

© 2016 Auday Al-Dulaimy, Ahmed Zekri, Wassim Itani and Rached Zantout. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Towards Solving the Problem of Virtual Machine Placement

in Cloud Computing: A Job Classification Approach

1
Auday Al-Dulaimy,

2
Ahmed Zekri,

3
Wassim Itani and

4
Rached Zantout

1Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon
2Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon,

On leave from the Department of Mathematics and Computer Science, Alexandria University, Alexandria, Egypt
3Department of Electrical and Computer Engineering, Beirut Arab University, Beirut, Lebanon
4Department of Electrical and Computer Engineering, Rafic Hariri University, Beirut, Lebanon

Article history

Received: 02-12-2015
Revised: 23-03-2016
Accepted: 02-04-2016

Corresponding Author:
Auday Al-Dulaimy
Department of Mathematics and
Computer Science, Beirut Arab
University, Beirut, Lebanon
Email:
auday.aldulaimy@gmail.com
a.aldulaimy@student.bau.edu.lb

Abstract: Cloud Computing is a paradigm that delivers services by
providing an access to wide range of shared resources which are hosted in
cloud data centers. One of the recent challenges in this paradigm is to
enhance the energy efficiency in these data centers. In this study, a model that
identifies common patterns for the jobs submitted to the cloud is proposed.
This model is able to predict the type of the job submitted and accordingly,
the set of users’ jobs is classified into four subsets. Each subset contains jobs
that have similar requirements. In addition to the jobs’ common pattern and
requirements, the users’ history is considered in the jobs’ type prediction
model. The goal of job classification is to find a way to propose useful
strategy that helps to improve power efficiency. Based on the process of jobs’
classification, the best fit virtual machine is allocated to each job. Then, the
virtual machines are placed on the physical machines according to a novel
strategy, called Mixed Type Placement strategy. The core idea of the
proposed strategy is to place virtual machines of the jobs of different types in
the same physical machine whenever possible. The placement process is
based on Multi Choice Knapsack Problem which is a generalization of the
classical Knapsack Problem. This is because different types of jobs do not
intensively use the same compute or storage resources in the physical
machine. This strategy minimizes the number of active physical machines
which, in turn, leads to major reduction in the total energy consumption in the
data center. The total execution time and the cost of executing the jobs
submitted are considered in the placement process. To evaluate the
performance of the proposed strategy, the CloudSim simulator is used with a
real workload trace to simulate the cloud computing environment. The results
show that the proposed strategy outperform both Genetic Algorithm and
Round Robin from energy efficiency perspective.

Keywords: Cloud Computing, Data Center, Virtualization Management,
Energy Efficiency

Introduction

With the rapid growth in the cloud computing model,

the reduction in the total energy consumed by the cloud

data centers has become essential. This reduction can be

achieved by observing how the power is delivered to

computing resources and how these resources are

utilized to serve the jobs which request these services.
The continuous growth in the cloud computing

model poses a challenge for existing works to enhance
the energy efficiency in cloud data centers. Hence, the

need for improving the existing resource allocation and
management algorithms in cloud data centers and
proposing new ones is highly recommended. In this
study, a new model is suggested to predict the job type
in the workload based on common behaviors and
patterns of the job. If there is a history for the user who
submits the job to the cloud, it will also be considered
in predicting the job type. If not, the job requirements
are the parameters which are considered in the
classification process. According to the job type, the
best fit Virtual Machine (VM) is allocated to job. Then,

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

114

VMs are placed to the Physical Machines (PMs)
considering that no VMs of the same type of jobs will
consolidate on the same PM relying on the Knapsack
Problem (KP). High Performance Computing (HPC)
jobs can be effectively combined with Data Intensive
(DI) jobs on the same PM. HPC jobs mostly request
compute resources, whereas DI jobs request storage
and network bandwidth resources. In other words, HPC
jobs and DI jobs do not intensively use the same
resources. This can potentially lead to more efficient
resource provisioning and reduction in the number of
switched-on PMs and, consequently, higher energy
efficiency. If there is no available PM for combining
VMs of different types of jobs, then the KP algorithm
to place the VMs is used. To note, Knapsack is not the
only possible way for solving the VM placement
problem, there are other methods, for example the bin
packing algorithm used in (Beloglazov, 2013). KP is
used in this study because it has different variants;
one of them is called the Multi Choice Knapsack
Problem (MCKP). It is used when the items should be
chosen from different sets to be combined in one
knapsack (Pisinger, 1995). This suits the proposed
model of combining two VMs from two different sets
into the same PM.

Thus, reducing energy consumption can be achieved
through two situations addressed in this study.

First situation: Minimizing the number of switched-

on PMs by combining the VMs of different kind of

users’ jobs and placing them on the same PM. Second:

Minimizing the CPU frequency as much as possible for

the VMs of the DI jobs using the Dynamic Voltage

Frequency Scaling (DVFS) technology. To note,

minimizing frequency is a very crucial issue. Minimizing

frequency is done only when the VM of the DI job

works in space-shared policy to prevent any effect on the

other VMs hosted on the same PM. In addition,

minimizing frequency must not violate the DI job’s

Quality of Service (QoS).
This work assumes that: Upcoming jobs are

organized as Bag-of-Tasks (BoT) where jobs are
independent and they can be executed in any order and
one VM is allocated to each job.

