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Abstract: Network traffic model and analysis provides the average load, 

bandwidth requirements and the different application of the available 

bandwidth for a particular network, in addition to several other details of 

the network. This paper presents mathematical model used for modelling 

real world problems using Botswana International University of Science 

and technology (BIUST) network traffic as a case. Sophisticated analysis of 

data is done to model the BIUST network with the succor of statistics, as it 

implies the collection and interpretation of data through mathematical 

processes called stochastic processes. From the attained results, the model 

and estimation of packet traffic distribution for BIUST Network based on 

Pareto distribution, it was perceived that about 20% of the users had about 

80% of the bandwidth consumed. 
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Introduction 

Network traffic modelling is used as the basic for 

the network applications and for capacity planning of 

network systems. Given the impact of poor choices in 

this arena, it is clear that the validity of the underlying 

models is of critical importance (Wilson, 2016). They 

are a wide number of mathematical models that could 

be used to model network traffic depending on the 

type of network to be modelled. The factors used to 

evaluate a network are taken directly from the 

underlying traffic model.  

Statistics is concerned with making inferences about 

the way the world is, based upon things we observe 

happening. Nature is complex, so the things we see 

hardly ever conform exactly to simple or elegant 

mathematical idealizations as the world is full of 

unpredictability, uncertainty, randomness. Probability 

is defined as the language of uncertainty and so to 

understand statistics, we must understand uncertainty, 

as probability and statistics work hand in hand 

(Tamhane and Dunlop, 2000). Sophisticated analysis of 

data will be done to model the BIUST network with the 

aid of statistics, as it involves the collection and 

interpretation of data through mathematical processes 

called stochastic processes.  

A stochastic process is simply a probability process 

that is, any process in nature whose evolution we can 

analyze successfully in terms of probability. On the 

empirical side, a discussion of the nature of probability 

would take us too far afield (and might sidetrack us into 

philosophy) and on the mathematical side the definitions 

would require too much high-powered mathematics 

(Tamhane and Dunlop, 2000). 

According to (Tamhane and Dunlop, 2000), random 

variable associates a unique numerical value with each 

outcome in the sample space. Usually a random 

variable it is explained as a real valued function defined 

over a sample space. Random variable is denoted by a 

capital letter (e.g., Y or X) and a particular value taken 

by a random variable is denoted by corresponding 

lower case letters (y or x). Random variable can either 

be discrete or continuous. 

The remainder of this paper is organized as 

follows. Section 2 gives the related work to this paper. 

Section 3 gives a brief explanation on mathematical 

modelling. It will also include the modelling process 

as well as the classification of mathematical models. 

In section 4, we provided data sets that will be used to 

model BIUST network and a packet distribution 

model for BIUST network will also be presented. 

Finally, the paper is concluded in section 5. 
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Related Work 

Traffic models reflect our best knowledge of traffic 

behavior. Latest studies of real telecommunications 

network traffic data have revealed that teletraffic 

exposition self-similar (or fractal) properties over a wide 

range of time scales (Boxma and Cohen, 2000; Radev and 

Lokshina, 2009). The properties of self-similar 

telecommunications network traffic are very distinct from 

properties of traditional models based on Poisson, Markov-

modulated Poisson and related processes (Giambene, 

2005). Usage of traditional models in networks 

characterized by self-similar processes can result in to 

biased conclusions about the performance of analyzed 

networks (Radev and Lokshina, 2009; Jeong, 2002). 

Traditional models can result in over-estimation of the 

network performance (Faraj, 2000), lack of allocation of 

communication and data processing resources and hence 

problems in ensuring the QoS. Then, full understanding is 

that the self-similar nature in teletrafic is a vital issue. 

Self-similar teletraffic is seen in LAN and WAN, 

where superposition of strictly independent alternating 

ON/OFF traffic models whose ON- or OFF-periods have 

heavy-tailed distributions with infinite variance can be 

used to model aggregate network traffic that shows self-

similar (or long-range dependent) behavior typical for 

measured Ethernet LAN traffic over a wide range of time 

scales (Kushner, 2001). 

In ATM network traffic self-similar traffic arriving at 

an ATM buffer results in a heavy-tailed buffer 

occupancy distribution buffer cell loss probability 

reduces with the buffer size, not exponentially as in 

traditional Markovian models, but hyperbolically. 

