

© 2016 Mohsen Bafandehkar, Sharifah Md Yasin and Ramlan Mahmod. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Optimizing {0, 1, 3}-NAF Recoding Algorithm Using Block-

Method Technique in Elliptic Curve Cryptosystem

Mohsen Bafandehkar, Sharifah Md Yasin and Ramlan Mahmod

Department of Computer Science, University Putra Malaysia, Selangor, Malaysia

Article history

Received: 25-07-2015

Revised: 13-12-2016

Accepted: 14-12-2016

Corresponding Author:

Mohsen Bafandehkar

Department of Computer

Science, University Putra

Malaysia, Selangor, Malaysia
Email: Bafandehkar@gmail.com

Abstract: The most expensive and time-consuming operation in Elliptic

curve cryptosystem is scalar multiplication operation. Optimization of

scalar multiplication will substantially enhance the ECC performance.

Scalar multiplication can be improved by using an enhanced scalar

recoding algorithm that can decrease the number of operations in the

scalar representation process. The objective of this research is to

introduce an efficient design and implementation of {0,1,3}-NAF scalar

recoding algorithm by applying block method technique. The base

algorithm has a complex look up table. With block method application

on base algorithm, a complex look up table is undesired. Instead a fix

look up table is introduced with less computation required for recoding.

The Big-O notation is used to measure the complexity and (µs) used to

evaluate the running time of base and proposed algorithm.

Keywords: Elliptic Curve Cryptosystem, Scalar Multiplication, Elliptic

Curve, Scalar Recoding Algorithm, Non-Adjacent Form

Introduction

The efficiency of scalar multiplication operation has

direct effects on the performance of ECC (Kodali et al.,

2013). Scalar multiplication involves with three levels of

computations: Scalar arithmetic, point arithmetic and

field arithmetic which are demonstrated in Fig. 1.

Level 1: Scalar Arithmetic

This computational level involves with scalar

representation and scalar recoding technique. In order to

recode the scalar into selected number representation the

scalar recoding technique is required. This technique

should reduce the hamming weight of scalar k.

According to literature, there are different bases to

represent scalar k. Fundamentally, base 2 is known as the

natural representation. Scalar k in binary and NAF is

represented in this base. Joye and Yen (2002) used

different base to represent scalar k. Reducing the

Hamming weight will enhance the scalar

multiplication performance, since less addition and

doubling is required (Shah et al., 2010). Scalar

recoding technique is used to recode a scalar k into

different representation with less Hamming weight

(Yasin et al., 2014). The result of this recoding can

have the same magnitude to the scalar or lesser.

Fig. 1. Level of scalar multiplication computation

Level 2: Point Arithmetic

This level involves with the point operations. The

different arithmetic point operations over ECC are

point addition, subtraction and doubling. Efficiency of

point operations are dependent on the number of field

operations involved (Longa and Gebotys, 2010). From

elliptic curve, points can be obtained. The Koblitz

curve is a special family curve in which point

multiplication is considerably faster than generic

curve (Sakthivel and Nedunchezhian, 2012).

Level 3: Field Arithmetic

Binary and prime field has different ways and cost

of process. Point operations are executed by utilizing

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

535

the finite field operation. The impact of efficiency of

this level is essential (Hitchcock et al., 2003;

Morales-Sandoval and Feregrino-Uribe, 2006).

Inversion is the most expensive, followed by the

multiplication cost and then the squaring cost

(Yasin et al., 2015).

Among all these operations scalar arithmetic level

is the most expensive operation (Aranha et al., 2012)

and according to literature (Hankerson et al., 2003)

enhancement in this operation will significantly

increase the efficiency of ECC.

Accordingly, improving the first two levels will

lead to significant increment in efficiency of scalar

multiplication. Scalar recoding algorithm can be

improved by employing an enhanced scalar recoding

algorithm that can decrease the number of operations

and required less running time in the scalar

representation process (Bafandehkar et al., 2015).

Thus, in this study we focus on optimizing the

scalar arithmetic algorithm and this objective c`n be

achieved by proposing a new algorithm with less

algorithm complexity.