This work tackles the problem of high consumed
power in cloud data centers by proposing the following
key contributions:

• An online job classification model, which divides

the workload into subsets. Each subset utilizes

different kind of resources. This can potentially lead

to more efficient resource provisioning and reduce

the number of switched-on PMs which, in turn,

results in higher energy efficiency

• A Near-optimal energy-efficient scheduling algorithm

in heterogeneous virtualized cloud data centers

The rest of this paper is organized as follows. The
next section presents the related work. Section 2 is a
background to the concept of virtualization. Section 3
describes the components of the system model proposed
to submit users’ jobs to the cloud. It explains how these
jobs are classified. In section 4, the details of the
proposed model and the idea of the new proposed Mixed
Type Placement (MTP) strategy are described.
Experimental results are discussed and analyzed in
section 5. Finally, conclusions listed in section 6.

Related Work

Many works tried to improve the power efficiency
in data centers. The authors in (Horvath et al., 2007;
Wang and Lu, 2008; Wang et al., 2009; Li et al., 2011)
used DVFS techniques to save energy. Some works like
the one presented in (Lawson and Smirni, 2005)
dynamically adjust the number of CPUs in a cluster to
operate in ‘‘sleep’’ mode when the utilization is low,
others like in (Lang and Patel, 2010; Heo et al., 2011;
Chakravarty and Sinha, 2013) switch the PMs from on to
off. Bradley et al. (2003; Guenter et al., 2011;
Bobroff et al., 2007), the authors statistically analyze the
workload data and examine how to minimize the power
consumption using workload history. The studies in
(Garg et al., 2011; Tesauro et al., 2007; Zhang et al.,
2014a) optimized multiple aspects of data center
behavior such as consumed power, service cost and the
overall performance. The authors in (Chase et al., 2001)
proposed a cost approach to manage shared server
resources such that the service requests for these resources
are represented as a function taking into account the
energy consumption. The authors in (Burge et al., 2007)
scheduled tasks to heterogeneous machines according to
the energy costs of each one to maximize the profit. In
(Deore and Patil, 2013), the research argued energy-
efficient job scheduling and allocation scheme to
minimize the number of switched-on PMs, so the
amount of consumed power can be reduced. The thesis
in (Feller, 2013) focused on the IaaS cloud service model
whose goal is to offer a computing infrastructure by
provisioning VMs on-demand. The thesis presented in
(Beloglazov, 2013), presented some algorithms for
distributed dynamic consolidation of VMs in virtualized
cloud data centers. The VM placement strategy used in
this thesis is based on bin packing algorithm.

Various optimization methods such as, Ant Colony
Optimization (ACO) (Gao et al., 2013), Particle Swarm
Optimization (PSO) (Zhang et al., 2014b) and Genetic
Algorithms (GA) (Portaluri et al., 2014; Dong et al.,
2014) were proposed to do the process of VM placement
aiming to reduce energy consumption in data centers.

However, to the best of our knowledge, no work from
the literature investigate the effects of combining different
types of jobs on the same PM on energy efficiency.

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

115

Background

This section presents a background on the
virtualization concept.

Virtualization

Virtualization is creating a virtual version of
something (e.g., operating system, CPU, storage device,
or network device). A single PM, which is the real
hardware, can host one or more VM. A VM is a piece of
software running on PM that emulates the properties of a
separated PM.

Supplementary, the concept of virtualization breaks

the traditional model of the PM that host a single

Operating System (OS). It creates several VMs which

are hosted on one PM, each VM may have its own OS.

This concept is organized using hypervisor technology.

A hypervisor (Josyula et al., 2011), also called Virtual

Machine Manager (VMM), is a software that controls all

PM resources, allocate resources needed by each

operating system, monitors the utilization of the

resources in turn and makes sure that the guest operating

systems of the VMs cannot disrupt each other. Figure 1

illustrates the virtualization architecture.

VM Management

VM Management (Josyula et al., 2011) is the process

of coordinated provisioning of the virtualized resources,

as well as the runtime of such provisioning. This feature

includes the mapping of the virtual resources to the

physical ones and also overall management capabilities

such as capacity, billing and Service Level Agreement

(SLA) contract.

An important issue in VM management is the VM

migration process, which is the process of transferring a

VM from source to destination PM. Basically there are

two kinds of VM migrations: Live and offline.

Fig. 1. Virtualization architecture

System Components

The proposed system is based on the Cloud
computing environment paradigm, whereby Cloud users
are able to request the services offered by the Cloud
providers to execute their jobs. Indeed, this proposed
system consists of two main components: A cloud user
and a cloud provider, as shown in Fig. 2.