One more implementation of traffic self similarity is 

in Internet traffic, where many characteristics of WWW 

can be modeled using heavy-tailed distributions, 

including the distribution of traffic times, the distribution 

of user requests for documents and the distribution of 

WWW document sizes (Jeong, 2002). 

In TCP/IP network traffic the transfer of files or 

messages shows that the reliable transmission and flow 
control mechanisms of TCP serves to mainain long range 
dependent structure which include heavy-tailed file size 
distributions (Bobbio et al., 2013). The relationship 
between self-similar traffic and network performance is 
defined, as captured by performance measures such as 

packet loss rate, retransmission rate and queueing delay, 
where increased self-similarity results in degradation of 
performance and queueing delay exhibits a dramatic 
increase as self-similarity increases. 

The self-similarity observed in video traffic provides 

possibility for developing models for Variable Bit Rate 

(VBR) video traffic using heavy-tailed distributions 

(Radev, 2005). The autocorrelation of the VBR video 

sequence decay hyperbolically and can be model educing 

Fractional Autoregressive Integrated Moving-Average 

(F-ARIMA) and Fractional Gaussian Noise (FGN) self-

similar processes (Radev and Lokshina, 2009; Ravid and 

Lokshina, 2007). 

The impact of self-similar models on queuing 

performance is important and the main trends in such 

findings are connected with (a) permission traffic 

modeling for high speed networks, (b) efficient 

simulation of actual network traffic and (c) analyzing 

queuing models and protocols under realistic traffic 

scenarios (Mehdi, 2003). The traditional models of 

teletraffic that assume independent arrivals, based on 

Poisson processes, Markov-modulated Poisson processes 

and other related processes are not able to capture the self-

similar nature of teletraffic (Hayes and Ganesh, 2004). 

In another work presented by (Radev and Lokshina, 

2009), the time series of self-similar processes exhibit 

burstiness over a wide range of timescales. Self-similarity 

can statistically detail wireless IP network traffic that is 

bursty on numerous time scales. Modeling and simulation 

of self-similar telecommunications network traffic can be 

done with the generators of synthetic self-similar 

sequences, which are separated into two practical classes: 

The sequential generators and the fixed-length sequence 

generators. The fixed-length sequence generators for 

simulation of self-similar wireless IP network traffic are 

contemplated in this study (Radev and Lokshina, 2009). 

Mathematical Modelling 

We propose mathematical modeling of BIUST 

network traffic using an adopted model called Pareto 

Distribution model which is used for modelling real world 

problems. The basis of the distribution is that a high 

proportion of a population has low income while only a 

few people have very high incomes (Erlina, 2011). 

Overview of Mathematical Modelling 

Mathematical modelling is by and large 

comprehended as the way toward applying mathematics to 

a real world problem with a perspective of comprehension 

the last mentioned (Osterbo, 2003; Frost and Melamed, 

1994). One can contend that mathematical modelling is 

the same as applying mathematics where we additionally 

begin with a real world problem; we apply the essential 

mathematics, yet after having found the result we no 

more consider the underlying issue aside from maybe to 

check if our answer makes sense. This is not the 

situation with mathematical modelling where the 

utilization of mathematics is more to understand this real 

world problem. The modeling process might possibly 

result to solving the problem altogether however it will 

reveal insight to the circumstance being studied 

(Osterbo, 2003). Figure 1 shows the key phases in 

modelling process. The adopted model that is used to 

model the network is based in BIUST Network. 
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Fig. 1. Modelling process (Osterbo, 2003) 

 

Categories of Mathematical Models 

Continuous-Time Source Models 

Continuous time is mostly interested in stochastic 

process to represent the time-varying source rate X(t) or 

the set of packet arrival times {t1,t2,t3,t4,…}. This model 

includes Uniform distribution, Gamma distribution, 

Exponential distribution, Beta distribution and Pareto 

distribution (Wilson, 2016; Tamhane and Dunlop, 2000; 

Frost and Melamed, 1994; Yang and Petropalu, 2001; 

Chandrasekaran, 1994). 