Related Works

{0, 1, 3}-NAF Algorithm

Md Yasin (2011) introduced a scalar representation

algorithm to convert binary expansion into {0, 1, 3}-

NAF. This recoding algorithm is specifically for binary

numbers that have adjacent nonzero digits in its

representation. This scalar representation is in base 2

using digit 0, 1 and 3. The special NAF property is

adopted in this scalar representation. This recoding

method is in left-to-right mode based on the technique

proposed by Joye and Yen (2000). A look-up table has

been proposed to simplify the recoding technique. The

non-adjacency property for each row of the look-up

table is proven by using the same technique used by

Joye and Yen (2000).

This method is real-time operation. It has

homogeneous approach to real-time recoding so the

recoded scalar can be used straight away for scalar

multiplication algorithm. This is possible because

scanning digits of the scalar for recoding and scalar

multiplication are done using the same mode, which is

from left-to-right. In the literature, this type of

recoding promotes better memory usage and mostly

preferred for memory constraint devices

(Khabbazian et al., 2005). Whereas, in heterogeneous

approach, the recoded digits are saved before it is

used in the scalarmultiplication algorithm. This is

because scanning digits of the scalar for recoding and

scalar multiplication is initiated from different

directions, that is, the recoding mode is right-to-left

and the scalar multiplication mode is left-to-right.

Generally, this type of recoding needs an additional n-bit

RAM for storage, where n is the bit size of the scalar.

This is one of the advantage of {0, 1, 3}-NAF algorithm

over other recoding algorithms which scan and recode

from right to left. Figure 2 shows a flowchart illustrates

the steps of {0, 1, 3}-NAF algorithm.

Table 1. Look-up table for {0, 1, 3}-NAF recoding Look-up table for {0, 1, 3}-NAF recoding

 Input

No. bi+1 r i+1 r i r i-1 bi Special case Output r′i
1 0 0 0 X 0 0

2 0 0 1 0 0 1

3 0 0 1 1 1 * 0

4 0 0 1 1 1 1

5 0 1 0 X 0 r′i+1 = 1 OR 3 0

6 0 1 1 1 1 0

7 1 0 1 0 1 1

8 1 0 1 1 1 0

9 1 1 0 0 0 0

10 1 1 0 1 1 r′i +1 = 1 OR 3 0

11 1 1 0 1 1 r′i +1 = 0 3

12 1 1 1 0 1 r′i +1 = 0 3

13 1 1 1 0 1 r′i +1 = 0 0

14 1 1 1 1 1 r′i +1 = 0 3

15 1 1 1 1 1 r′i +1 = 1 OR 3 0

Note: X = 0 or 1 and
()1 1

2

i+ i i-

i

b + r + r
b =

 
 
 

 where ⌊⌋ denotes a floor function that will give the largest integer less than or equal to

((bi+1+ri+ri-1)/2)

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

536

Fig. 2. Flowchart of {0, 1, 3}-NAF algorithm

For example for the given X= (1000111011010)2 to

compute the equivalent value in {0, 1, 3}-NAF

representation using this algorithm and Table 1. As the

result of conversion Y = 1000103003010. If the

hamming weight is h and the length of input binary isl.

The worst case of a binary expansion is when h = 1 and

the average case is when
2

l
h = . At average case, this

algorithm has the hamming weight less than
3

l
, whereas

the traditional NAF hamming weight is
3

l
 hus, {0, 1, 3}-

NAF has better hamming weight that the traditional NAF

at average case (Md Yasin, 2011).

Traditional-NAF Blocking Method

Reitwiesner (1960) shows NAF representation

with radix r = 2, where each digit in the NAF, ai ∈

{−1,0,1} must satisfy, ai, ai+1 = 0, for all i ≥ 0. The

NAF can also be written as ((an−1...a0)NAF. The NAF

is unique with an average Hamming weight of
3

l

where l is the bit length of the NAF representation.

In the literature, the NAF is commonly used and

efficient for elliptic curve scalar multiplication.

Traditional NAF is also utilizing left-to-right scanning

method which reduce the complexity load of

algorithm.

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

537

Fig. 3. Flowchart of block method algorithm

In the other hand Pathak and Shanghi (2010)

introduced a blocking technique to improve the NAF

conversion utilizing a fix look up table. The look up

table contains equivalent value for each binary numbers

in NAF representation form. Since the given binary

number will be partitioned in blocks of 8 bits length so

the combination of 2
8
 which is equal to 256 numbers in

the table is required. Therefore the table will contains

the equivalent value for numbers starting from 0 to 255.

