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Abstract: Cloud Computing is a paradigm that delivers services by 
providing an access to wide range of shared resources which are hosted in 
cloud data centers. One of the recent challenges in this paradigm is to 
enhance the energy efficiency in these data centers. In this study, a model that 
identifies common patterns for the jobs submitted to the cloud is proposed. 
This model is able to predict the type of the job submitted and accordingly, 
the set of users’ jobs is classified into four subsets. Each subset contains jobs 
that have similar requirements. In addition to the jobs’ common pattern and 
requirements, the users’ history is considered in the jobs’ type prediction 
model. The goal of job classification is to find a way to propose useful 
strategy that helps to improve power efficiency. Based on the process of jobs’ 
classification, the best fit virtual machine is allocated to each job. Then, the 
virtual machines are placed on the physical machines according to a novel 
strategy, called Mixed Type Placement strategy. The core idea of the 
proposed strategy is to place virtual machines of the jobs of different types in 
the same physical machine whenever possible. The placement process is 
based on Multi Choice Knapsack Problem which is a generalization of the 
classical Knapsack Problem. This is because different types of jobs do not 
intensively use the same compute or storage resources in the physical 
machine. This strategy minimizes the number of active physical machines 
which, in turn, leads to major reduction in the total energy consumption in the 
data center. The total execution time and the cost of executing the jobs 
submitted are considered in the placement process. To evaluate the 
performance of the proposed strategy, the CloudSim simulator is used with a 
real workload trace to simulate the cloud computing environment. The results 
show that the proposed strategy outperform both Genetic Algorithm and 
Round Robin from energy efficiency perspective. 
 
Keywords: Cloud Computing, Data Center, Virtualization Management, 
Energy Efficiency 

 

Introduction 

With the rapid growth in the cloud computing model, 

the reduction in the total energy consumed by the cloud 

data centers has become essential. This reduction can be 

achieved by observing how the power is delivered to 

computing resources and how these resources are 

utilized to serve the jobs which request these services. 
The continuous growth in the cloud computing 

model poses a challenge for existing works to enhance 
the energy efficiency in cloud data centers. Hence, the 

need for improving the existing resource allocation and 
management algorithms in cloud data centers and 
proposing new ones is highly recommended. In this 
study, a new model is suggested to predict the job type 
in the workload based on common behaviors and 
patterns of the job. If there is a history for the user who 
submits the job to the cloud, it will also be considered 
in predicting the job type. If not, the job requirements 
are the parameters which are considered in the 
classification process. According to the job type, the 
best fit Virtual Machine (VM) is allocated to job. Then, 
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VMs are placed to the Physical Machines (PMs) 
considering that no VMs of the same type of jobs will 
consolidate on the same PM relying on the Knapsack 
Problem (KP). High Performance Computing (HPC) 
jobs can be effectively combined with Data Intensive 
(DI) jobs on the same PM. HPC jobs mostly request 
compute resources, whereas DI jobs request storage 
and network bandwidth resources. In other words, HPC 
jobs and DI jobs do not intensively use the same 
resources. This can potentially lead to more efficient 
resource provisioning and reduction in the number of 
switched-on PMs and, consequently, higher energy 
efficiency. If there is no available PM for combining 
VMs of different types of jobs, then the KP algorithm 
to place the VMs is used. To note, Knapsack is not the 
only possible way for solving the VM placement 
problem, there are other methods, for example the bin 
packing algorithm used in (Beloglazov, 2013). KP is 
used in this study because it has different variants; 
one of them is called the Multi Choice Knapsack 
Problem (MCKP). It is used when the items should be 
chosen from different sets to be combined in one 
knapsack (Pisinger, 1995). This suits the proposed 
model of combining two VMs from two different sets 
into the same PM. 

Thus, reducing energy consumption can be achieved 
through two situations addressed in this study. 

First situation: Minimizing the number of switched-

on PMs by combining the VMs of different kind of 

users’ jobs and placing them on the same PM. Second: 

Minimizing the CPU frequency as much as possible for 

the VMs of the DI jobs using the Dynamic Voltage 

Frequency Scaling (DVFS) technology. To note, 

minimizing frequency is a very crucial issue. Minimizing 

frequency is done only when the VM of the DI job 

works in space-shared policy to prevent any effect on the 

other VMs hosted on the same PM. In addition, 

minimizing frequency must not violate the DI job’s 

Quality of Service (QoS). 
This work assumes that: Upcoming jobs are 

organized as Bag-of-Tasks (BoT) where jobs are 
independent and they can be executed in any order and 
one VM is allocated to each job. 

This work tackles the problem of high consumed 
power in cloud data centers by proposing the following 
key contributions: 

 

• An online job classification model, which divides 

the workload into subsets. Each subset utilizes 

different kind of resources. This can potentially lead 

to more efficient resource provisioning and reduce 

the number of switched-on PMs which, in turn, 

results in higher energy efficiency 

• A Near-optimal energy-efficient scheduling algorithm 

in heterogeneous virtualized cloud data centers 

The rest of this paper is organized as follows. The 
next section presents the related work. Section 2 is a 
background to the concept of virtualization. Section 3 
describes the components of the system model proposed 
to submit users’ jobs to the cloud. It explains how these 
jobs are classified. In section 4, the details of the 
proposed model and the idea of the new proposed Mixed 
Type Placement (MTP) strategy are described. 
Experimental results are discussed and analyzed in 
section 5. Finally, conclusions listed in section 6. 

