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Abstract: This paper presents a performance study for Gentle BLUE (GB) 

under the bursty and correlated properties of aggregated network traffic. 

The Bernoulli Process (BP) fails to represent the properties of aggregated 

correlated and bursty traffic, so instead of that, MMBP has been used. 

MMBP is A 2D discrete-time Markov chain modeling for GB algorithm 

with two traffic classes, each with its own parameters. The proposed model 

is compared with the GB that uses the BP as a source model (GB-BP) and 

original BLUE that uses the BP (BLUE-BP) and MMBP (BLUE-MMBP-2) 

as source model. The evaluation is conducted in term of queuing waiting 

time, mean queue length, throughput, packet loss and dropping probability. 

When congestion (e.g., heavy congestion) occurs, the results show that GB-

MMBP-2 provides the bestmean queue length, queuing time and packet 

loss among the compared methods. 

 

Keywords: Congestion Control, Queue Management, Markov Modulated 

Bernoulli Process, Gentle BLUE, Performance Evaluation 

 

Introduction 

Due to the enormous developments of internet 

technology in numerous applications such as, audio and 

video data traffic, a high speed router buffers is a 

demand. The packets pass through different router until 

reach their destination. Thus, each router buffer receives 

packets from several traffic classes with different 

aggressive aspect. Aggressive traffic can increase the 

number of packet arrival at the router buffer, which 

subsequently declines the performance of network by 

decreasing the throughput and raising both, packet loss 

rate and queuing delay (Reddy and Ahammed, 2008; 

Baklizi et al., 2014), as a result of a congestion problem. 

Congestion is defined as an event, which happens in 

networks, when the network resources are not able to 

accommodate the number of inserted packets (Ryu et al., 

2003; Baklizi et al., 2013). 

Various algorithms, such as Drop Tail (DT), DT is 

the conventional control technique, has been proposed to 

control the congestion and enhance the network 

performance. DT handles congestion at the network 

router in a late stage (after the router buffer overflows). 

For the purpose of overcoming these disadvantages in 

DT, Active Queue Management (AQM) algorithms have 

been developed. Examples of AQM algorithms are, 

BLUE (Feng et al., 2002), Random Early Detection 

(RED) (Floyd and Jacobson, 1993), dynamic Gentle 

Random Early Detection DGRED (Baklizi et al., 2013), 

adaptive RED (Floyd et al., 2001), Distortion 

Constrained (DC) (Ghoreishi et al., 2015), Enhancement 

of Fair Random Early Detection Algorithm (EFRED) 

(Abdulkareem et al., 2015) and Gentle BLUE (GB) 

(Alsaaidah et al., 2014). 

The key issues of the AQM algorithm performance 

evaluation are queue modeling and parameter tuning. 

The ultimate goal of using queue modeling is to 

evaluate or validate the performance. Models, such as 

the renewal traffic (Bernoulli Process (BP), Poisson 

Processes (PPs)) and Markov modulate arrival such as 

Markov-Modulated Bernoulli Arrival Process (MMBP) 

(Lim et al., 2010; Alsaaidah et al., 2014), can be used. 

Several AQM algorithms have been evaluated based on 

BP, which is a discrete time process that deals with 

network traffic as a single class. However, network 

traffic comes in different classes that the Bernoulli 

process cannot in efficient manner. This is because 

Bernoulli is unable to represent aggregated traffic, such 

as multimedia, which has a two important traffic aspect 

bursty and correlated (Samorodnitsky, 2007). 
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Burstiness” is observable in the BP through the 

clustering phenomenon of arrival packets in the 

timeline” (Liu et al., 2008). The long-range 

dependency produced by high correlated between the 

inter-arrival times are not handled using BP, which 

gives a false evaluation results (Liu et al., 2008). 

In order to get a good network performance, the 

router buffer should be managed. Congestion control 

method, like AQMs, should be applied to manage router 

buffers. The properties of packet arrival traffic, such as 

burstiness and correlation, should also be considered as 

the input in the process of the evaluation of AQM 

algorithms. Thus, this paper proposes an AQM method 

and atraffic modeling. This study uses a two-state 

MMBP (MMBP-2) to model the queuing process and 

deal with the properties of burstiness and correlations. 

This paper presents a discrete-time performance 

analysis on GB using MMBP-2 as the traffic source. 