After partitioning the given binary number and

replacing the equivalent value of each block form table,

the blocks must be combined together to compute the

final result. They conclude utilizing this technique will

reduce the number of iteration in traditional NAF. The

Fig. 3 shows the flowchart which illustrates the steps

taken for block method algorithm.

In this method, in order to compute the equivalent

value in NAF for the given X = (1000111011010)2

using Block method, the following steps will be taken:

• Partition the input Binary number into N blocks

of 8 bits from right side, pad ‘0’ digit to complete

the 8 bits block

• Represent each binary block’s in its equivalent {-1,

0, 1}-NAF representation from Table 2

• Combining the blocks the boundary addition with

Most Significant Bit (MSB) of lower block and

Least Significant Bit (LSB) of upper block must

perform to get the final NAF

The Proposed Method

The proposed method begins with creating a look up

table contains 256 numbers starting from 0, with

equivalent value in {0, 1, 3}-NAF representation. The

other properties of this table are similar with the Table 2.

The focus of this research is to improve the

performance of {0, 1, 3}-NAF recoding algorithm

(Md Yasin, 2011) by applying blocking technique

introduced by Pathak and Shanghi (2010). In this method

a new look up table which contains equivalent value for

each binary numbers in {0, 1, 3}-NAF representation

form has been set up.

According to Fig. 4 the given binary number will be

partitioned in blocks of 8 bits length. Therefore we need

the combination of 2
8
 numbers which is equal to 256

numbers in table. The proposed look up table will

contains the equivalent value for decimal numbers

starting from 0 to 255.

The Algorithm.1 works as follows; Line 1 initiates

i and j variables and set them to 0. The variable m is

declares length of input. Line 2 is state an iteration to

loop through bits in input r. In line 3 another iteration

is defined to loop through 8 bits from left to right and

line 4 is checking if the index j is bigger or equal to

the length of input, (the index has went through all the

bits so) it will terminate the iteration process. Line 7

has define a two dimensional container to hold n

partition of input in size of 8 bits. In line 9 a key look

up has been defined as a list [rk] to map the equivalent

value of the partition from look up table and store it in

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

538

r′k. Line 10 will return the recoded r into {0,1,3}-NAF

representation.

Algorithm. 1 Proposed {0, 1, 3}-NAF Block Method

Input: r = (rm-1,…,r0)2

Output: r' = (r'n,…,r'0){0,1,3}-NAF

1. i ← 0; j ← 0; m ← length of input

2. while j < m -1

3. for i from 0 to 7

4. if j >= m-1

5. break

6. else

7. rk,i ← ri

8. j ++

9. r'k ← list [rk]

10. return r{0,1,3}-NAF

To visualize the processes in proposed algorithm, Fig. 5

presents the flowchart of the steps taken for this research.

Table 2. Look up table of block method for traditional

NAF Algorithm (Pathak and Shanghi, 2010)

DEC Binary-8bits {-1, 0, 1} NAF

0 0 0

1 1 1

2 10 10

3 11 00000010-1

4 100 100

5 101 101

6 110 0000010-10

7 111 00000100-1

. . .

. . .

. . .

250 11111010 10000-1010

251 11111011 100000-10-1

252 11111100 100000-100

253 11111101 100000-101

254 11111110 1000000-10

255 11111111 10000000-1

Fig. 4. Proposed {0, 1, 3}-NAF block method algorithm

structure

Figure 5 shows a flowchart to convert binary input

data in {0, 1, 3}-NAF representation using the proposed

algorithm. For example, for the given X = 457010 =

(1000111011010)2 using proposed method, the following

steps will be taken:

Step 1: Partition the input binary number into N blocks

of 8 bits from right side

Step 2: Represent each binary block’s in its equivalent

{0, 1, 3} -NAF using look up Table 3

Step 3: Place each converted block consecutively and

respectively

The value of final answer in decimal can be

computed as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

12 8 6 3 1

0 0 0 1 0 0 0 1 0 3 0 0 3 0 1 0

2 2 3 2 3 2 2

6096 256 192 24 2 4570

= + + × + × +

= + + + + =

Fig. 5. Flowchart of proposed {0,1,3}-NAF block method

algorithm

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

539

Table 3. Proposed look up table for {0, 1, 3}-NAF block

method algorithm

DEC Binary-8bits {0, 1, 3} NAF

0 0 0

1 1 1

2 10 10

3 11 3

4 100 100

5 101 101

6 110 30

7 111 103

. . .

. . .

. . .