The cloud provider has an essential node called global
scheduler. This node acts as an interface between users
and the cloud infrastructure. It profiles and analyzes the
service requirements of the submitted jobs and decides
whether to accept or reject them based on the availability
of resources. It selects the data center that execute the jobs
such that the power consumption can be reduced, while
the QoS requirements of the submitted jobs are met. As
data centers are located in different geographical regions,
they have different energy costs depending on regional
constraints. Each data center is responsible for updating
this information to the global scheduler in order to achieve
an energy-efficient scheduling.

The two components, Cloud user and Cloud provider,
are discussed in details below.

Cloud User

The cloud user submits the job (or set of jobs) to the
cloud provider to be executed. Job can be defined as a
task that is executed by the resources of the cloud data
center, typically with an implied QoS requirement. A Job
can be considered as a finer abstraction of an application
service being hosted in the VM. This work proposes a
job submission model as shown below:

()
i

job QoS

QoS includes the deadline and budget for the user jobs:

• DLi: The deadline of jobi

• Bi: The maximum budget of jobi

Fig. 2. System architectural components

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

116

Cloud users can submit their jobs (code and data)
to be executed and manipulated in a specific cloud
data centers. The job submission process is done via
cloud provider.

Cloud Provider

Cloud provider component includes two models:
global scheduler and data center (s). The function of this
component is to receive the users’ jobs, execute them on
a specific data center and then send back the result of the
jobs execution to their users.

Global Scheduler Model

The cloud provider has an essential node called the
global scheduler. This node receives the users’ jobs and
profiles them. The profile process contains sufficient
information about the jobs. This information is very
useful in executing these jobs. Global scheduler model
operates in three main phases: Prediction phase, SLA
phase and mapping phase.

Profiling and Prediction Phase

This phase is in charge of profiling users’ jobs and
deciding their types before the VM allocation process.
Four types of jobs result from this phase: High
Performance Computing (HPC), Data Intensive (DI),
High Performance Computing and Data Intensive (HPC-
DI) and Normal.

Firstly, Job profiling results in the following
infrastructure required to execute the jobs within their
QoS requirements:

(), , , ,user user user user userpeNumber Time Storage RAM BW

Where:
PeNemberUser = Number of Process Elements (PEs)

needed by jobi. Also known as cores
TimeUser = Required execution time for jobi when

using PeNemberUser
StorageUser = Storage size needed by jobi
RAMUser = RAM size needed by jobi
BWUser = Bandwidth needed by jobi

However, in reality, accurate job requirements such as
execution time are not readily available in cloud
environments. It is possible to examine and anticipate such
requirements by executing part of the code. Many studies
assumes that execution time with specific processing
elements is a known quantity or estimated by the cloud user
(Garg et al., 2011; Lee, 2012). To estimate the job
execution time, four major solutions were proposed:

• Code analysis (Nudd et al., 2000; Reistad and

Gifford, 1994)

• Analytic benchmarking/code profiling (Yang et al.,
1993)

• Historical/Statistical prediction (Sanjay and
Vadhiyar, 2008; Iverson et al., 1996)

• Empirical analysis (Berman et al., 2005)

Using these solutions, or by executing part of the
code, other information related to user jobs can be
obtained. In addition, there exists many studies which
proposed models to estimate specific parameters (e.g.,
Cycle Per Instruction (CPI) (Chen and John, 2011;
Intel Corporation, 2008), Memory Access Per Instruction
(MPI) (Zhang and Chang, 2014) and estimated
bandwidth (Zhu et al., 2012).

After profiling, this phase utilizes a mix of statistical
information and some input features for the jobs to
predict the job type. This is done in two stages:

User Id Checker (UIC): The users in cloud
environments, most probably, submit the same type of
jobs multiple times to be executed or served.
Therefore, information of such users and their jobs
can be collected by the provider they are dealing with
and saved in log files. This work suggests creation of
a Log File (LF) to help and support the decision of
specifying the types of cloud users and their frequent
jobs. So, the LF of the executed jobs contains
statistical information about the jobs and their users.
LF could be described as a list of records, one record
for each job. The record is of the form:

() , , , Job JobID JobType Date UserID

When users submit their jobs to the cloud provider,

UIC checks if there is a match between the upcoming
jobs and an existing record in LF. If there is a match,
the type of the job will be predicted in this stage
according to the history of the user who submits this
job. This work supposes that even when there is a
match, it is up to the provider to specify the job type
depending on this match and to the user history, or by
considering some features that are related to the new
job submitted. This is because the user may change the
requirements associated with the job at the subsequent
submission, which may lead to a wrong type prediction.
If there is no match for the job in this stage, the next
one will perform the job type prediction.

Job Features Checker (JFC): If there is no available
record in LF for the submitted job, the provider cannot
depend on the job history when specifying the job type.
Instead, the provider relies on some information
associated with each job (which is obtained after profiling
the job or given by the user) in the process of job type
prediction. The features and or parameters associated with
jobs and examined to help in job type prediction are: Total
execution time of the job, Cycle Per Instruction (CPI),
Memory Access Per Instruction (MPI), Size of the job and
Bandwidth. JFC benefits from these values (which are
listed in Table 1) to guess the type of the job.