Uniform Distribution Model 

A uniform distribution arises in situations where all 

values are “equally likely” over an interval. Specifically, 

the Probability Density Function (PDF) of a uniform 

distribution is constant over an interval. A random 

variable X has a uniform distribution over the interval 

[a,b] (denoted by X∼U[a,b]). The PDF is given by: 

 

( )
1

,

0, .

a x b
f x b a

otherwise


≤ ≤

= −
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 (1) 

 

The Cumulative Distribution Function (CDF) of a 

uniform random variable is given by: 
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 −

= ≤ ≤
−

 >

 (2) 

 

Gamma Distribution Model 

A random variable is said to be gamma distribution 

with parameters γ >0 and r if its PDF is given by: 
 

( )
1

 0
( )

r r xx e
f x for x

r

γ
γ

τ

− −

= ≥  (3) 

 

where the gamma function, τ(r), is defined by: 

( ) 1

0

  0
r u

r u e du for rτ

∞
− −

= >∫  (4) 

 

For positive integer values of r, it can be shown that 

τ(r) = (r-1)! this special case of gamma distribution, 

known as the Erlang distribution, is used in queuing 

theory to model waiting times. A shorthand notation 

X∼Gamma (γ,r) denotes that X has a gamma distribution 

with parameters γ and r. 

Exponential Distribution Model 

The exponential distribution is a continuous analog of 

the geometric distribution; as such it is an example of 

continuous waiting time distribution. The PDF of an 

exponential random variable X with parameter γ >0 is: 

  

( )  0
xf x e for xγ

γ
−

= ≥  (5) 

 

The CDF of an exponential random variable is given by: 

 

( )
0

1  0
x

y x
f x e dy e for x

γ γ
γ

− −

= = − ≥∫  (6) 

 

Beta Distribution Model 

The beta distribution provides a flexible way to 

model many types of measurements that have finite 

ranges. A random variable has a beta distribution on the 

interval [0,1] with parameters a and b (denoted by 

X∼Beta (a,b) if its PDF is given by: 

 

( ) 1 11
(1 ) 0 1

( , )

a b
f x x x for x

B a b

− −

= − ≤ ≤  (7) 

 

where, B(a,b) is the beta function defined by: 

 

( )
( ) ( )

,
( )

a b
B a b

a b

τ τ

τ

=

+

 (8) 

 

Note that a random variable having a finite range other 

than [0,1] can always be transformend to the [0,1] range. 
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The U[0,1] distribution is a special case of the beta 

distribution when a = b = 1, in which case above PDF 

reduces to ( )
1

1.
(1,1)

f x
B

= =  

Pareto Distribution Model 

Pareto distribution is a skewed, heavy-tailed 

distribution that is sometimes used to model the 

distribution of incomes. The law was developed by 

Vilfredo Pareto in 1897 and he firstly included it in one 

of his works in which he attempted to prove that the 

distribution of incomes and wealth in society is not 

random that a consistent pattern appears throughout 

history, in all parts of the world and in all societies 

(Alzaatreh and Famoye, 2012). Pareto distribution was 

one of the most famous but much-criticized law of 

income distribution. 

The PDF of a Pareto distribution is given by: 
 

( )
1

a

a

ab
f x

x
+

=  (9) 

 
For b = 1: 

 

( )
1a

a
f x

x +
=  (10) 

 
The CDF of a Pareto random variable is given by: 

 

( )
1

1  1

a

f x for b
x

 
= − = 

 
 (11) 

 

where, “a” is a shape parameter and “b” represents 

location parameter of the network. 

Discrete-Time Source Models 

This model includes Bernoulli distribution, Binomial 

distribution, Poisson distribution, hypergeometric 

distribution, multinomial distribution and geometric 

distribution (Wilson, 2016; Tamhane and Dunlop, 2000; 

Frost and Melamed, 1994; Yang and Petropalu, 2001; 

Chandrasekaran, 1994). 

Bernoulli Distribution Model 

Bernoulli random variable is referred to as a random 

variable that can take only two values, say 0 and 1. The 

Bernoulli distribution is a useful model for dichotomous 

outcomes. Some examples are the sex of a baby (male or 

female), the outcome of an experiment (success or 

failure) and the toss of a coin (head or tail). An 

experiment with a dichotomous outcome is called a 

Bernoulli trial. 