250 11111010 10303010

251 11111011 10303003

252 11111100 3030300

253 11111101 3030301

254 11111110 10303030

255 11111111 3030303

Performance Analysis

The Algorithm analysing is defined as predicting the

required resources that the algorithm needs to perform

computations. Although computer resources are

categorized as memory, communication bandwidth, or

computer hardware, the crucial concern is the

computational time that must be measured. Commonly,

identification of the most efficient algorithm for a problem

can be done by analysing several candidate algorithms.

An algorithm running time for a certain input is

defined as the number of operations or steps to

perform a process. It is more appropriate to set the

notion of each step so that the analysing method is

more machine independent. To execute each line of a

pseudo code, a constant amount of time is required.

One line might need a different amount of time than

another line, but the assumption is that each execution

of the i-th line takes time ci, where ci, is a constant

(Cormen et al., 2001).

The experimental results were used to evaluate and

validate the performance of the base and proposed

algorithm. Two metrics are explained in following

sections. These metrics are complexity and running time.

Complexity Analysis

A characteristic of an algorithm described as run

time performance and memory usage and expressed in

Big-O notation. The efficiency of algorithm has been

measured in terms of asymptotic complexity since

1973 (Gilberg and Forouzan, 2004).

The outcome of complexity analysis commonly is the

worst-case complexity of an algorithm. But this does not

always give reasonable correspondence with running

time. For example, a component of an algorithm may be

executed many times, each time with a different cost.

Thus, in order to compute the efficiency of algorithm in

real environment, the average performance of running

time need to be measured (Foster, 1995).

Running Time Analysis

Performance of an algorithm is highly depends on the

characteristics of execution environment. Certainly a

machine with higher computational power could have

better performance. Therefore, the experiment must be

carried out on the same environment. As shown in the Fig.

6 benchmarking has been used to compute the running

time in microseconds. In this method the start and end

point of code snippet must be marked. The difference

between this two is the running time of that operation.

Implementation of the Proposed Method

This section discusses the implementation of the

proposed algorithm for recoding binary numbers based

on {0, 1, 3}-NAF algorithm. There are three stages in

proposed algorithm namely:

Stage I: Look up table stage

Stage II: Partitioning

Stage III: Conversion stage

This stages have been successfully implemented in

C++ using Visual Studio 2012 (32-bits). The proposed

algorithm which is mainly falls in the first and second

stages, have been developed and tested.

Stage I: Look up Table Stage

A look up table with the size of 256 integer elements

has been generated. These integers are in the range of 0-

255. Each integer in this range has a corresponding value

to a look up table element in {0,1,3}-NAF representation.

As this representation in look up table is in the similar

base with {0, 1, 3}-NAF algorithm, the hamming weight

is also same with the base algorithm result.

Stage II: Partitioning Stage

A block technique has been designed and developed

to divide each input binary to n blocks of 8 bits length.

In this method, the partition process will start from the

right most side of the input binary. If the most left block

is m bits shorter than 8 bits, the left side of this block

will be filled by m zeros.

Stage III: Conversion Stage

Every block of binary number has an equivalent

value in {0, 1, 3} - NAF. This value has been

calculated and it is preserved in the look up table. In

this stage each block of binary number will be

represented as its {0,1,3}-NAF equivalent and these

blocks will be placed consecutively.

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

540

Fig. 6. Illustrates the method for running time computation

System Specification (Test Bed)

A Machine with the below specification has been

used to carry out this experiment.

Results

In this section, there are two main analysis, one for

the base and another one is for the proposed algorithm.

The following analysis have been carried out:

• Algorithm complexity to find the significant

efficiency to recognize the optimal algorithm

• Time performance to compare the real time

performance of both algorithms in the same

environment

As mentioned in (Gilberg and Forouzan, 2004), the

most common way to compare the efficiency of two

algorithms is to compute the Big O.

Moreover according to (Foster, 1995), in order to

obtain an execution profile of an implemented algorithm,

the behaviour of program can study. This experiment can

assist to measure the outsider effects on the performance

time such as initialization time, idle time and required

time for each phases of computation.

To attain reliable result, the experiment must be

performed in the same machine and with similar

condition and to increase the validity of results, it must

be repeated for several times. To address the above

concerns the same machine with the specifications

mentioned in Table 4 has been used. The system has

been in the same state and the experiment has been

repeated several times to show the difference between

both algorithms in different numbers of run times.