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

117

Table 1. The features associated with each job which are used
to predict the job type

Parameter Abbreviation

Total execution time ExT
Cycle per instruction CPI
Memory access per instruction MPI
Size of the job Size
Bandwidth BW

This work proposes four algorithms to predict the
users’ types considering the history of such users. The
prediction depends on the type of the jobs submitted
(either all jobs or last n jobs submitted by a specific user),
the type of jobs submitted by the user within a past period
of time, or depending on both. The algorithms are:

i. All Submitted Jobs (allSJ) Algorithm: This algorithm

predicts the user type depending on the type of all the
jobs submitted by this user.

Algorithm 1: Type of All Submitted Jobs (allSJ)
Algorithm: allSJ
 Input: LF
 Output: User type
 1 for each (Job.UserID) in LF do
 2 switch (LF.JobType)
 3 Case HPC: CounterHPC ++
 4 Case DI: CounterDI ++
 5 Case HPC-DI: CounterHPC-DI ++
 6 Case Normal: CounterNormal ++
 7 end switch
 8 return (Type of the max counter)

ii. Last n Submitted Jobs (lastnSJ) Algorithm: This

algorithm predicts the user type depending on the type
of the last n jobs submitted by this user.

Algorithm 2: Type of Last n Submitted Jobs (lastnSJ)
Algorithm: lastnJS
 Input: LF, nJOB
 Output: User type
 1 JobCounter = 0;
 2 Start checking with the last job submitted by

a specific user
 3 while (JobCounter < nJOB) or (LF has more

jobs)
 4 switch (Job.JobType)
 5 Case HPC: CounterHPC ++
 6 Case DI: CounterDI ++
 7 Case HPC-DI: CounterHPC-DI ++
 8 Case Normal: CounterNormal ++
 9 end switch
 10 JobCounter ++
 11 Go to the previous job submitted by

the same user
 12 end while
 13 return (Type of the max counter)

iii. Submitted Jobs within a Period of Time (SJPT)
Algorithm: This algorithm predicts the user type
depending on the type of jobs submitted by the user
within last n days.

Algorithm 3: Submitted Jobs within a Period of Time
(SJPT)
Algorithm: SJPT
 Input: LF, mDAY
 Output: User type
 1 StartDate = Current Date
 2 EndDate = StartDate – mDAY
 3 for each job belongs to the same user in LF do
 4 If (Job.Date <= StartDate) and

(Job.Date >= EndDate)
 5 switch (Job.JobType)
 6 Case HPC: CounterHPC ++
 7 Case DI: CounterDI ++
 8 Case HPC-DI: CounterHPC-DI

++
 9 Case Normal: CounterNormal

++
 10 end switch
 11 end if
 12 return (Type of the max counter)

iv. Last n Submitted Jobs within a Period of Time

(lastnSJPT) Algorithm: This algorithm predicts the
user type based on both the type of the last n jobs
submitted and the type of jobs submitted by the user
within a past period of time. It is a hybrid from the
lastnJS and the SJPT algorithms.

Algorithm 4: Last n Submitted Jobs within Period of Time
Algorithm: lastnSJPT
 Input: LF, nJOB, mDAY
 Output: User type
 1 JobCounter = 0;
 2 StartDate = Current Date
 3 EndDate = StartDate – mDAY
 4 Start checking with the last job submitted by

a specific user while (JobCounter < nJOB) or
(LF has more jobs)

 6 If (Job.Date <= StartDate and Job.Date
>= EndDate)

 7 switch (Job.JobType)
 8 Case HPC: CounterHPC ++
 9 Case DI: CounterDI ++
 10 Case HPC-DI: CounterHPC-DI

++
 11 Case Normal: CounterNormal

++
 12 end switch
 13 JobCounter ++
 14 Go to the previous job submitted by

the same user
 15 end if

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

118

 16 end while
 17 return (Type of the max counter)

To make accurate prediction of the user type, the
cloud provider must perform a statistical analysis to
choose the values of nJOB (which represents n jobs
submitted by a specific user) and mDAY (which
represents m days of jobs’ submission by a specific user)
to be used in the four algorithms illustrated above. These
values may vary over time depending on the users who
are dealing with the provider and how they deal.

In case of the absence of user’s history, the
provider can predict the user type based on the
requirements associated with the jobs. Equations 1 to
4 are proposed to calculate the total requirements for
all jobs of a user as below:

1

Re
NoOfJobs

user i

i

qTime Time
=

= ∑ (1)

1

NoOfJobs

user i

i

ReqMemory RAM
=

= ∑ (2)

1

NoOfJobs

user i

i

ReqStorage Storage
=

= ∑ (3)

1

NoOfJobs

user i

i

ReqBW BW
=

= ∑ (4)

Equations 1 to 4 calculate the total values requested

for time execution, memory, storage and bandwidth
respectively, which are required to execute jobs of a
specific user. The resulting values specify the total
requirements for every user.