Suppose that an item drawn at random from a 

production process can be either defective or non-

defective. Let p denote the fraction of the defective items 

produced by the process. Then the probabilities of the 

possible outcomes for an item randomly drawn from this 

process are P (Defective) = p and P (Non-defective) = 1-

p. A Bernoulli random variable can be defined as X = 1 

if the item is defective and 0 if item is non-defective with 

the following distribution: 

 

( ) ( )
  1

1   0

p if x
f x P X x

p if x

=
= = = 

− =
 (12) 

 

Binomial Distribution Model 

In statistics and probability theory, Binomial 

distribution is a common distribution role of discrete 

processes in which a stationary probability is 

dominant for each independently generated value 

(Chandrasekaran, 1994; Alzaatreh and Famoye, 2012; 

Ascombe, 1949; Bevrani and Sharififar, 2014; Smith, 

2015). Simply a binomial distribution can be explained 

as the sum of autonomous and identically distributed 

Bernoulli random variables. 

Binomial distribution is now generally used in 

analysis of data in almost every field of human 

interrogation since it was elucubrated in connection with 

games of chance. According to (Yang and Petropalu, 

2001) Binomial distribution is normally used to model 

the number of resource accessible, number of packets 

that reach the destination without misfortune and the 

number of bits in error in a packet. It applies to any 

dominant number (n) of repetitions of an independent 

process that yields a certain outcome with the identical 

probability (p) on each repetition. For instance, it 

provides a formula for the probability of acquiring 10 

sixes in 50 rolls of a die. In a proof distributed after the 

death of Swiss mathematician Jakob Bernoulli in 1713, it 

was discovered that the probability of k such outcomes 

in n repetitions is equivalent to the kth term (where k 

begins with 0) in the expansion of the binomial 

expression (p + q)
n
, where q = 1-P thus the name 

binomial distribution. In the example of throwing a die, 

the probability of turning up any number on every roll is 

1 out of 6. The probability of turning up 10 sixes in 50 

moves, then, is equal to the 10th term beginning with the 

0th term in the expansion of 
50

5 1

6 6

 
+ 

 
, or 0.115586. 

The British statistician Ronald Fisher used the 

binomial distribution to disclose evidence of possible 

scientific deception in 1936, in the renowned 

experiments on pea genetics which was reported by 

Gregor Mendel the recounted Austrian botanist in 1866. 

With the use of binomial distribution, Fisher observed 

that one of Mandel's laws of inheritance would dictate 

that the number of yellow peas in one of Mandel’s 

experiments would have a binomial distribution with n = 
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8,023 and 3

4
p = , for a normal of np ≅ 6,017 yellow 

peas. Fisher discovered exceptional understanding 

between this number and Mendel’s information, which 

demonstrated 6,022 yellow peas out of 8,023. One would 

expect the figure to be close, but a figure that close 

should occur only once in 10 times. In addition, Fisher 

discovered that all seven results in Mendel's pea 

experiments were extremely close to the anticipated 

values-even in an instance where Mendel's calculations 

contained one defect. The analysis of Fisher sparked a 

lengthy strife that remains unresolved until today 

(Ascombe, 1949; Bevrani and Sharififar, 2014). 

The general form of the Probability Mass Function 

(PMF)of a binomial random variable X with parameters 

n and p (denoted by X~Bin(n,p)) is derived as follows: 

The probability of obtained x successes and n-x failures 

in a particular way (e.g., the first x-trials resulting in 

successes and the last n-x trials resulting in failures) 

is〖p〗^x〖(1-p)〗^(n-x), because the trial are 

independent. There are a total of (n|x) ways of 

distributing x successes and n-x failures among n trials. 

Therefore PMF is given by: 

 

( ) ( ) (1 )  0,1, ,
x n x

n
f x P X x p p for x n

x

−

 
= = = − = … 

 
 (13) 

 

Poisson Distribution Model 

The Poisson distribution is a standout amongst the 

most vital and generally utilized statistical distributions 

due to its memory less capabilities. The Poisson 

distribution is a limited form of the binomial 

distribution. It is regularly used to portray the pattern of 

random point-like events in 1-, 2- and 3-dimensions or, 

all the more commonly, to give the model to uncertainty 

against which an observed event pattern in time or space 

might be matched. On the off chance that events happen 

arbitrarily and autonomously, at a continuous rate (in 

time) or with a continuous density (in space), then the 

count of these events per unit time or per unit region will 

fit in with a Poisson distribution and the example of 

event is depicted as a Poisson process. The distribution 

of the length of intervals between events (or waiting 

times) in a one-Dimensional (1D) Poisson procedure is 

an Exponential distribution (Smith, 2015; Zou, 2016). 