The details of each analysis are presented in the

following sub-sections.

Complexity Analysis

In this analysis, the complexity of base and proposed

algorithm has been computed and compared. The

complexity algorithm M is a function, f(n) where the

running time required for input data of size n. If

algorithm contains no loop, f depends on the number of

statements. Else f depends on number of elements being

process in the loop (Gilberg and Forouzan, 2004). As it

is explained in (Gilberg and Forouzan, 2004), based on

the complexity of problem, different time is required.

Accordingly the complexity of base and proposed

algorithm has been computed and presented in Table 5.

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

541

Table 4. System specification (Test bed)

CPU Intel(R) Core i5-3317U (1.7GHz)

RAM 10 GB

GPU NVIDIA GeForce GT-620M

HDD Hitachi hts545050A7E380 500gb

OS Windows 7 Home Premium 64bit

Table 5. Complexity of base and proposed algorithm

Algorithms Complexity

{0, 1, 3}-NAF ()
2 + 2

= 21 +
16

n
f n n

Proposed algorithm () = 4 + + 3
8

n
g n n

Reduction ratio ≈ 4.9

Table 6. Big O for base and proposed algorithm

Algorithms Big O

{0, 1, 3}-NAF O(f(n)) = n
2

Proposed algorithm O(g(n)) = n

Table 7. Average performance time for different number

of run times

 Average performance time (µs)

 1 time 5 time 10 time 20 time

 Algorithms run run run run

{0, 1, 3}-NAF 3135.6 3276 3300.3 3570.7

Proposed algorithm 386.8 429.8 439.5 450.5

Increased performance 2748.8 2846.2 2860.8 3120.2

According to Table 5 the growth rate of the

computed mathematical function is proportional to the

presented value of the function. Therefore by

increasing the input size the number of required

operation will increase significantly. Whilst by

increasing the size of input, the number of required

operations for proposed algorithm has been increased

linear. This is due to proposed look up table utilization

in which there is no need to check the conditions and

has no special cases. Moreover, in order to recode a

binary by proposed algorithm the result of each block

will consecutively be placed in order and not any

operation more than that is required. Lesser number of

operation is known as the reason of lesser complexity.

Figure 7 compares the growth rate of operations in

base and proposed algorithms. It is clear that the growth

rate for base algorithm is exponential.

The Big O for {0, 1, 3}-NAF and algorithm has been

presented in Table 6.

According to Table 6 and with respect to algorithm

efficiency order of magnitude in (Gilberg and Forouzan,

2004), 0(n)<0(n
2
), the efficiency of proposed algorithm

is significant. This complexity optimization in

proposed algorithm is expected to cause significant

enhancement in running time.

Running Time

In this section, performance time is the run time
which is computed using benchmarking method. Read
Time Stamp Counter (RDTSC) has been used to obtain
the performance time. For applications that require
accurate time-stamp counters, this instruction will count
the number of processor cycles elapsed. The value
returned by RDTSC indicates the number of processor
cycles executed and not the number of seconds elapsed.
Thus, to get the number of seconds elapsed, the
returned value need to be divided by the processor
frequency. This process has been applied on the base
and proposed algorithm. The result of the performance
time computation is analysed in the following sections
(Intel Coorporation, 1997).

According to (Senne et al., 2000), both algorithms

will run 1, 5, 10 and 20 times. This method has

advantage to demonstrate the difference between both

algorithms in different number of running. The

computed average performance time is represented in

Table 7 respectively.

Table 7 denotes the details of average performance

time for 1, 5, 10 and 20 times run for base and

proposed algorithm.

Overall, the performance time has dramatically

decreased for proposed algorithm. For 1 time run proposed

algorithm shows 87.6% speed up in comparison to base

algorithm. According to (Foster, 1995) in order to enhance

the accuracy of performance time calculation, the

experiment has been repeated several times.

This replication process will actually minimize the

effect of background activities in operating system. The

performance of proposed algorithm has 86.8% increased

for 5 times run against base algorithm. For 10 times run

proposed algorithm shows 86.6% speed up in

comparison to base algorithm. Whilst for 20 times run

proposed algorithm has performed 87.3% times faster

than base algorithm.

In average of 5 times run, the performance of base

method had risen to just 3276 µs comparing with 1 time

run. Although this appears on the graph to be a gentle

increase, it is in fact an increase of approximately 4.4%.