Related Work 

Many works tried to improve the power efficiency 
in data centers. The authors in (Horvath et al., 2007; 
Wang and Lu, 2008; Wang et al., 2009; Li et al., 2011) 
used DVFS techniques to save energy. Some works like 
the one presented in (Lawson and Smirni, 2005) 
dynamically adjust the number of CPUs in a cluster to 
operate in ‘‘sleep’’ mode when the utilization is low, 
others like in (Lang and Patel, 2010; Heo et al., 2011; 
Chakravarty and Sinha, 2013) switch the PMs from on to 
off. Bradley et al. (2003; Guenter et al., 2011;  
Bobroff et al., 2007), the authors statistically analyze the 
workload data and examine how to minimize the power 
consumption using workload history. The studies in 
(Garg et al., 2011; Tesauro et al., 2007; Zhang et al., 
2014a) optimized multiple aspects of data center 
behavior such as consumed power, service cost and the 
overall performance. The authors in (Chase et al., 2001) 
proposed a cost approach to manage shared server 
resources such that the service requests for these resources 
are represented as a function taking into account the 
energy consumption. The authors in (Burge et al., 2007) 
scheduled tasks to heterogeneous machines according to 
the energy costs of each one to maximize the profit. In 
(Deore and Patil, 2013), the research argued energy-
efficient job scheduling and allocation scheme to 
minimize the number of switched-on PMs, so the 
amount of consumed power can be reduced. The thesis 
in (Feller, 2013) focused on the IaaS cloud service model 
whose goal is to offer a computing infrastructure by 
provisioning VMs on-demand. The thesis presented in 
(Beloglazov, 2013), presented some algorithms for 
distributed dynamic consolidation of VMs in virtualized 
cloud data centers. The VM placement strategy used in 
this thesis is based on bin packing algorithm. 

Various optimization methods such as, Ant Colony 
Optimization (ACO) (Gao et al., 2013), Particle Swarm 
Optimization (PSO) (Zhang et al., 2014b) and Genetic 
Algorithms (GA) (Portaluri et al., 2014; Dong et al., 
2014) were proposed to do the process of VM placement 
aiming to reduce energy consumption in data centers. 

However, to the best of our knowledge, no work from 
the literature investigate the effects of combining different 
types of jobs on the same PM on energy efficiency. 
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Background 

This section presents a background on the 
virtualization concept. 

Virtualization 

Virtualization is creating a virtual version of 
something (e.g., operating system, CPU, storage device, 
or network device). A single PM, which is the real 
hardware, can host one or more VM. A VM is a piece of 
software running on PM that emulates the properties of a 
separated PM. 

Supplementary, the concept of virtualization breaks 

the traditional model of the PM that host a single 

Operating System (OS). It creates several VMs which 

are hosted on one PM, each VM may have its own OS. 

This concept is organized using hypervisor technology. 

A hypervisor (Josyula et al., 2011), also called Virtual 

Machine Manager (VMM), is a software that controls all 

PM resources, allocate resources needed by each 

operating system, monitors the utilization of the 

resources in turn and makes sure that the guest operating 

systems of the VMs cannot disrupt each other. Figure 1 

illustrates the virtualization architecture. 

VM Management 

VM Management (Josyula et al., 2011) is the process 

of coordinated provisioning of the virtualized resources, 

as well as the runtime of such provisioning. This feature 

includes the mapping of the virtual resources to the 

physical ones and also overall management capabilities 

such as capacity, billing and Service Level Agreement 

(SLA) contract. 

An important issue in VM management is the VM 

migration process, which is the process of transferring a 

VM from source to destination PM. Basically there are 

two kinds of VM migrations: Live and offline. 

 

 
 
Fig. 1. Virtualization architecture 

System Components 

The proposed system is based on the Cloud 
computing environment paradigm, whereby Cloud users 
are able to request the services offered by the Cloud 
providers to execute their jobs. Indeed, this proposed 
system consists of two main components: A cloud user 
and a cloud provider, as shown in Fig. 2. 

The cloud provider has an essential node called global 
scheduler. This node acts as an interface between users 
and the cloud infrastructure. It profiles and analyzes the 
service requirements of the submitted jobs and decides 
whether to accept or reject them based on the availability 
of resources. It selects the data center that execute the jobs 
such that the power consumption can be reduced, while 
the QoS requirements of the submitted jobs are met. As 
data centers are located in different geographical regions, 
they have different energy costs depending on regional 
constraints. Each data center is responsible for updating 
this information to the global scheduler in order to achieve 
an energy-efficient scheduling. 

The two components, Cloud user and Cloud provider, 
are discussed in details below. 

Cloud User 

The cloud user submits the job (or set of jobs) to the 
cloud provider to be executed. Job can be defined as a 
task that is executed by the resources of the cloud data 
center, typically with an implied QoS requirement. A Job 
can be considered as a finer abstraction of an application 
service being hosted in the VM. This work proposes a 
job submission model as shown below: 
 

( )
i

job QoS  
 

QoS includes the deadline and budget for the user jobs: 
 
• DLi: The deadline of jobi 

• Bi: The maximum budget of jobi 
 

 
 
Fig. 2. System architectural components 
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Cloud users can submit their jobs (code and data) 
to be executed and manipulated in a specific cloud 
data centers. The job submission process is done via 
cloud provider. 

Cloud Provider 

Cloud provider component includes two models: 
global scheduler and data center (s). The function of this 
component is to receive the users’ jobs, execute them on 
a specific data center and then send back the result of the 
jobs execution to their users. 

Global Scheduler Model 

The cloud provider has an essential node called the 
global scheduler. This node receives the users’ jobs and 
profiles them. The profile process contains sufficient 
information about the jobs. This information is very 
useful in executing these jobs. Global scheduler model 
operates in three main phases: Prediction phase, SLA 
phase and mapping phase. 