By comparing these requirements with previous
requirements (which stored and considered as
benchmarks by provider), the user type can be predicted.

In job type prediction process, this work assigns
weights to the proposed checkers in the prediction phase.
Equations 5 to 8 are proposed to be used in this study:

()
() ()((

()))
() ()))((

1

2

3

*

*

*

HPC

ExT CPI

i i

MPI

i

Size BW

i i

HPC LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

≥ ≥

≥ +

< <

 (5)

()
() ()((

()))
() ()))((

1

2

3

*

*

*

DI

ExT CPI

i i

MPI

i

Size BW

i i

DI LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

< <

≥ +

≥ ≥

 (6)

()
() ()((

()))
() ()))((

1

2

3

*

*

*

BOTH

ExT CPI

i i

MPI

i

Size BW

i i

HPC - DI LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

≥ ≥

≥ +

≥ ≥

 (7)

()
() ()((

()))
() ()))((

1

2

3

*

*

*

NORMAL

ExT CPI

i i

MPI

i

Size BW

i i

NORMAL LF w

job ExecTh or job CpiTh or

job MpiTh w

job SizeTh or job BwTh w

= +

< <

< +

< <

 (8)

Where:
w1, w2 and w3 are weight values, such that:
w1+w2+w3 = 1

This work suggests that it is up to the cloud provider

to assign the weight values. w1 is assigned to the history

of the user who submits the job (if any), w2 is assigned

to the values related to HPC jobs, which represents the

total execution time, CPI and MPI. Usually, these values

are high in HPC jobs. Finally, w3is assigned to the

values related to DI jobs, which are job size and

bandwidth. In general, these values are high in DI jobs.

And:

•
1

HPC

if the history of the user in LF is HPC
LF

0 otherwise


= 


•
1

DI

if the history of the user in LF is DI
LF

0 otherwise


= 


•
1

BOTH

if the history of the user in LF is HPC - DI
LF

0 otherwise


= 


•
1 if 0HPC DI

NORMAL

LF LF
LF

0 otherwise

 = =
= 


• ExecTh: Thershold for job execution time

• CpiTh: Threshold for CPI of the job

• MpiTh: Threshokd for MPI of the job

• SizeTh: Threshold for job size

• BwTh: Threshold for the required bandwidth for the
job

These thresholds are chosen by examining real

workload trace. A histogram is sketched for each one
of the above five parameters to select the proper
thresholds. Based on these histograms, two methods
are used: The average and median. Figure 3 is an
example of the histogram sketched for selecting CPI
threshold for 100 jobs.

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

119

Fig. 3. Selecting CPI threshold for set of jobs

The job type is selected according to the maximum

value from Equation 1 to 4. If two or more values are
equal (ambiguity state), the type in the LF is the
dominant. In case of no information about the user in the
LF, then there is no weight to the history of this job. The
weight of the user’s history is considered zero and
Equation 5 to 8 rewritten as in the Equation 9 to 12:

()((
() ()))
() ()))((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

HPC job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

= ≥

≥ ≥ +

< <

 (9)

()((
() ()))
() ()))((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

DI job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

= ≥

< < +

≥ ≥

 (10)

()((
() ()))
() ()))((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

HPC DI job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

− = ≥

≥ ≥ +

≥ ≥

 (11)

()((
() ()))
() ()))((

2

3

*

*

ExT

i

CPI MPI

i i

Size BW

i i

NORMAL job ExecTh or

job CpiTh or job MpiTh w

job SizeTh or job BwTh w

= <

< < +

< <

 (12)

If two or more values are equal and there is history

for the user that submit the job, the requirement
associated with the job can help in job type prediction
(as in Equation 1 to 4).

The SLA Phase

In this phase, an agreement about the offered services
between the user and the cloud provider is achieved.

SLA is a legal contract between participants (user and
the cloud provider) to ensure that the QoS requirements
of the users are met. If any party violates the SLA terms,
the defaulter has to pay a penalty or do legal actions
according to the clauses defined in this SLA (Wu and
Buyya, 2011; Moustafa, 2015). In this study, the SLA
phase decides whether the provider can execute the
user’s job or not depending on the job requirements and
the available resources. If the provider is not able to
execute the job with the required QoS (deadline and
budget), user will be informed in this phase. Otherwise,
the job will pass to the mapping phase. The form for the
SLA contract between the user and the provider is
presented in Table 2.

Mapping Phase

After specifying the types of jobs for all users and the
SLA between the users and the providers is confirmed,
this phase is concerned with selecting the best data
center to serve the jobs (mapping jobs to a data center).
The selected data center is the one that consumes the
minimum amount of power when executing the users’
jobs. The global scheduler interacts with the local
schedulers of each data center to execute the jobs
submitted to it. The CPU availability at particular times
in the future and all information about the free time slots
are available to the global scheduler based on the
information provided by the local schedulers. The global
scheduler receives the detailed information periodically
from each cloud data center. These information includes
the available resources and some other values like the
amount of the consumed power resulted when executing
the jobs on the available resources of the data center.

