

0.63*
1
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incident angle
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ϕ

ϕ

 
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 

 
= − 

  
 (9) 

 

Where:  
ϕ = Angle to the normal of the surface 
 

Results using Equation (8) and (9) are presented in 
Table 6. 

Table 6 shows that as the incident angle increases 

and approaches the angle normal to the surface, the 

mismatched features increases, which is logical as the 

force of impact increases and for a certain expected 

and calculated impact energy as a function of impact 

load, weight and vertical distance, the actual impact 

energy will not have its desired effect and its actual 

value will be masked by the incident angle. 
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Fig. 9. Neural networks optimization describing the relationship between impact energy and extracted features 

 

Conclusion 

Combining PVT and energy flow in a 
mathematical model that enables approximate 
computations of Both Impact Energy and Extracted 
Features is a new way of dealing with damage 
detection in an testing environment. Effect of impact 
load incident angle is also an important issue, which is 
considered in the work. The approximation 
expressions are made more accurate using Neural 
Networks engine, which optimized and reproduced the 
best fit data to the type of composites tested. 
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