Siméon-Denis Poisson firstly applied Poisson 

distribution in 1830 to describe the number of times a 

gambler would win a rarely won game of chance in a 

large number of tries (Erlina, 2011). Poisson distribution 

is mostly used to model call arrivals, number of tasks in 

the system, number of requests to a server, number of 

failed components and message length (Yang and 

Petropalu, 2001; Chandrasekaran, 1994). Poisson as it 

was shown in (13) that the binomial PMF is given by 

( ) (1 )
x n x

n
P X x p p

x

−

 
= = − 

 
. When n→∞ and p→0 in 

such a way that np approaches a positive constant γ is the 

limiting binomial PMF can be shown to be: 

 

( ) ( ) , 0,1,2, ..
!

x

e
f x P X x x

x

γ
γ

−

= = = = …  (14) 

 

which is the PMF. 

Hypergeometric Distribution Model 

The hypergeometric distribution is, fundamentally, an 

extraordinary type of the Binomial. Hypergeometric 

distribution is applied when testing is performed from a 

predictable population without substitution hence 

making trials dependent on each other. While the 

Binomial expect that there are n independent trials of an 

experiment, with a fixed probability, p, which is the 

same for each event, the hypergeometric deals with the 

circumstance in which the populace size, N, from which 

events are tested, is generally small (<100) and 

inspecting happens without substitution thus the 

probabilities are not generally the same. A 

straightforward similarity is selecting balls from a pack 

or urn containing a blend of red and black. The Binomial 

applies if, after every random selection the ball is 

supplanted, whilst the hypergeometric deals with the 

situation where the balls are not supplanted, so the 

following ball selection is drawn from a slightly different 

overall blend of red and dark. Clearly if there are 

countless in the urn and we are not selecting too much, 

there is viably no contrast between the two distributions. 

Two key assumptions underlying the binomial 

distribution are that: 

 

• the Bernoulli trials are independent 

• Each Bernoulli trial has the same probability of 

success 

 

These assumptions are valid when a random sample 

is drawn from an infinite or a very large population
2
 of 

items of which a fraction has a specific attribute. When 

the population is finite, the assumptions are valid if each 

randomly sampled item is returned to the population 

before the next draw. This is called sampling with 

replacement. But in practice we generally use sampling 

without replacement. When the population is finite, 

sampling without replacement creates dependence 

among the successive Bernoulli trials and the probability 

of success changes as successive items are drawn. We 

now derive hypergeometric distribution. 

Let N be the size of the population in which M items 

have a specific attribute. We randomly sample n items 

from the population without replacement. First we find 
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the number of ways to draw x items from the M with the 

attribute and (n-x) items from the remaining (N-M) items 

without the attribute. This is given by
M N M

x n x

−  
  

−  
. We 

then divide it by the number of ways to sample items 

from the population of size N without any restriction, 

which is
N

n

 
 
 

. Thus: 

 

( ) ( )

_M N M

x n x
f x P X x

N

n

  
  

−  = = =
 
 
 

 (15) 

 
This is referred to as the hypergeometric distribution 

with parameter N, M and n. If the sampling fraction n/N 

is small (≤0.10), then this distribution is well 

approximated by the binomial distribution (13) with 

parameters n and p = M/N. 

Multinomial Distribution Model 

The binomial distribution applies when we have a 

fixed number of independent Bernoulli trials with 

constant probabilities p and 1-p for the two outcomes. It 

is very useful in large number of applications in ecology. 