Average of 10 times run increased by 0.7% compare to 5

times run. However the greatest real interest was in

average of 20 times run, where the performance time had

increased by approximately 8.1% in comparison to 10

times run. Although performance time in proposed

method increased between 1 times run to 20 times run,

its increase is steadily.

Figure 8 shows the result for {0, 1, 3}-NAF and

proposed algorithm. These results are computed from the

average performance time for 1, 5, 10 and 20 run times.

Overall, the chart shows that proposed method takes ∼10

times less for conversion of same data in comparison

with base method.

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

542

Fig. 7. Growth rate for base and proposed algorithm

Fig. 8. Average of 1, 5, 10 and 20 times run for {0,1,3}-NAF and proposed algorithm

Table 8. Average performance time for different number of run times per each functions in proposed algorithm

 Average performance time (µs)

Functions 1 time run 5 time run 10 time run 20 time run

Required time (%) in total 276.5 319.3 320.8 317.6

performance for partitioning -71.50% -74.30% -73% -70.50%

Required time (%) in total performance 109.3 108.3 115.3 132.5

for look up table -28.25% -25.19% -26.20% -29.30%

The base algorithm has only a look up table stage, in

which all the conversion computations are performed. In

contrast with the base algorithm, the proposed algorithm

consist of a partitioning function and a fix look up table.

Therefore, the total performance time in base algorithm

has been elapsed in its look up table. Whilst in proposed

algorithm different functions are defined and each

requires different time.

Table 8 shows the elapsed time for different functions

of the proposed algorithm. This results helps to compute

the processing time and the total execution time. As the

details indicates the summation of performance time for

both functions in every running set of experiment is less

than 100% which is the total performance time. The lost

time here called elapsed time. This elapsed time is in

range of 0.2% to 0.8%. According to (Foster, 1995) this

elapsed time has been assumed as initialization of the

algorithm or the OS backgrounds activity.

Based on the given information in Table 8, more than

70% of the total performance time in proposed algorithm

has been elapsed to perform the partitioning stage of

algorithm. From this information it can be concluded

that the proposed look up table takes only about
3

l
 of

total required performance time in each execution

Conclusion

The importance of algorithmic optimizations for

increasing the performance for cryptography

acceleration is proven. On the other hand, the

importance of utilizing some pre-computation

techniques such as blocking is significant.

A performance time problem in {0,1,3}-NAF

recoding algorithm has been stated. A new fix look up

table has been generated and the blocking method has

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

543

been applied. The complexity of base algorithm has

been reduced and the performance time has been

improved. In order to benchmark a dataset which is

composed with all possible hamming weigh with the

length of 24 bit binary has been used. As the future

research direction and to extend this work, with a

minor manipulation on the algorithm, it will take on

bigger input size. The effect of resizing the blocks and

extending the fixed look up table on performance

enhancement can be study.

Funding Information

The authors would like to thank the Department of
Computer Science, University Putra Malaysia for providing
the facilities and financial support for this publication.

Author’s Contributions

Mohsen Bafandehkar: Undertake the required

design, implementation and experiments, measure and

analyze the obtained results.

Sharifah Md Yasin: Supervise the research and

prepare the workflow.

Ramlan Mahmod: Critical evaluation of the work

and Technical advice.

Ethics

The authors have confirmed that there is not be any

ethical issues involved with this manuscript.

References

Aranha, D.F., A. Faz-Hernández, J. López and F.

Rodríguez-Henríquez, 2012. Faster implementation

of scalar multiplication on Koblitz curves.

Proceedings of the 2nd International Conference on

Cryptology and Information Security in Latin

America, (ICC’ 12), Springer-Verlag Berlin, pp:

177-193. DOI: 10.1007/978-3-642-33481-8_10

Bafandehkar, M., S.M. Yasin and R. Mahmod, 2015. A

literature review on scalar recoding algorithms in

elliptic curve cryptography. Int. J. Commun.

Antenna Propagat., 5: 183-183.

 DOI: 10.15866/irecap.v5i4.5673

Cormen, T.H., C.E. Leiserson, R.L. Rivest and C. Stein,

2001. Introduction to Algorithms. 2nd Edn., MIT

Press, Cambridge, ISBN-10: 0262533057, pp: 1292.

Foster, I., 1995. Designing and Building Parallel

Programs: Concepts and Tools for Parallel Software

Engineering. 1st Edn., Addison-Wesley, Reading,

Mass, ISBN-10: 0201575949, pp: 381.