In the mapping phase, the provider maps the jobs to a
specific cloud site based on the information provided by
the local schedulers. The mapping process must consider
the SLA constraints. At the selected cloud site, the local
scheduler will perform the jobs scheduling based on the
proposed MTP strategy.

The Data Center Model

In addition to the global scheduler. The cloud
provider has a number of data centers. Each data center
consists of n heterogeneous PMs refer to Fig. 4. Each
PMi is equipped with multicore processors and
characterized by the configuration shown below:

(), , , ,i PM MP PM PM PMPM PE Speed Storage RAM BW

Where:
PEPM = Number of PEs in PMi
SpeedPM = Speed of each PE in PMi
StoragePM = Size of the storage in PMi
RAMPM = RAM size in PMi
BWPM = Bandwidth in PMi

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

120

Fig. 4. The data center model

Table 2. The main items in a SLA contract

Item Details

Job execution time Specify the estimation of the total execution time.
Job execution fees Specify the total fees the user should pay to the provider as a result for executing the user’s job.
Violation Typically a reduction in the fees that the user has to pay to the provider, plus some additional
 compensation and a corrective action plan. Usually, such fees reduction and compensation vary
 depending on the Number of Violations (NoV).

Each PM consists of one or more VMs. The VM
configuration is shown below:

(), , , ,i VM VP V M VM VMVM peNumber Speed Storage RAM BW

Where:
peNumberVM = Number of PEs in VMi
SpeedVM = Speed of each PE in VMi
StorageVM = Size of the storage in VMi
RAMVM = RAM size in VMi
BWVM = Bandwidth in VMi

Based on the model presented in (Beloglazov, 2013),

each data center has a local scheduler, which performs

the scheduling process for all jobs received by the data

center. In addition, the data center has a local manager

(resides on each PM) and a global manager (maintains

the overall system’s resource utilization of a set of PMs

by interacting with their local managers).

The Proposed Model

In cloud computing service models, different users

submit their jobs to the cloud provider to be executed by

some heterogeneous VMs. Each job will be mapped to a

VM which satisfies its requirements. The mapping

process requires an efficient strategy for allocating

resources (heterogeneous CPU, storage, memory and

network bandwidth) needed to execute a huge number

of jobs. The resource allocation problem is NP-hard

(Zhang et al., 2014a; Duan et al., 2007).

The problem even becomes more challenging when
trying to effectively schedule many jobs in distributed,
heterogeneous and virtualized cloud systems. So, this
work proposes a model presented in the next sections to
solve this problem.

Model Representation

The proposed system, S, can be modeled as four-
tuple (D, PM, VM, J), such that:

• D is a set of data centers, each element Dd∈D
represents a single data center in the system

• PM is a set of physical machines in the data center;

PMpm,d∈PM each element represents a single PMpm
in Dd

• VM is a set of virtual machines associated with
physical machines in the data center; each element

VMvm,pmd∈VM represents a single VMvm on single in
data center Dd

• J is a set of jobs; each element jobj∈J represents a
single job

Multi Objective Function

This paper proposes a multi-objective optimization
scheduling algorithm, which aims to minimize the
energy consumption, while maintaining the SLA
specifications.

The power consumed by PMs in data centers usually
determined by the CPU, disk storage, memory, network
interfaces (Beloglazov et al., 2012). Among these
components, the CPU consumes the most amount of

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

121

energy. So, in this study, only the energy consumed by
the CPU is considered. However, the consumption of the
other components becomes very costly as a result of
establishing numerous data centers round the world.
Each data center contains thousands of PMs composed
of these components. Equation 13 is used to find the
total power of each PM:

P

i CPU Memory StoragePM P P P= + + (13)

Where:
PCPU = The power consumed by the CPU
PMemory = The power consumed by the memory
PStorage = The power consumed by the storage disk

The power consumption model of the CPU, which is
generally composed of CMOS circuits, is the sum of
both the CPU static power (PCPU-static) and the CPU
dynamic power (PCPU_dynamic). Equation (14) is used to
compute the power consumed by the CPU (Brooks et al.,
2000; Elnozahy et al., 2003; Chaudhry et al., 2015):

CPU CPU Dynamic CPU StaticP P P− −= + (14)

where, (PCPU-Static) is a constan t, say ω and (PCPU-

Dynamic) as in (15):

2

CPU DynamicP ACV f− = (15)

Where:
A = An activity factor that accounts how frequency

gates switch
C = The total capacitance at the gate outputs
V = The voltage of the CPU and f is the operating

frequency

Voltage V can be expressed as a linear function in
frequency, V = af, such that a is constant. All constants
(ω, A and C) can be combined together in a constant,

sayβ. So, Equation 14 that compute power consumption
model of CPU can be written in (16):

3

CPU
P fβ= (16)

Frequency f is the only variable value in (16). Thus,

DVFS technique is considered in this study, which
usually results in a linear power-to-frequency
relationship for a data center. DVFS modulates a
processor’s clock frequency and supply voltage in
lockstep as programs execute. The premise is that a
processor’s workloads vary according to job
requirements. When the processor has less work, it can
be slowed down without affecting performance
adversely. The architecture of the CPU supports different

frequencies, so when the type of job is DI, this work
minimizes the CPU frequency to a minimum level.