In some situations there are more than two possible 

outcomes in each trial; e.g., a respondent ethnic may be 

classified as Batawana, Bangwato, Babirwa, 

Batswapong, Bakgatla, Bakgalagadi, or other. For such 

trials we need a generalization of the binomial 

distribution to model the frequencies of different 

outcomes. Consider a fixed number n of trials where 

each trial can result in one of k ≥2 outcomes and the 

probabilities of the outcomes, p1, p2, …,pk, are the same 

from trial to trial, with p1 + p2+⋅⋅⋅pk = 1. Let X1 + X2 +⋅⋅⋅ 

Xk = n. The joint multivariate distribution of X1 + X2 ⋅⋅⋅ Xk 

is called the multinomial distribution and is given by: 
 

( ) ( )

1 2

1 2 1 1 2 2

1 2

1 2

, , , , , ,

!

! ! !
k

k k k

xx x

k

k

f x x x P X x X x X x

n
p p p

x x x

… = = = … =

= …

⋅⋅ ⋅

 (16) 

 

where, x1≥0 for all i and x1 + x2 +⋅⋅⋅ xk = n. This formula 

can be derived by using the same argument that was used 

in deriving the formula for the binomial distribution. 

Specifically, 1 2

1 2

k
xx x

k
p p p+ + ⋅ ⋅ ⋅ gives the probability that 

outcome 1 occurs x1times, outcome 2 occurs times, 

etc. in a specified order.  

Geometric Distribution Model 

The geometric distribution models the number of 

independent and identical distribution. Bernoulli trials 

needed to obtain the first success. It is an example of a 

discrete waiting-time distribution, i.e., the distribution of 

discrete time to an event. Here the number of required 

trials is the random variable of interest. As an example, 

consider playing on a slot machine until hitting the 

jackpot. Let the probability of hitting the jackpot on any 

attempt represented as p. The sample space is: 

 

{ , , , , , }S FS FFS FFFS FFFFS …  

 

where, S denotes a “success” and  denotes “failure.” 

Let X be the number of trials required to hit the jackpot. 

Assuming that the attempts are independent and p 

remains constant, the probability of hitting the jackpot 

on the xth attempt is: 

 

( ) ( )
1  

1

( ) ( ) ( ) ( )

(1 ) , 1,2,

x unsuccessful attempts

x

x P X x P F P F P F P S

p p x

−

−

= = = × ×⋅ ⋅ ⋅× ×

= − = …

���������������

 (17) 

 

This is a geometric distribution with parameter p. Its 

CDF is given by: 

 

( ) ( ) 1

1

(1 ) 1 (1 )
x

k x

k

F x P X x p p p
−

=

= ≤ = − = − −∑  (18) 

 

Experimental Results and Discussions 

BIUST Network Packet Intevals 

Live Packet Caption in Morning Time 

The data collection was from the live BIUST 

Network in the morning between 10:00:23 to 10:15:23 

on the 06-07-2015. The data is presented in Table 1. 

Day Live Packet Caption for a Working Hours 

The data collection was from the live BIUST 

Network for the whole day between for a period of 8 

hours on the 10-09-2015. The data is presented in Table 

2. The data monitoring and capture was reported in 

(Solomon et al., 2016). 

Sizes and Frequency of Occurrence of the Packets 

The first two columns of Table 1 show the values in 

the log file obtained from Wireshark and the remaining 

columns are derived from it. The first line shows 0 

packets with sizes ranging from 0-19 (bytes). Using the 

concept of intervals, class limits and the midpoint of a 

class from statistical theory, the fourth column of Table 

1, Average Packet Length (APLi, is obtained. APL for 

the interval i is given by: 

 

1 10
2

mi Mi

i

x x
APL i

+
= ≤ ≤  (19) 
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In which, xmi and xMi are the lower and higher values 

of the i-th interval, respectively. Column "PL" in Table 

1. PL shows the packet size (in bytes) and FO is the 

frequency of occurrence of the packets. 