Profiling and Prediction Phase 

This phase is in charge of profiling users’ jobs and 
deciding their types before the VM allocation process. 
Four types of jobs result from this phase: High 
Performance Computing (HPC), Data Intensive (DI), 
High Performance Computing and Data Intensive (HPC-
DI) and Normal. 

Firstly, Job profiling results in the following 
infrastructure required to execute the jobs within their 
QoS requirements: 
 

( ), , , ,user user user user userpeNumber Time Storage RAM BW  

 
Where: 
PeNemberUser = Number of Process Elements (PEs) 

needed by jobi. Also known as cores 
TimeUser = Required execution time for jobi when 

using PeNemberUser 
StorageUser = Storage size needed by jobi 
RAMUser = RAM size needed by jobi 
BWUser = Bandwidth needed by jobi 
 

However, in reality, accurate job requirements such as 
execution time are not readily available in cloud 
environments. It is possible to examine and anticipate such 
requirements by executing part of the code. Many studies 
assumes that execution time with specific processing 
elements is a known quantity or estimated by the cloud user 
(Garg et al., 2011; Lee, 2012). To estimate the job 
execution time, four major solutions were proposed: 
 
• Code analysis (Nudd et al., 2000; Reistad and 

Gifford, 1994) 

• Analytic benchmarking/code profiling (Yang et al., 
1993) 

• Historical/Statistical prediction (Sanjay and 
Vadhiyar, 2008; Iverson et al., 1996) 

• Empirical analysis (Berman et al., 2005) 
 

Using these solutions, or by executing part of the 
code, other information related to user jobs can be 
obtained. In addition, there exists many studies which 
proposed models to estimate specific parameters (e.g., 
Cycle Per Instruction (CPI) (Chen and John, 2011; 
Intel Corporation, 2008), Memory Access Per Instruction 
(MPI) (Zhang and Chang, 2014) and estimated 
bandwidth (Zhu et al., 2012). 

After profiling, this phase utilizes a mix of statistical 
information and some input features for the jobs to 
predict the job type. This is done in two stages: 
 

User Id Checker (UIC): The users in cloud 
environments, most probably, submit the same type of 
jobs multiple times to be executed or served. 
Therefore, information of such users and their jobs 
can be collected by the provider they are dealing with 
and saved in log files. This work suggests creation of 
a Log File (LF) to help and support the decision of 
specifying the types of cloud users and their frequent 
jobs. So, the LF of the executed jobs contains 
statistical information about the jobs and their users. 
LF could be described as a list of records, one record 
for each job. The record is of the form: 
 

( ) ,  ,  ,  Job JobID JobType Date UserID  

 
When users submit their jobs to the cloud provider, 

UIC checks if there is a match between the upcoming 
jobs and an existing record in LF. If there is a match, 
the type of the job will be predicted in this stage 
according to the history of the user who submits this 
job. This work supposes that even when there is a 
match, it is up to the provider to specify the job type 
depending on this match and to the user history, or by 
considering some features that are related to the new 
job submitted. This is because the user may change the 
requirements associated with the job at the subsequent 
submission, which may lead to a wrong type prediction. 
If there is no match for the job in this stage, the next 
one will perform the job type prediction. 

Job Features Checker (JFC): If there is no available 
record in LF for the submitted job, the provider cannot 
depend on the job history when specifying the job type. 
Instead, the provider relies on some information 
associated with each job (which is obtained after profiling 
the job or given by the user) in the process of job type 
prediction. The features and or parameters associated with 
jobs and examined to help in job type prediction are: Total 
execution time of the job, Cycle Per Instruction (CPI), 
Memory Access Per Instruction (MPI), Size of the job and 
Bandwidth. JFC benefits from these values (which are 
listed in Table 1) to guess the type of the job. 
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Table 1. The features associated with each job which are used 
to predict the job type 

Parameter  Abbreviation 

Total execution time  ExT 
Cycle per instruction  CPI 
Memory access per instruction  MPI 
Size of the job  Size 
Bandwidth  BW 
 

This work proposes four algorithms to predict the 
users’ types considering the history of such users. The 
prediction depends on the type of the jobs submitted 
(either all jobs or last n jobs submitted by a specific user), 
the type of jobs submitted by the user within a past period 
of time, or depending on both. The algorithms are: 
 
i. All Submitted Jobs (allSJ) Algorithm: This algorithm 

predicts the user type depending on the type of all the 
jobs submitted by this user. 

 
Algorithm 1: Type of All Submitted Jobs (allSJ)  
Algorithm: allSJ  
 Input:  LF  
 Output:  User type  
 1   for each (Job.UserID) in LF do  
 2    switch (LF.JobType)  
 3     Case HPC: CounterHPC ++  
 4     Case DI: CounterDI ++  
 5     Case HPC-DI: CounterHPC-DI ++  
 6     Case Normal: CounterNormal ++  
 7    end switch  
 8   return (Type of the max counter)  
 
ii. Last n Submitted Jobs (lastnSJ) Algorithm: This 

algorithm predicts the user type depending on the type 
of the last n jobs submitted by this user. 

 
Algorithm 2: Type of Last n Submitted Jobs (lastnSJ)  
Algorithm: lastnJS  
 Input:  LF, nJOB  
 Output:  User type  
 1  JobCounter = 0;  
 2  Start checking with the last job submitted by 

a specific user  
 3  while (JobCounter < nJOB) or (LF has more 

jobs)  
 4 switch (Job.JobType)  
 5  Case HPC: CounterHPC ++  
 6  Case DI: CounterDI ++  
 7  Case HPC-DI: CounterHPC-DI ++  
 8  Case Normal: CounterNormal ++  
 9  end switch  
 10  JobCounter ++  
 11  Go to the previous job submitted by 

the same user  
 12  end while  
 13  return (Type of the max counter)  

iii. Submitted Jobs within a Period of Time (SJPT) 
Algorithm: This algorithm predicts the user type 
depending on the type of jobs submitted by the user 
within last n days. 