The PMs on/off switching technique is also
considered in this study. In general, idle PM consumes
approximately 70% of the power consumed when this
PM running at the full CPU speed (Beloglazov, 2013).
This fact justifies the technique of switching idle servers
off to reduce the total power consumption.

Let n represents the total number of jobs, the total
power consumption for executing these jobs (Tenergy) can
be measured using Equation 17:

1
*

n p

energy i ii
T x PM

=
=∑ (17)

Where:
xi = Equal to 0 if the machine
PMi = Off and equal to 1 if it is on.

So, the main objective of the proposed system is to
minimize the value of Tenergy.

In addition to the total consumed energy, an
important value to be measured is the total execution
time of the set of all jobs (Ttime). The execution time for
any job is the sum of its data stage in and stage out,
adding to the actual time needed to execute the job.

The execution time , ,vm pm d

i
ExT can be calculated using

Equation 18:

, ,
l

vm pm d i i i
i

vm i vm

InputSize job OutputSize
ExT

BW f BW

     
= + +     
     

 (18)

Where:

l

i
job = Length of jobi in term of millions of

instructions
InputSizei = Input size of jobi
OutputSizei = Output size of jobi
fi = The frequency of the core when

executing jobi

So, the time needed to execute all jobs is calculated
using (19):

, ,

1

n vm pm d

i
Ttime ExT

=
=∑ (19)

In fact, Ttime is not the total time of executing all jobs

because jobs are executing in parallel. The maximum

finish time among all jobs in any workload (makespan)

is the actual finish time of jobs’ execution. It is an

important value to be measured. This value reflects the

accuracy of the jobs to VMs allocation process from the

execution time point of view. Usually, minimizing the

makespan value leads to minimizing Ttime. Makespan can

be measured as in (20):

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

122

{ }, , |vm pm d

iMakespan max FT i J= ∀ ∈ (20)

where, , ,vm pm d

i
FT is the finish time when executing jobi by

VMvm.
Another important value to be calculated is the total

cost for executing the set of jobs (Tcost), which can be
measured using (21):

, , , ,

1
*

n vm pm d vm pm d

i ii
T C ExT

=
=∑cost (21)

Where:

, ,vm pm d

i
C = The cost of executing jobi per unit time using

the resources of VMv hosted in PMp in Dd

The objectives of the proposed system are to
minimize the values of consumed power, time and cost
which is expressed in (17), (20) and (21) respectively.

The new allocation strategy (suggested in this study)
to allocate jobs to VMs is discussed in the next section.

VM Allocation and VM Placement Strategy

In cloud computing environments, cloud users are
served by providing VMs to execute their jobs. Cloud
providers provide such services.

Cloud services can be delivered in the following
sequence:

• A cloud user submits the job (or set of jobs) to a

cloud provider

• A cloud provider analyzes the submitted jobs and
predicts their types and requirements

• According to the job requirements, the provider
performs the VM provisioning to user’s job (i.e.,
VM allocation) using best fit algorithm. Two main
policies for the VMs to jobs allocation in cloud
computing environments (Calheiros et al., 2011) can
be used

• Space-shared policy: The result is a VM with one or
more cores

• Time-shared policy: The result is a core that holds
two or more VMs

Every job is allocated to a VM with specific

frequency. Since the CPU architecture supports different

frequencies for the same CPU, it is possible to scale the

frequency of the CPU cores up or down using DVFS

technology. In the proposed work, when DI jobs are

allocated to VMs in a space shared policy, the core

frequency is minimized to a minimum frequency level if

this will not affect the job’s QoS requirements. This

leads to better energy efficiency due to the cubic relation

existing between energy and frequency as illustrated in

(16). Usually, DI jobs do not need to utilize the

maximum frequency of the compute power resources.

Instead, they utilize storage and bandwidth resources.

Fig. 5. User’s job life cycle

After VM provisioning, the provider performs the
VM placement, which is the process of placing the VM
on the proper PM. The VM placement process is
implemented using the MCKP model (Pisinger, 1995).
Knapsacks in this case represent the PMs of the data
center. The aim is hosting the requested VMs on the
minimum possible number of knapsacks. To note, the
Job type is the essential factor in this placement. In this
study, two VMs which belong to the same type of jobs
are not placed on the same PM. This leads to further
minimizing the number of switched-on PMs which is
guaranteed by KP. However, when there is no available
PM for combining VMs of different types of jobs, the
classical KP algorithm is used to place the VMs.

The above sequence represents the job life cycle as
illustrated in Fig. 5.