Furthermore, we experimentally compare the 

proposed GB-that use both BP and MMBP-2 as a 

source model and the original BLUE that uses BP 

(BLUE-BP) and MMBP (BLUE-MMBP-2) as source 

models. This comparison shows which of the 

compared algorithm offers more satisfactory 

performance under bursty and correlated traffics. The 

performance evaluation is implemented by analyzing 

the network measuresunder two traffic classes using 

(MMBP-2) and under one traffic class using BP. 

Section 2 presents the related work;section 3 and 

section 4% the BLUE and Gentle BLUE algorithms; 

The two state Markov-modulated Bernoulli processes is 

introduced at section 5; section 6 introduces the 

procedure that is used to model the arriving traffic 

based on MMBP-2; the simulation details is 

highlighted at section 7; section 8 demonstrates the 

results and section 9 provides a conclusion. 

Related Work 

Developing a system model is an essential way to 

deal with the system requirements that gives a good 

prediction of the system performance. The optimal 

evaluation of the effective networks congestion control 

techniques relied on modeling system that characterize 

the features and characteristics of network traffics in 

order to guarantee the reliability and affordability. 

Modeling traffic plays important roles in the evaluating 

process. Renewal traffic (PP and BP) are traditional 

modeling approaches that are based on simple 

mathematical calculation (Lee et al., 1997). These 

traditional approaches are unable to represent the 

aggregated traffic, or in other word, unable to capture 

the properties of the aggregation such as correlation 

and burstiness (Ng et al., 1999). Renewal traffic 

limitation is defeated using Markov-Modulated Arrival 

(MMA). There is three types of MMA that are used to 

model arrival packets, these are: Markov-Modulated 

Fluid Flow (MMFF), Markov-Modulated Poisson 

Processes (MMPP) and MMBP (Ng et al., 1999). 

MMA models represent both discrete and continuous 

time scale and packet arrival. Only a single event 

allowed for the packet at any time (the packet may be 

arrive or departure). While in continuous approach, at 

contrary, multiple events could be occurred for the 

packet at a single time slot (the packet may arrive 

and/or departure) indiscrete time queue (Al-Diabat et al., 

2012; Abdel-Jaber et al., 2007a). 
The types of MMA based on time scale and packet 

arrival, are summarized in Table 1. 

MMFF is used to represent the characteristics of 

continuous approach in both packet arrival and time scale 

(Ng et al., 1999). On other hand, MMPP (Fischer and 

Meier-Hellstern, 1993) is widely used in modeling 

applications that hasdiscrete packet arrival with 

continuous time (Lim et al., 2011). The computer and 

communication are discrete in nature, which means 

MMPP and MMFF does not capture the characteristics 

that represent the digitalized communications (Lim et al., 

2011). As a result, MMBP is suitable candidate for 

modeling nature traffic due to the ability to model the 

traffic using discrete time approach with bursty and 

correlated traffics properties (Lim et al., 2011; Ng et al., 

1999; Guan et al., 2006; Kim et al., 2010; Lim et al., 

2009; Guan et al., 2004a). 

MMBP is equivalent to MMPP but in discrete-time 

(Ng et al., 1999). Numerous researches model their 

arrival traffic by using MMBP. In particular (Lim et al., 

2009; Guan et al., 2006) propose an approach to 

control the delay on a router at specific level under 

aggregated Internet traffic flows using MMBP. 

Similarly, the work in (Guan et al., 2004b) evaluates 

RED under bursty and correlated traffic using MMBP. 

The evaluation method in (Lim et al., 2010) valuates 

RED and WRED using MMBP-2. Active-WRED is 

proposed in (Kim et al., 2010) and uses MMBP to 

model its arrival process. 

In summary, as internet traffic is aggregated in 

natural so modeling these traffic need an approach that 

capture discretized, bursty and correlation for the 

traffics, so MMBP is a suitable candidate to represent 

these all characteristic. By contrast, MMPP and MMFF 

unable to capture this characteristic especially correlated 

and bursty traffic (Ng et al., 1999; Lim et al., 2011; 

2010; 2009). 