 
Algorithm 3: Submitted Jobs within a Period of Time 
(SJPT) 
Algorithm: SJPT  
 Input: LF, mDAY  
 Output: User type  
 1   StartDate = Current Date  
 2   EndDate = StartDate – mDAY  
 3   for each job belongs to the same user in LF do  
 4  If (Job.Date <= StartDate) and 

(Job.Date >= EndDate)  
 5  switch (Job.JobType)  
 6  Case HPC: CounterHPC ++  
 7  Case DI: CounterDI ++  
 8  Case HPC-DI: CounterHPC-DI 

++  
 9  Case Normal: CounterNormal 

++  
 10  end switch  
 11  end if  
 12  return (Type of the max counter)  
 
iv. Last n Submitted Jobs within a Period of Time 

(lastnSJPT) Algorithm: This algorithm predicts the 
user type based on both the type of the last n jobs 
submitted and the type of jobs submitted by the user 
within a past period of time. It is a hybrid from the 
lastnJS and the SJPT algorithms. 

 
Algorithm 4: Last n Submitted Jobs within Period of Time  
Algorithm: lastnSJPT  
 Input:  LF, nJOB, mDAY  
 Output:  User type  
 1  JobCounter = 0;  
 2  StartDate = Current Date  
 3  EndDate = StartDate – mDAY  
 4  Start checking with the last job submitted by 

a specific user while (JobCounter < nJOB) or 
(LF has more jobs)  

 6  If (Job.Date <= StartDate and Job.Date 
>= EndDate)  

 7  switch (Job.JobType)  
 8  Case HPC: CounterHPC ++  
 9  Case DI: CounterDI ++  
 10  Case HPC-DI: CounterHPC-DI 

++  
 11  Case Normal: CounterNormal 

++  
 12  end switch  
 13  JobCounter ++  
 14  Go to the previous job submitted by 

the same user  
 15  end if  
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 16  end while  
 17  return (Type of the max counter)  
 

To make accurate prediction of the user type, the 
cloud provider must perform a statistical analysis to 
choose the values of nJOB (which represents n jobs 
submitted by a specific user) and mDAY (which 
represents m days of jobs’ submission by a specific user) 
to be used in the four algorithms illustrated above. These 
values may vary over time depending on the users who 
are dealing with the provider and how they deal. 

In case of the absence of user’s history, the 
provider can predict the user type based on the 
requirements associated with the jobs. Equations 1 to 
4 are proposed to calculate the total requirements for 
all jobs of a user as below: 
 

1

Re
NoOfJobs

user i

i

qTime Time
=

= ∑  (1) 

 

1

NoOfJobs

user i

i

ReqMemory RAM
=

= ∑  (2) 

 

1

NoOfJobs

user i

i

ReqStorage Storage
=

= ∑  (3) 

 

1

NoOfJobs

user i

i

ReqBW BW
=

= ∑  (4) 

 
Equations 1 to 4 calculate the total values requested 

for time execution, memory, storage and bandwidth 
respectively, which are required to execute jobs of a 
specific user. The resulting values specify the total 
requirements for every user. 

By comparing these requirements with previous 
requirements (which stored and considered as 
benchmarks by provider), the user type can be predicted. 

In job type prediction process, this work assigns 
weights to the proposed checkers in the prediction phase. 
Equations 5 to 8 are proposed to be used in this study: 
 

( )
( ) ( )((

( )) )
( ) ( )) )((

1

2

3

*

*

*

HPC

ExT CPI

i i

MPI

i

Size BW

i i

HPC LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

≥ ≥

≥ +

< <

 (5) 

 

( )
( ) ( )((

( )) )
( ) ( )) )((

1

2

3

*

*

*

DI

ExT CPI

i i

MPI

i

Size BW

i i

DI LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

< <

≥ +

≥ ≥

 (6) 

( )
( ) ( )((

( )) )
( ) ( )) )((

1

2

3

*

*

*

BOTH

ExT CPI

i i

MPI

i

Size BW

i i

HPC - DI LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

≥ ≥

≥ +

≥ ≥

 (7) 

 

( )
( ) ( )((

( )) )
( ) ( )) )((

1

2

3

*

*

*

NORMAL

ExT CPI

i i

MPI

i

Size BW

i i

NORMAL LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

< <

< +

< <

 (8) 

 
Where: 
w1, w2 and w3 are weight values, such that: 
w1+w2+w3 = 1 
 

This work suggests that it is up to the cloud provider 

to assign the weight values. w1 is assigned to the history 

of the user who submits the job (if any), w2 is assigned 

to the values related to HPC jobs, which represents the 

total execution time, CPI and MPI. Usually, these values 

are high in HPC jobs. Finally, w3is assigned to the 

values related to DI jobs, which are job size and 

bandwidth. In general, these values are high in DI jobs. 
 