APL Standard value APLs shown in Table 1 is 

obtained from Equation 20 dividing the value of APLi by 

MTU (i.e., Maximum Transmission Unit) (1500), 

standard for Ethernet networks. In the last column of the 

same table, the values FD or (FDs) are obtained dividing 

the number of occurrence of the packet size by the total 

number of packets, given by Equation 21: 

 

1 10
1500

i

s

APL
APL s= ≤ ≤  (20) 

 

10

1

1 10
i

s

ii

FO
FD s

FO
=

= ≤ ≤

∑
 (21) 

 
Table 1. Live packet caption in morning time 

i PL FO APLi APLs FDs 

1 0-19 0 9.5 0.00633 0.000000000 

2 20-39 0 29.5 0.19670 0.000000000 

3 40-79 27801 59.5 0.03967 0.451065970 

4 80-159 16063 119.5 0.07967 0.260619139 

5 160-319 2034 239.5 0.15967 0.033001266 

6 320-639 2072 49.5 0.03300 0.033617808 

7 640-1279 927 959.5 0.63967 0.015040400 

8 1280-2559 11711 1919.5 1.27967 0.190008761 

9 2560-5119 990 3839.5 2.55967 0.016062563 

10 5120-10239 36 7679.5 5.11967 0.000584093 

Total  61634 14905.0    

 
Table 2. Live packet caption in working hours 

i PL FO APLi APLs FDs 

1 0-19 0 9.5 0.00633 0.000000000 

2 20-39 0 29.5 0.1967 0.000000000 

3 40-79 46783 59.5 0.03967 0.026132732 

4 80-159 1563211 119.5 0.07967 0.873201256 

5 160-319 115409 239.5 0.15967 0.064466847 

6 320-639 46708 49.5 0.03300 0.026090838 

7 640-1279 2654 959.5 0.63967 0.001482510 

8 1280-2559 11976 1919.5 1.27967 0.003389729 

9 2560-5119 3264 3839.5 2.55967 0.001823253 

10 5120-10239 202 7679.5 5.11967 0.000112836 

Total  1790207 14905.0    

 

 
 

Fig. 2. Probability Density Function (PDF) 
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Fig. 3. Cumulative Distribution Function (CDF) 
 

 
 

Fig. 4. Relationship between PL and FO 
 

Mathematical Model 

The mathematical model is based on the analysis 

of Table 1, data input and data output of the system 

and being modelled through the use of Matlab 

software. The mathematical model used is Pareto 

distribution which its probability density function is 

given by Equation 10. The parameter a was varied 

such that 1 ≤ a ≤ 3. This is presented in Fig. 2 and 3. 

In Fig. 2, it was observed that the PDF curve of 

BIUST network with a parameter of 1 reaches 0 for x 

value of 5, with a parameter of 2 it reaches 0 at for x 

value of 4 and a parameter of 3 at for x value of 3. In 

this Figures, the a value was adjusted to show variation 

in the shape parameter and to also note the shape of the 

PDF. For selected values of the parameter, the 

simulation was run to compare the empirical density 

function to the PDF.  

The cumulative distribution function curve of 
BIUST network is then presented in Fig. 3. In this 
Figure, D(x) scale axis was adjusted to show that the 
differences between the curves depend on the value of 

parameter a. This confirms the results of Vilfredo 
Pareto (Alzaatreh and Famoye, 2012) as the Figures 
show skewed distribution with heavy or slowly decaying 
tails as much of the data is in the tails. 
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As Pareto distribution uses the 80-20 rule 

corresponds to a particular value of parameter (α), it 

was observed that about 20% of the users had about 

80% of the bandwidth consumed. The PDF graphs 

shows that the probability or fraction is rather high at a 

small value of PL and then decreases steadily as value 

of PL increases. Rather the CDF curve is high at higher 

values of PL then decreases steadily as value of PL 

decreases. Figure 4 shows the relationship between 

Packet Length (PL) and Frequency of Occurrence (FO). 

The result shows that, the Frequency of Occurrence 

(FO) is much higher at the packet length of 3 which 

corresponds to (40-79 bytes). 

Conclusion 

This paper presents a Model used in traffic 

engineering to predict network performance and to 

evaluate congestion control schemes. From the result, 

it shows that, traffic models must have a manageable 

number of parameters and the estimation of these 

parameters must be simple. BIUST network was used 

as a case for the packet distribution model and Pareto 

distribution approach was adopted and it was 

observed that the PDF curve changes when there is a 

change in parameter. As the research was conducted 

within the boundaries of BIUST network and the 

attained results might be difficult to generalize to 

other campus networks due to the difference in 

network setups and policies implemented. As such, 

future studies may focus on applying the research on 

different campus networks so that the results can be 

generated across different network setups. 
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