 
Table 1. MMA categories 

MMA MMFF MMPP MMBP 

Time scale Continuous Continuous Discrete 

Packet arrival Continuous Discrete Discrete 
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BLUE Algorithm 

BLUE algorithm (Feng et al., 2002) rely on DP and a 

single threshold to control congestion, BLUE increases 

DP if the queue size at the router buffer above the 

threshold, while it decrease DP if the queue size at the 

router buffer is empty or the link is idle. BLUE 

algorithm use fixed rate for increasing or decreasing DP. 

BLUE usesfew parameters to control the value of DP. 

The parameter f_times represents the minimum allowed 

period between two subsequent DP adjustments. The 

parameter Pin represents the amount of DP incremented. 

The parameter Pde represents the amount of DP 

decremented. The DP calculation at BLUE algorithm is 

shown in algorithm 1: 

 

Algorithm 1: Dropping Probability in the BLUE 

Algorithm 

1. Begin 

2. if (buff_ le>th): Plos 

3. if (time _of the l_adj>f_time) 

4. DP = DP + Pin 
5. L_adj = current 

6. if (que_buff == 0) // (buffer is empty) 

7. DP = DP-Pde 

8. L_adj = current 

9. End 

10. Where the que_buff = queue buffer 

11. buff_ le = buffer length 

12. Th = threshold 

13. plos = packet losing 

14. ladj = last adjustment 

15. time of the ladj=time of the last adjustment 

16. pin = pincrementpde = pdecrement 

 

In lines 2 to 4, DP increases by the value of P in if the 

of number of packet in the buffer is greater than the 

threshold value and the last adjustment is outdated. The 

last adjustment time is updated in line 5. On the other 

hand, if the buffer is empty, DP is decreased by the value 

of Pdein lines 6 to 8 and the last adjustment time is 

updated in line 8. 

Gentle BLUE Algorithm 

GB (Alsaaidah et al., 2014) extends the well-known 

BLUE algorithm (Feng et al., 2002) by providing a 

dynamic mechanism to calculate DP value based on the 

queue length status. GB is proposed with the response to 

the limitation of BLUE algorithm.As such, BLUE 

algorithm calculates DP using a fixed value while GB 

calculates the DP dynamically. Moreover, GBreduces 

the problem of parameter setting. This dynamic 

mechanism that updates the DP value depends on the 

parameters q and a single threshold. DP of the GB 

algorithm is provided in Algorithm 2: 

Algorithm 2: DP in the GB Algorithm 

1. Begin 

2. if(q_th> 0 &&q_th<= Th) 

3. {if (C_time _of the l_ajd>f_time){ 

4. DP = (q_th/Th ) * ((C-Th)/C) * (1-initDP) 

5. L_adj = current} 

6. Else{ if( q_th>Th&&q_th<C){ 

7. DP = ((C-Th)/C) *(1-initDP) + (q_th/C) *(1-((C-

Th)/C) *(1-initDP) 

8. L_adj = current}} 

9. Else 

10. {DP = 1 //means all arrival packet will be dropped 

11. L_adj = current} 

12. End 

13. whereq_th: Queue length 

14. Th: Threshold 

15. c_time of the l_adj: Current time of the last adjustment 

16. initDP:InitialDP 

17. L_adj: Last adjustment  

18. C: Capacity  

19. f_time: Freeze time 

 

In lines 2 to 5, DP adjustment is implemented when 

no congestion occurs. In this case, DP is calculated as 

given in line 4. In lines 6 to 8, DP adjustment is 

implemented in case of light and heavy congestion. GB 

algorithm uses the equation in line 7 to calculate DP. In 

lines 9 to 11, DP is set up when the number of packet at 

the router buffer is greater than the size of the router 

buffer. All arriving packet will be dropped and the value 

of DP is equal to 1. 

Bernoulli Process 

BP is formulate by a sequence of random binary 

variablesYi. BP arrivals can only occur at a time slot k. The 

probability of the arrival p in the time slot k is independent 

from any other arrivals. The arrival in slot k is binomially 

distributed (Woodward, 1994; Abdel-Jaber et al., 2007b) 

the two possible values of each Yi are p and (1-p), where 

p is the successful probability. The number of time slots 

between two arrivals is geometrically distributed with 

parameter p (Abdel-Jaber et al., 2007b). 

Source Model (MMBP-2) 

The MMBP is used for modeling GB algorithm in 

bursty and correlated traffic. MMBP could be extended to 

contain N-state but for simplicity analysis, presentation 

and discussion, two states have been used (Ng et al., 

1999). The proposed model is shown in Fig. 1. 