And: 
 

• 
1 

HPC

if  the history of  the user in LF is HPC
LF

0 otherwise


= 


 

• 
1 

DI

if  the history of  the user in LF is DI
LF

0 otherwise


= 


 

• 
1 

BOTH

if  the history of  the user in LF is HPC - DI
LF

0 otherwise


= 


 

• 
1 if 0HPC DI

NORMAL

LF LF
LF

0 otherwise

 = =
= 


 

• ExecTh: Thershold for job execution time 

• CpiTh: Threshold for CPI of the job 

• MpiTh: Threshokd for MPI of the job 

• SizeTh: Threshold for job size 

• BwTh: Threshold for the required bandwidth for the 
job 

 
These thresholds are chosen by examining real 

workload trace. A histogram is sketched for each one 
of the above five parameters to select the proper 
thresholds. Based on these histograms, two methods 
are used: The average and median. Figure 3 is an 
example of the histogram sketched for selecting CPI 
threshold for 100 jobs. 
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Fig. 3. Selecting CPI threshold for set of jobs 

 
The job type is selected according to the maximum 

value from Equation 1 to 4. If two or more values are 
equal (ambiguity state), the type in the LF is the 
dominant. In case of no information about the user in the 
LF, then there is no weight to the history of this job. The 
weight of the user’s history is considered zero and 
Equation 5 to 8 rewritten as in the Equation 9 to 12: 
 

( )((
( ) ( )) )
( ) ( )) )((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

HPC job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

= ≥

≥ ≥ +

< <

 (9) 

 

( )((
( ) ( )) )
( ) ( )) )((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

DI job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

= ≥

< < +

≥ ≥

 (10) 

 

( )((
( ) ( )) )
( ) ( )) )((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

HPC DI job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

− = ≥

≥ ≥ +

≥ ≥

 (11) 

 

( )((
( ) ( )) )
( ) ( )) )((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

NORMAL job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

= <

< < +

< <

 (12) 

 
If two or more values are equal and there is history 

for the user that submit the job, the requirement 
associated with the job can help in job type prediction 
(as in Equation 1 to 4). 

The SLA Phase 

In this phase, an agreement about the offered services 
between the user and the cloud provider is achieved. 

SLA is a legal contract between participants (user and 
the cloud provider) to ensure that the QoS requirements 
of the users are met. If any party violates the SLA terms, 
the defaulter has to pay a penalty or do legal actions 
according to the clauses defined in this SLA (Wu and 
Buyya, 2011; Moustafa, 2015). In this study, the SLA 
phase decides whether the provider can execute the 
user’s job or not depending on the job requirements and 
the available resources. If the provider is not able to 
execute the job with the required QoS (deadline and 
budget), user will be informed in this phase. Otherwise, 
the job will pass to the mapping phase. The form for the 
SLA contract between the user and the provider is 
presented in Table 2. 

Mapping Phase 

After specifying the types of jobs for all users and the 
SLA between the users and the providers is confirmed, 
this phase is concerned with selecting the best data 
center to serve the jobs (mapping jobs to a data center). 
The selected data center is the one that consumes the 
minimum amount of power when executing the users’ 
jobs. The global scheduler interacts with the local 
schedulers of each data center to execute the jobs 
submitted to it. The CPU availability at particular times 
in the future and all information about the free time slots 
are available to the global scheduler based on the 
information provided by the local schedulers. The global 
scheduler receives the detailed information periodically 
from each cloud data center. These information includes 
the available resources and some other values like the 
amount of the consumed power resulted when executing 
the jobs on the available resources of the data center. 

In the mapping phase, the provider maps the jobs to a 
specific cloud site based on the information provided by 
the local schedulers. The mapping process must consider 
the SLA constraints. At the selected cloud site, the local 
scheduler will perform the jobs scheduling based on the 
proposed MTP strategy. 

The Data Center Model 

In addition to the global scheduler. The cloud 
provider has a number of data centers. Each data center 
consists of n heterogeneous PMs refer to Fig. 4. Each 
PMi is equipped with multicore processors and 
characterized by the configuration shown below: 
 

( ), , , ,i PM MP PM PM PMPM PE Speed Storage RAM BW  

 
Where: 
PEPM = Number of PEs in PMi 
SpeedPM = Speed of each PE in PMi 
StoragePM = Size of the storage in PMi 
RAMPM = RAM size in PMi 
BWPM = Bandwidth in PMi 
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Fig. 4. The data center model 

 
Table 2. The main items in a SLA contract 

Item Details 

Job execution time Specify the estimation of the total execution time. 
Job execution fees Specify the total fees the user should pay to the provider as a result for executing the user’s job. 
Violation Typically a reduction in the fees that the user has to pay to the provider, plus some additional 
 compensation and a corrective action plan. Usually, such fees reduction and compensation vary 
 depending on the Number of Violations (NoV).  

 

Each PM consists of one or more VMs. The VM 
configuration is shown below: 
 

( ), , , ,i VM VP V M VM VMVM peNumber Speed Storage RAM BW  

 
Where: 
peNumberVM = Number of PEs in VMi 
SpeedVM = Speed of each PE in VMi 
StorageVM = Size of the storage in VMi 
RAMVM = RAM size in VMi 
BWVM = Bandwidth in VMi 
 

Based on the model presented in (Beloglazov, 2013), 

each data center has a local scheduler, which performs 

the scheduling process for all jobs received by the data 

center. In addition, the data center has a local manager 

(resides on each PM) and a global manager (maintains 

the overall system’s resource utilization of a set of PMs 

by interacting with their local managers). 

The Proposed Model 

In cloud computing service models, different users 

submit their jobs to the cloud provider to be executed by 

some heterogeneous VMs. Each job will be mapped to a 

VM which satisfies its requirements. The mapping 

process requires an efficient strategy for allocating 

resources (heterogeneous CPU, storage, memory and 

network bandwidth) needed to execute a huge number 

of jobs. The resource allocation problem is NP-hard 

(Zhang et al., 2014a; Duan et al., 2007). 

The problem even becomes more challenging when 
trying to effectively schedule many jobs in distributed, 
heterogeneous and virtualized cloud systems. So, this 
work proposes a model presented in the next sections to 
solve this problem. 