Gilberg, R. and B. Forouzan, 2004. Data Structures: A

Pseudocode Approach with C. 2nd Edn., Cengage

Learning, Boston, ISBN-10: 0534390803, pp: 672.

Hankerson, D., A. Menezes and S. Vanstone, 2003.

Guide to Elliptic Curve Cryptography. 1st Edn.,

Springer, Secaucus, ISBN-10: 038795273X.

Hitchcock, Y., E. Dawson, A. Clark and P. Montague,

2003. Implementing an efficient elliptic curve

cryptosystem over GF (p) on a smart card.

ANZIAM J., 44: C354-C377.

Intel Coorporation, 1997. Using the RDTSC Instruction

for performance monitoring. Techn. Ber., Tech.

Rep., Intel Coorporation.

Joye, M. and S.M. Yen, 2000. Optimal left-to-right

binary signed-digit recoding. IEEE Trans. Comput.,

49: 740-748. DOI: 10.1109/12.863044

Khabbazian, M., T.A. Gulliver and V.K. Bhargava,

2005. A new minimal average weight representation

for left-to-right point multiplication methods. IEEE

Trans. Comput., 54: 1454-1459.

 DOI: 10.1109/TC.2005.173

Kodali, R.K., K.H. Patel and N. Sarma, 2013.

Implementation of energy efficient scalar point

multiplication techniques for ECC. Int. J. Recent

Trends Eng. Technol., 1: 14-19.

Longa, P. and H. Gebotys, 2010. Efficient techniques for

high-speed elliptic curve cryptography. Proceedings

of the 12th International Workshop on

Cryptographic Hardware and Embedded Systems,

Aug. 17-20, Springer, Santa Barbara, pp: 80-94.

DOI: 10.1007/978-3-642-15031-9_6

Md Yasin, S., 2011. New signed-digit {0,1,3}-NAF

scalar multiplication algorithm for elliptic curve

over binary field. PhD Thesis, Faculty of Computer

Science and Information Technology, Universiti

Putra Malaysia, Malaysia.

Morales-Sandoval, M. and C. Feregrino-Uribe, 2006.

GF(2m) arithmetic modules for elliptic curve

cryptography. Proceedings of the IEEE International

Conference on Reconfigurable Computing and

FPGA’s, 2006, Sept. 20-22, IEEE Xplore Press, San

Luis Potosi, pp: 1-8.

 DOI: 10.1109/RECONF.2006.307768

Pathak, H.K. and M. Sanghi, 2010. Speeding up

computation of scalar multiplication in elliptic

curve cryptosystem. Int. J. Comput. Sci. Eng., 2:

1024-1028.

Reitwiesner, G.W., 1960. Binary arithmetic. Adv.

Comput., 1: 231-308.

Sakthivel, A. and R. Nedunchezhian, 2012. Decreasing

point multiplication over ECC (Zp) using tree

computations. Proceedings of the International

Conference on Computing, Communication and

Applications, Feb. 22-24, IEEE Xplore Press,

Dindigul, pp: 1-5.

 DOI: 10.1109/ICCCA.2012.6179229

Mohsen Bafandehkar et al. / Journal of Computer Science 2016, 12 (11): 534.544

DOI: 10.3844/jcssp.2016.534.544

544

Senne, E.L.F., L.A.N. Lorena, M. Laguna and J.L.

Gonzalez-Velarde, 2000. Computing tools for

modeling, optimization and simulation: Interfaces in

computer science and operations research.

Shah, P.G., X. Huang and D. Sharma, 2010. Algorithm

based on one’s complement for fast scalar

multiplication in ECC for wireless sensor network.

Proceedings of the IEEE 24th International

Conference on Advanced Information Networking

and Applications Workshops, Apr. 20-23, IEEE

Xplore Press, Perth, WA., pp: 571-576.

 DOI: 10.1109/WAINA.2010.48

Yasin, S.M., R. Mahmod and R.N.H. Nor, 2015.

Performance analysis of signed-digit {0,1,3}-

NAF scalar multiplication algorithm in Lopez-

Dahab model.

Yasin, S.M., R.N.H. Nor, J. Din and M. Zaitun, 2014.

{0, 1, 3}-NAF representation and algorithms for

lightweight elliptic curve cryptosystem in Lopez

Dahab model. Int. Rev. Comput. Software, 9:

1541-1547.