MMBP-2 has two states with distinct packet arrival 

probability, α0 and α1. MMBP uses discrete time queue, 

which means the time is divided into slots as similar to 

Bernoulli; however, there is no independency of arrivals. 



Adeeb Alsaaidah et al. / Journal of Computer Sciences 2016, 12 (6): 289.299 

DOI: 10.3844/jcssp.2016.289.299 

 

292 

 
 
Fig. 1. MMBP-2 

 

Assume that the packet is arrived to a state one in 

time slot k, the next packet can remains in the same state, 

with probability D or transited to the next state, with 

probability 1-D. The difference between BP and MMBP-

2 is that MMBP-2 uses two stateswhile BP uses one 

state, represented by a transition probability matrix TPm 

for its process and diagonal matrix DMp for the arrival 

probabilities as follows (Guan et al., 2007): 

 

1

1

K K
TPm

D D

− 
=  − 

 

 

And: 

 

0 0

0 1
DMp

α

α

 
=  
 

 

 

According to MMBP-2, the steady state probabilities 

for state one (S_SP(S1)) and state two (S_SP(S2)) can be 

represent as in “Equation 1 and 2”: 

 

( )_ ( 1) ( ) _ ( ) 1 _ ( 2)S SP S K S SP SI D S SP S= + −  (1) 

 

_ ( 2) (1 ) _ ( 1) _ ( 2)S SP S K S SP S DS SP S= − +  (2) 

 

where, S_SP (S1) and S_SP (S2) denote the steady-state 

probabilities of MMBP-2 in state 1 and state 2 

respectively. 

Modeling GB Arrival Traffic using MMBP 

GB has been modeling by using MMBP-2 in this 

study. MMBP-2 has two state and each one has its own 

parameters. In state one the probability of packet arrival 

is denoted by α0, whereas in state 2, is denoted by α1. In 

both states, DP remains the same as the original GB. 

Figure 2 illustrates the steps of the proposed GB-

MMBP-2 algorithm. 

 
 
Fig. 2. GB using MMBP-2 
 

Step one (initialize the parameters setting): GB-

MMBP-2 required settings of many parameters as seen 

in Table 2. GB usesa threshold value as 60% of the 

buffer size as those in (Saaidah et al., 2014;        

Abdel-Jaber et al., 2007a; Al-Diabat et al., 2012). 

Initially, the queue length is empty, which means the 

initial value of queue length is zero and the packet will 

be arrived initially to state 1, thus the initial state is 

state 1. The initial DP (initDP) parameter is set to a 

value similar to the original BLUE (Feng et al., 2002) 

and original GB (Alsaaidah et al., 2014). 
Step two (check packet departure): The departure 

comes before the arrival in this discrete-time queue. If a 

packet departed, then the queue length is decreased by 

one, else the ql remains unchanged. The queue length is 

calculated in GB-MMBP-2 using the arrival packets. At 

the beginning, the queue length of the router buffer will 

beempty and increased by one with every arrived packet. 

Step three (define the state of arrival): GB-MMBP-2 

is consist of two states, a high priority to the newly 

arriving packet to remain in the same state is giving with 

probability 0.9 and less priority for transition to another 

state with probability of 0.1. The probabilities of states 

themselves are equal. The decision of packet hosting to 

state one or state two is based on the packet arrival 

probability for that state. Figure 3 illustrates the 

definition of the state for an arrival packet. 

Step four (DP updating): GB-MMBP-2 dynamically 

updates DP using the same updating mechanism as GB 

algorithm for both states (state 1 and state 2). 

Step five (calculating performance measure): The 

performance measures for each algorithm are 

collecting after the algorithm executed 10 times with 

different seeds. Seeds are required in the generation of 

the random number. The number of slots used in the 

experiments is 2,000,000. In each seed, the performance 

measures (mql, D, T, DP, PL) are calculated after the 

simulation reach a steady state. The mean of these runs at 

a specific packet arrival probability are then collected. 
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Fig. 3. Defining the arrival packet state 
 

 
 

Fig. 4. Single router buffer for BLUE–MMBP-2 and GB-MMBP-2 
 

 
 