Model Representation 

The proposed system, S, can be modeled as four-
tuple (D, PM, VM, J), such that: 
 

• D is a set of data centers, each element Dd∈D 
represents a single data center in the system 

• PM is a set of physical machines in the data center; 

PMpm,d∈PM each element represents a single PMpm 
in Dd 

• VM is a set of virtual machines associated with 
physical machines in the data center; each element 

VMvm,pmd∈VM represents a single VMvm on single in 
data center Dd 

• J is a set of jobs; each element jobj∈J represents a 
single job 

 

Multi Objective Function 

This paper proposes a multi-objective optimization 
scheduling algorithm, which aims to minimize the 
energy consumption, while maintaining the SLA 
specifications. 

The power consumed by PMs in data centers usually 
determined by the CPU, disk storage, memory, network 
interfaces (Beloglazov et al., 2012). Among these 
components, the CPU consumes the most amount of 



Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127 

DOI: 10.3844/jcssp.2016.113.127 

 

121 

energy. So, in this study, only the energy consumed by 
the CPU is considered. However, the consumption of the 
other components becomes very costly as a result of 
establishing numerous data centers round the world. 
Each data center contains thousands of PMs composed 
of these components. Equation 13 is used to find the 
total power of each PM: 
 

P

i CPU Memory StoragePM P P P= + +  (13) 

 
Where: 
PCPU = The power consumed by the CPU 
PMemory = The power consumed by the memory 
PStorage = The power consumed by the storage disk 
 

The power consumption model of the CPU, which is 
generally composed of CMOS circuits, is the sum of 
both the CPU static power (PCPU-static) and the CPU 
dynamic power (PCPU_dynamic). Equation (14) is used to 
compute the power consumed by the CPU (Brooks et al., 
2000; Elnozahy et al., 2003; Chaudhry et al., 2015): 
 

CPU CPU Dynamic CPU StaticP P P− −= +  (14) 

 
where, (PCPU-Static) is a constan t, say ω and (PCPU-

Dynamic) as in (15): 
 

2

CPU DynamicP ACV f− =  (15) 

 
Where: 
A = An activity factor that accounts how frequency 

gates switch 
C = The total capacitance at the gate outputs 
V = The voltage of the CPU and f is the operating 

frequency 
 

Voltage V can be expressed as a linear function in 
frequency, V = af, such that a is constant. All constants 
(ω, A and C) can be combined together in a constant, 

sayβ. So, Equation 14 that compute power consumption 
model of CPU can be written in (16): 
 

3

CPU
P fβ=  (16) 

 
Frequency f is the only variable value in (16). Thus, 

DVFS technique is considered in this study, which 
usually results in a linear power-to-frequency 
relationship for a data center. DVFS modulates a 
processor’s clock frequency and supply voltage in 
lockstep as programs execute. The premise is that a 
processor’s workloads vary according to job 
requirements. When the processor has less work, it can 
be slowed down without affecting performance 
adversely. The architecture of the CPU supports different 

frequencies, so when the type of job is DI, this work 
minimizes the CPU frequency to a minimum level. 

The PMs on/off switching technique is also 
considered in this study. In general, idle PM consumes 
approximately 70% of the power consumed when this 
PM running at the full CPU speed (Beloglazov, 2013). 
This fact justifies the technique of switching idle servers 
off to reduce the total power consumption. 

Let n represents the total number of jobs, the total 
power consumption for executing these jobs (Tenergy) can 
be measured using Equation 17: 
 

1
*

n p

energy i ii
T x PM

=
=∑  (17) 

 
Where: 
xi = Equal to 0 if the machine 
PMi = Off and equal to 1 if it is on.  
 

So, the main objective of the proposed system is to 
minimize the value of Tenergy. 

In addition to the total consumed energy, an 
important value to be measured is the total execution 
time of the set of all jobs (Ttime). The execution time for 
any job is the sum of its data stage in and stage out, 
adding to the actual time needed to execute the job. 

The execution time , ,vm pm d

i
ExT can be calculated using 

Equation 18: 
 

, ,
l

vm pm d i i i
i

vm i vm

InputSize job OutputSize
ExT

BW f BW

     
= + +     
     

 (18) 

 
Where: 

l

i
job  = Length of jobi in term of millions of 

instructions 
InputSizei = Input size of jobi 
OutputSizei = Output size of jobi 
fi = The frequency of the core when 

executing jobi 
 

So, the time needed to execute all jobs is calculated 
using (19): 
 

, ,

1

n vm pm d

i
Ttime ExT

=
=∑  (19) 

 

In fact, Ttime is not the total time of executing all jobs 

because jobs are executing in parallel. The maximum 

finish time among all jobs in any workload (makespan) 

is the actual finish time of jobs’ execution. It is an 

important value to be measured. This value reflects the 

accuracy of the jobs to VMs allocation process from the 

execution time point of view. Usually, minimizing the 

makespan value leads to minimizing Ttime. Makespan can 

be measured as in (20): 
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{ }, , |vm pm d

iMakespan max FT i J= ∀ ∈  (20) 

 

where, , ,vm pm d

i
FT  is the finish time when executing jobi by 

VMvm. 
Another important value to be calculated is the total 

cost for executing the set of jobs (Tcost), which can be 
measured using (21): 
 

, , , ,

1
*

n vm pm d vm pm d

i ii
T C ExT

=
=∑cost  (21) 

 
Where: 

, ,vm pm d

i
C  = The cost of executing jobi per unit time using 

the resources of VMv hosted in PMp in Dd 
 

The objectives of the proposed system are to 
minimize the values of consumed power, time and cost 
which is expressed in (17), (20) and (21) respectively. 

The new allocation strategy (suggested in this study) 
to allocate jobs to VMs is discussed in the next section. 

VM Allocation and VM Placement Strategy 

In cloud computing environments, cloud users are 
served by providing VMs to execute their jobs. Cloud 
providers provide such services. 

Cloud services can be delivered in the following 
sequence: 
 
• A cloud user submits the job (or set of jobs) to a 

cloud provider 

• A cloud provider analyzes the submitted jobs and 
predicts their types and requirements 

• According to the job requirements, the provider 
performs the VM provisioning to user’s job (i.e., 
VM allocation) using best fit algorithm. Two main 
policies for the VMs to jobs allocation in cloud 
computing environments (Calheiros et al., 2011) can 
be used 

• Space-shared policy: The result is a VM with one or 
more cores 

• Time-shared policy: The result is a core that holds 
two or more VMs 

 

Every job is allocated to a VM with specific 

frequency. Since the CPU architecture supports different 

frequencies for the same CPU, it is possible to scale the 

frequency of the CPU cores up or down using DVFS 

technology. In the proposed work, when DI jobs are 

allocated to VMs in a space shared policy, the core 

frequency is minimized to a minimum frequency level if 

this will not affect the job’s QoS requirements. This 

leads to better energy efficiency due to the cubic relation 

existing between energy and frequency as illustrated in 

(16). Usually, DI jobs do not need to utilize the 

maximum frequency of the compute power resources. 

Instead, they utilize storage and bandwidth resources. 

 
 
Fig. 5. User’s job life cycle 
 

After VM provisioning, the provider performs the 
VM placement, which is the process of placing the VM 
on the proper PM. The VM placement process is 
implemented using the MCKP model (Pisinger, 1995). 
Knapsacks in this case represent the PMs of the data 
center. The aim is hosting the requested VMs on the 
minimum possible number of knapsacks. To note, the 
Job type is the essential factor in this placement. In this 
study, two VMs which belong to the same type of jobs 
are not placed on the same PM. This leads to further 
minimizing the number of switched-on PMs which is 
guaranteed by KP. However, when there is no available 
PM for combining VMs of different types of jobs, the 
classical KP algorithm is used to place the VMs. 

The above sequence represents the job life cycle as 
illustrated in Fig. 5. 

Performance Analysis 

This section presents the evaluation of the proposed 
model. The CloudSim simulator, which is an extensible 
simulation toolkit that enables modeling and simulation 
of cloud computing systems and application 
provisioning environments, is used. The CloudSim 
supports both system and behavior modeling of cloud 
system components such as data centers, PMs, VMs 
and resource provisioning policies (Calheiros et al., 
2011). A real workload trace to simulate the cloud 
computing environment is used. The jobs information 
is based on real data provided by (Google, 2015). The 
Google workload traces are collected from large cloud 
systems (about 12,500 compute nodes over 29 days). 
The traces consist of different types of jobs. Real 
workload traces can provide a very high level of 
realism when used directly in performance evaluation 
experiments. More details about this data are available 
in (Reiss and Wilkes, 2013). 
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Table 3. VM instance types in M3 family offered by Amazon 

VM type CPU Clock vCPU Memory BW 

M3.meduim Intel Xeon E5-2670 v2 processors 2500 1 3750 Moderate 
M3.large Intel Xeon E5-2670 v2 processors 2500 2 7500 Moderate 
M3.xlarge Intel Xeon E5-2670 v2 processors 2500 3 15000 High 
M3.2xlarge Intel Xeon E5-2670 v2 processors 2500 4 30000 High 

 

Three parameters are applied in the experiments: 
Number of PMs, number of VMs, number of jobs in 
the workload. The PMs and VMs configurations are as 
those provided by Amazon cloud data centers 
(Amazon, 2015). Table 3 illustrates the VMs instance 
types, called M3, offered by Amazon and used in the 
experiments in this study. 

Results 

Extensive experiments are carried out and repeated 
ten times for different number of jobs. Then, the results 
are compared with some strategies from the literature, 
e.g., Round Robin (RR) and Genetic Algorithm (GA). 
The results show that the proposed strategy outperforms 
both RR and GA as detailed in the next sections. 

Energy Consumption 

The evaluation in this section is based on the total 
consumed energy as a measurement. The experiments 
are done and repeated 10 times for different numbers of 
PMs, VMs and jobs. 

In this study, the sets of jobs which are tested consist 
of 50, 200, 400, 600, 800 and 1000 jobs. To evaluate the 
proposed MTP strategy, a comparison with many 
classical job scheduling and placement strategies (e.g., 
Round Robin (RR) and Genetic Algorithm (GA)) are 
done. GA is a general purpose optimization technique 
inspired by the biological evolution. The initial 
population is produced randomly in the experiment. 
Then, it evolves to better approximate solutions from 
generation to generation iteratively (The number of 
iterations is set to 100) based on a specific fitness 
function (the consumed power in the experiment). The 
individual VMs cross by the genetic operators and 
combine in PMs. Each new population represents a new 
solution of VMs to PMs placement. Similar work can be 
found in (Dong et al., 2014). 

In RR, VMs are placed and distributed to PMs in the 
data center sequentially in a circular manner, like the one 
in Eucalyptus, which is an open source software for 
building private and hybrid clouds (Eucalyptus, 2015). 

The comparison of the proposed algorithm with the 
GA and RR approaches in terms of the total consumed 
energy resulting from executing different number of jobs 
is presented in Fig. 6. 

The energy consumption of each set of jobs increased 
as the number of jobs increased. This is because the total 
execution time of a job will increase as more jobs are 
submitted. Within the same set of jobs and from energy 

efficiency perspective, MTP outperforms both GA and 
RR as illustrated in Fig. 6. MTP is better in enhancing 
energy efficiency because it involves minimum number 
of PMs in executing the set of jobs (as shown in Fig. 
10). Minimizing the number of involved PMs is the 
main factor in enhancing the energy efficiency in cloud 
data centers, because even the completely idle PMs 
consume about 70% of their peak power. Another 
reason is that the resources of the involved PMs using 
MTP are better utilized than when using RR and GA 
(as shown in Fig. 7). 