Fig. 5. Single router buffer for BLUE-BP and GB-BP 
 

Simulation 

In this section, GB-MMBP-2, BLUE-MMBP-2, GB-

BP and BLUE-BP are simulated. A discrete-time queue 

approach used to model the queue. In this approach, 

the simulation period is divided into time units called 

slot. In each slot, multiple events could be occurred 

(Abdel-Jaber et al., 2015; 2008; Zhou and Wang, 2008; 

Guan et al., 2004c). The probability of packet arrival in 

BLUE-BP and GB-BP, is denoted by α0, while the 

packet departure probability in a slot is called by β. As 

for the probability of packet arrival in GB-MMBP-2 and 
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BLUE-MMBP-2, for state 1 and state 2 are called by α0 

and α1, respectively. The probability of packet departure 

in a slot for all simulated algorithm called by β. A 

geometrical distribution is used to model the packet 

departure. Packet inter-arrival times are geometrically 

distributed with a mean (1/α0 for BLUE-BP and GB-BP 

or 1/α0 or 1/α1 for GB-MMBP-2 and BLUE-MMBP-2) 

and packet processing and service time has a mean of 1/β. 

The simulation environment based in a single router 

buffer that use First-In-First-Out (FIFO) scheduling. 

Subsequently, two states has been used for modeling the 

arrival packet in GB-MMBP-2 and BLUE-MMBP-2 as 

seen at Fig. 4, whereas a single state modeling is used in 

GB-BP and BLUE-BP as seen in Fig. 4 and 5 shows that 

GB starts dropping packets in early stage before the 

number of arrived packet reach the threshold. 

Performance Evaluation Results 

In this section, the performance for GB-MMBP-2, 
GB-BP, BLUE-MMBP and BLUE-BP is evaluated. This 
evaluation attempts to finds out which algorithm gets 
more satisfactory performance in both BP and MMBP-2. 
In other words if the traffic include the features of bursty 
and correlated by using MMBP-2 or without this features 
by using BP. 

Parameter Setting for the Compared Algorithms 

The parameters setting for all simulated algorithm are 
given in Table 2. The size of router buffer is chosen to be 
20 in order to force the occurrence of a congestion 
rottenly (Abdel-Jaber et al., 2007a). The total number of 
slot is 2.000.0000, which is sufficient to give a precise 
results. The initDP value was set to 0.05 as 
recommended at original BLUE. 

The packet arrival probability for state 1 in GB-

MMBP-2, GB-BP, BLUE-MMBP-2 and BLUE-BP is set 

to various values (0.18-0.93) in order to cover all situation 

for the router buffer include no congestion, light 

congestion and heavy congestion. As such, the packet 

arrival interval is set as greater than and less than the value 

of the packet departure. Thus, no congestion will occur 

with values of packet arrival probability, for state 2 in GB-

MMBP-2 and BLUE-MMBP-2, less than 0.5 to reduce the 

number of arriving packets (Guan et al., 2007). 

In case of MMBP-2 (GB-MMBP-2 and BLUE-

MMBP-2), which has two states, the transition probability 

between state 1 and state 2 is set to 0.1 and the probability 

that the next packet will come to the same state is 0.9. 

The remaining parameters (i.e., threshold, Dmax, 

Pinc andiniti DP) are set to values as provided in the 

BLUE algorithm (Feng et al., 2002). 

Performance Measures 

Mean Queue Length, Throughput and Average 

Queuing Delay 

The performance measures, mql, T and D for BLUE-

MMBP-2, BLUE-BP, GB-BP and GB-MMBP-2, with 

various probabilities of packet arrival, are showed in Fig. 

6-8. The measure mql represents the average number of 

packets at the router buffer at any time. The measure mql 

is calculated as the sum of product for each queue state 

with its probability as shown in “Equation 3”: 

 

0

mql
k

i

i

i p
=

= ×∑  (3) 

 

where, N, is the finite buffer capacity (Woodward, 1994). 