Total Execution Time 

The total time required to execute different numbers 
of jobs using RR, GA and MTP is listed in Fig. 8. 

In most scenarios, the total time required to execute 

users’ jobs using MTP is more than the time of using RR 

and GA. This is because the VM to PM placement 

process in MTP spends time searching the best PM to 

place VM on it. The best PM is the PM that is already 

switched on and also hosts a VM allocated for a job of 

different type from the job served by the VM to be 

placed on it. Forcing jobs to be executed in minimum 

number of PMs will increase the turnaround time of 

these jobs. Consequently, the jobs’ total execution time 

(makespan) will increase. 
In GA, VMs are crossed and combined on PMs 

according to genetic operators. So, no time to spend in 
searching for specific PMs before the process of VM 
placement as in MTP. In RR, VMs are placed on PMs 
sequentially in a circular manner. No time to spend 
neither in cross and combine operations as in GA, nor in 
searching for specific PMs before the process of VM 
placement as in MTP. So, the total time for jobs 
execution is better in RR. 

Cost 

The experiments related to cost depend on real cost 

values offered by Amazon (2015). The cost per hour 

values are illustrated in Table 4. 
As illustrated in Fig. 9, the tests show that the 

proposed MTP outperforms RR and GA from the cost 
perspective. The reason is that MTP utilizes the 
minimum resources that meet the QoS requirements and 
execute users’ jobs. 

MTP do not involve any VM with resources that 
exceed the actual jobs’ requirements which, in turn, 
avoids users from paying any extra costs. 
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Fig. 6. Consumed power when executing different number of jobs 

 

 
 
Fig. 7. Total utilization when executing different number of jobs 
 

 
 
Fig. 8. Total execution time resulting from executing different 

number of jobs 
 

Impact of Using MTP 

The proposed MTP has some impacts which are 
detailed in the next sections. 

Impact on the Number of Active PMs 

The proposed MTP strategy results in the minimum 
possible number of active PMs that are able to execute the 
total jobs compared to RR and GA. This outcome is due to 
the combination of high compute intensive jobs with data 
intensive jobs in the same PM, as the high compute 
intensive job mostly relies on the CPU performance, 
whereas the data intensive job utilizes disk storage. 

 
 
Fig. 9. Costs of executing different number of jobs 

 

 
 
Fig. 10. Number of PMs needed when executing different sets 

of jobs using MTP, GA and RR 

 
Table 4. The cost prices offered by Amazon for VM types in 

M3 family 

VM type  Cost/h Linux 

M3.meduim  $ 0.07  
M3.large  $ 0.14  
M3.xlarge  $ 0.28  
M3.2xlarge  $ 0.56  

 

The MTP strategy forces the scheduler to combine 

the VMs allocated to different types of jobs on the same 

PM. There is no exception unless if there is an SLA 

violation, or there is no available resources in an active 

PM to serve the VM. 
Figure 10 illustrates the differences in the number of 

active PMs using RR, GA and MTP for different number 
of jobs. The reason is that the compute and storage 
resources of each PM is utilized in an optimal way. Such 
utilization prevent the idle state for the resources (which 
is not guaranteed in GA and RR). In turn, the total 
number of switches on PMs needed to execute each set 
of jobs is minimized. 

Impact with DVFS on the Type of Job 

Since the CPU architecture supports different 
frequencies, the proposed algorithm minimizes the 
CPU frequency to a minimum level      
unconditionally when the type of job is data intensive. 
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Table 5. The resulted energy consumption when executing 
different number of jobs using MTP strategy with and 
without frequency scaling 

 MTP without DVFS MTP with DVFS 
No of jobs Energy W/h Energy W/h 

200 820205 783161 
400 1622788 1468543 
600 2218623 2174261 
800 3291324 2976292 
1000 4080028 3927554 

 

This does not affect the system performance and at the 
same time reduces the power consumption by an 
acceptable percentage. The percentage value differ 
from workload to another depending on the number of 
data intensive jobs it contains. Table 5 shows the 
reduction in power consumption when applying the 
frequency scale down to MTP strategy in executing 
different number of jobs. 

Conclusion 

In this study, a model that identifies common patterns 
for the jobs submitted to the cloud is presented. This 
model predicts the type of the job submitted; and 
accordingly, the set of users’ jobs is classified into four 
subsets. Each subset contains jobs that have similar 
requirements. In addition to the jobs’ common pattern 
and requirements, the users’ history is considered in the 
jobs’ type prediction model. The goal of job 
classification is to find a way to propose useful strategy 
that helps to improve power efficiency. Following the 
process of jobs’ classification, a new VM placement 
strategy, called Mixed Types Placement (MTP), is 
proposed. Its core idea is to place the VMs of the jobs of 
different types in the same PM. The evaluation of MTP 
shows promising results in reducing the total energy 
consumed in the cloud data centers. The reduction in the 
consumed energy using MTP results in minimizing the 
number of PMs involved in executing users’ jobs and the 
resources of the involved PMs are utilized optimally. 

As a future work, we are working to subdivide the 
HPC and DI subsets based on new features and rely 
on the new sub-subsets in the process of VM 
placement. The HPC subset is divided into two main 
categories: CPU intensive and Memory intensive. 
Similarly, the DI subset is divided into two main 
categories: Hard disk intensive and Bandwidth 
intensive. Moreover, the VM management 
approaches, such as VM migration and consolidation, 
will be applied to the proposed model to make it more 
integral to work in cloud computing paradigm. 
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