In order to avoid increasing the number of packet 

at the router buffer as a result of increasing the 

possibility of the congestion, mql has to be as small as 

possible. D is defined as the average waiting time for 

packets at the router buffer before get serviced. D is 

calculated using Little’s law by dividing mql by T as 

shown in “Equation 4” (Woodward, 1994): 
 

mql
D

T
=  (4) 

 

 
 

Fig. 6. mql Vs. packet arrival probability 
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Fig. 7. T Vs. packet arrival probability 
 

 
 

Fig. 8. D Vs. packet arrival probability 

 
Table 2. Parameter settings 

 Methods 
 ------------------------------------------------------------------------------------------- 
   GENTLE GENTLE 
Parameter BLUE BLUE-MMBP-2 BLUE-BP BLUE-MMBP-2 

Probability of packet arrival for state 1 (α0) 0.18-0.93 0.18-0.93 0.18-0.93 0.18-0.93 
Probability of packet arrival for state 2(α1) ------ 0.5 ------ 0.5 
Probability that the next packet remains in state 1 ------ 0.9 ------ 0.9 
Probability that the next packet remains in state 2 ------ 0.9 ------ 0.9 
Transition probability from state 1 and state 2 ------ 0.1 ------ 0.1 
Transition probability from state 2 and state 1 ----- 0.1 ----- 0.1 
Probability Packet departure (β) 0.5 0.5 0.5 0.5 
Router buffer capacity 20 20 20 20 
Number of slots 2000000 2000000 2000000 2000000 
Threshold 12 12 12 12 
Freeze time 0.01 0.01 ----- ----- 
Pin 0.00025 0.00025 ----- ----- 
Pde 0.000025 0.000025 ----- ----- 
InitDP 0.05 0.05 0.05 0.05 

 

Figure 6 and 8 represent the value of mql and D for 

the compared algorithms. GB-BP and BLUE-BP provide 

more satisfactory performance comparing with the other 

algorithm. All algorithms provide less mql and D 

compared to BLUE-MMBP-2, when the packet arrival 

probability value is up to 0.33 (in case of no congestion) 

that is because the number of packets at the queue in 

GB-MMBP-2 is greater than GB-BP and BLUE-BP and 

all of them is less than those in BLUE-MMBP-2. By 

other means, because MMBP is transmitted to state 2 
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(i.e., the packet arrival probability is changed to 0.5), 

which leads to increase the mql. GB-BP and GB-

MMBP-2 have the same mql and D values if the 

probability of packet arrival are between 0.33 and 0.48. 

Both GB-BP and GB-MMBP-2 provide the same mql 

and D results, because the probability of packet arrival 

for state1 and state 2 in GB-MMBP-2 are almost equal to 

each other and are equal to packet arrival probability in 

GB-BP (close to 0.5). In addition, these results provide 

less mql and D performance measure compared to 

BLUE-BP and BLUE-MMBP-2 due to GB-BP and GB-

MMBP-2 drop more packets as given in Fig. 6 and 8. 

GB-MMBP-2 provides more satisfactory and better mql 

and D performance measures compared to other 

algorithms when the packet arrival probability is greater 

than or equal because number of packets at the router 

buffer is less than the other algorithms in light and heavy 

congestion. GB-MMBP-2 is less than GB-BP in terms of 

D and mql, because GB-MMBP-2 has two states and the 

packets may arrived at state 2 so the number of arrived 

packet in state two in this stage is less than the number 

of arrived packet in state 1 so this reduce the number of 

packet at the router. GB-BP also provides better and 

lower mql and D measures compared with the other 

algorithm. In addition, BLUE-MMBP-2 offers less mql 

and D results compared with BLUE-BP. 

T is the number of packet that successfully leave 

the router buffer after being served by the router. 
Figure 7 illustrates the T-based performance of all 
compared algorithms under various values of packet 
arrival probability. Figure 7 shows that BLUE-
MMBP-2 provides better T results compared with the 
other methods. GB-MMBP-2 also provides better and 

higher T results than GB-BP and BLUE-BP in case of 
no congestion (packet arrival probability is up to 0.33) 
because GB-BP and BLUE-BP serves less packets 
compared to algorithms and GB-MMBP-2 occupy the 
highest number of serves. The mql results at these 
arrival rates are higher for BLUE-MMBP-2 compared 

with the other algorithms, whereas those for GB-
MMBP-2 are higher than those for both GB-BP and 
BLUE-BP. Both GB-BP and BLUE-BP present 
similar T results at these rates. When the value of 
packet arrival probability is above 0.33, all the 
compared algorithms offer similar T results. These 

results are almost equal to the value of packet 
departure probability. 

Overflow PL Probability and Packet DP 

PL probability can be defined as the probability of 
losing packets after the router buffer get overflowed. 

Packet DP is the value of packet dropping probability 
that gives a good indicator about the network 
congestion status. The value of DP increases when 
there is a congestion and it give an accurate prediction 
before the buffer get overflowed. 

A comparison between GB-MMBP-2, GB-BP, 

BLUE-MMBP-2 and BLUE-BP in term of PL and 

packet DP is shown in Fig. 9 and 10. The goal of the 

comparison is to evaluate which algorithm provide 

better performance measure in term of PL and DP.The 

amount of dropping packet before the router get 

overflowed using DP performance measure and after 

the packet get over flowed using PL. 

Figure 9 shows that all the compared algorithms 

provide similar PL results when the packet arrival 

value is up to 0.48 because they overflow their router 

buffers at a similar frequency. All the compared 

algorithms, except for BLUE-BP provide similar PL 

results when the packet arrival value is between 0.48 

and 0.63 (i.e., this range contains light congestion) 

because they overflow the router buffers at a 

frequency less than that for BLUE-BP. GB-MMBP-2 

and GB-BP slightly yield the best and least PL 

performance in case of light and heavy congestion 

(the packet arrival probability is greater than or equal 

0.63) because mql of GB-MMBP-2 is less than the 

other algorithm, so they overflow the router buffers at 

a frequency less than that for BLUE-MMBP-2 and 

BLUE-BP. BLUE-MMBP-2 loses fewer packets than 

BLUE-BP at these arrival probabilities. 

Notably, Fig. 10 shows that BLUE-BP, BLUE-

MMBP-2 and GB-BP provide similar DP results when 

the value of packet arrival probability equals to 0.18. 

The results of these methods are lower than the result 

of GB-MMBP-2 because MMBP can be transmitted to 

state 2 (i.e., the packet arrival probability is changed 

to 0.5), so the number of dropped packets is increased. 

When the arrival probability is 0.33, BLUE-BP and 

BLUE-MMBP-2 drop the least number of packets and 

GB-BP drops fewer packets compared with GB-

MMBP-2. This scenario can be attributed to the queue 

length of GB-MMBP-2 being the largest (but not full) 

and that of GB-BP being larger than those of BLUE-

BP and BLUE-MMBP-2. If the arrival probability is 

equal to 0.48, BLUE-BP and BLUE-MMBP-2 drop 

the least number of packets because of its queue 

length, but both GB-BP and GB-MMBP-2 drop 

similar numbers of packets because of the similar 

lengths of their queue buffers. When the value of 

packet arrival probability is 0.63, GB-MMBP-2 drops 

the least number of packets among all the methods 

and BLUE-MMBP-2 drops fewer packets compared 

with GB-BP and BLUE-BP. In addition, GB-BP and 

BLUE-BP drop similar numbers of packets. When the 

arrival probability is larger than 0.63 (i.e., contains 

heavy congestion), GB-MMBP-2 and BLUE-MMBP-2 

drop the lowest number of packets because their 

queue lengths are the smallest. GB-BP and BLUE-BP 

drop similar numbers of packets because they have 

similar queue lengths. 
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Fig. 9. Overflow PL probability Vs. packet arrival probability 
 

 
 

Fig. 12. Packet DP Vs. packet arrival probability 

 

Conclusion 

Planning network capacity plays a significant part 

in achieving QoS, so the evaluation of the AQM under 

some properties that exist in nature traffic has to be 

achieved. Internet traffic is aggregated by nature, 

aggregated traffic such as multimedia is bursty and 

correlated. The AQM evaluation process must 

consider the nature of the aggregated traffic by 

modeling traffics under burstiness and correlation. 

Modeling traffic is an essential part of evaluating 

queue management methods. Queuing models such as 

BP, PP and MMBP are used to validate or evaluate the 

performance of these AQM algorithms. The BP and 

PP fail to capture the properties of multimedia traffic, 

instead of that MMBP is the most widely used model 

for aggregated traffic with correlation and burstiness. 

The results show that GB is better than the other 

algorithms. This condition implies that GB algorithm 

provides the best performance result in terms of mql, 

D, T, PL and DP compared with the other algorithms, 

especially when heavy congestion occurs. 

In the future work, we intended to conduct 

analytical modeling of the queuing network to handle 

two queue nodes based on the priority policy using 

discrete time. Another analytical model can also be 

developed to handle N queue nodes. 
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