Performance Analysis

This section presents the evaluation of the proposed
model. The CloudSim simulator, which is an extensible
simulation toolkit that enables modeling and simulation
of cloud computing systems and application
provisioning environments, is used. The CloudSim
supports both system and behavior modeling of cloud
system components such as data centers, PMs, VMs
and resource provisioning policies (Calheiros et al.,
2011). A real workload trace to simulate the cloud
computing environment is used. The jobs information
is based on real data provided by (Google, 2015). The
Google workload traces are collected from large cloud
systems (about 12,500 compute nodes over 29 days).
The traces consist of different types of jobs. Real
workload traces can provide a very high level of
realism when used directly in performance evaluation
experiments. More details about this data are available
in (Reiss and Wilkes, 2013).

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

123

Table 3. VM instance types in M3 family offered by Amazon

VM type CPU Clock vCPU Memory BW

M3.meduim Intel Xeon E5-2670 v2 processors 2500 1 3750 Moderate
M3.large Intel Xeon E5-2670 v2 processors 2500 2 7500 Moderate
M3.xlarge Intel Xeon E5-2670 v2 processors 2500 3 15000 High
M3.2xlarge Intel Xeon E5-2670 v2 processors 2500 4 30000 High

Three parameters are applied in the experiments:
Number of PMs, number of VMs, number of jobs in
the workload. The PMs and VMs configurations are as
those provided by Amazon cloud data centers
(Amazon, 2015). Table 3 illustrates the VMs instance
types, called M3, offered by Amazon and used in the
experiments in this study.

Results

Extensive experiments are carried out and repeated
ten times for different number of jobs. Then, the results
are compared with some strategies from the literature,
e.g., Round Robin (RR) and Genetic Algorithm (GA).
The results show that the proposed strategy outperforms
both RR and GA as detailed in the next sections.

Energy Consumption

The evaluation in this section is based on the total
consumed energy as a measurement. The experiments
are done and repeated 10 times for different numbers of
PMs, VMs and jobs.

In this study, the sets of jobs which are tested consist
of 50, 200, 400, 600, 800 and 1000 jobs. To evaluate the
proposed MTP strategy, a comparison with many
classical job scheduling and placement strategies (e.g.,
Round Robin (RR) and Genetic Algorithm (GA)) are
done. GA is a general purpose optimization technique
inspired by the biological evolution. The initial
population is produced randomly in the experiment.
Then, it evolves to better approximate solutions from
generation to generation iteratively (The number of
iterations is set to 100) based on a specific fitness
function (the consumed power in the experiment). The
individual VMs cross by the genetic operators and
combine in PMs. Each new population represents a new
solution of VMs to PMs placement. Similar work can be
found in (Dong et al., 2014).

In RR, VMs are placed and distributed to PMs in the
data center sequentially in a circular manner, like the one
in Eucalyptus, which is an open source software for
building private and hybrid clouds (Eucalyptus, 2015).

The comparison of the proposed algorithm with the
GA and RR approaches in terms of the total consumed
energy resulting from executing different number of jobs
is presented in Fig. 6.

The energy consumption of each set of jobs increased
as the number of jobs increased. This is because the total
execution time of a job will increase as more jobs are
submitted. Within the same set of jobs and from energy

efficiency perspective, MTP outperforms both GA and
RR as illustrated in Fig. 6. MTP is better in enhancing
energy efficiency because it involves minimum number
of PMs in executing the set of jobs (as shown in Fig.
10). Minimizing the number of involved PMs is the
main factor in enhancing the energy efficiency in cloud
data centers, because even the completely idle PMs
consume about 70% of their peak power. Another
reason is that the resources of the involved PMs using
MTP are better utilized than when using RR and GA
(as shown in Fig. 7).

Total Execution Time

The total time required to execute different numbers
of jobs using RR, GA and MTP is listed in Fig. 8.

In most scenarios, the total time required to execute

users’ jobs using MTP is more than the time of using RR

and GA. This is because the VM to PM placement

process in MTP spends time searching the best PM to

place VM on it. The best PM is the PM that is already

switched on and also hosts a VM allocated for a job of

different type from the job served by the VM to be

placed on it. Forcing jobs to be executed in minimum

number of PMs will increase the turnaround time of

these jobs. Consequently, the jobs’ total execution time

(makespan) will increase.
In GA, VMs are crossed and combined on PMs

according to genetic operators. So, no time to spend in
searching for specific PMs before the process of VM
placement as in MTP. In RR, VMs are placed on PMs
sequentially in a circular manner. No time to spend
neither in cross and combine operations as in GA, nor in
searching for specific PMs before the process of VM
placement as in MTP. So, the total time for jobs
execution is better in RR.

Cost

The experiments related to cost depend on real cost

values offered by Amazon (2015). The cost per hour

values are illustrated in Table 4.
As illustrated in Fig. 9, the tests show that the

proposed MTP outperforms RR and GA from the cost
perspective. The reason is that MTP utilizes the
minimum resources that meet the QoS requirements and
execute users’ jobs.

MTP do not involve any VM with resources that
exceed the actual jobs’ requirements which, in turn,
avoids users from paying any extra costs.

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

124

Fig. 6. Consumed power when executing different number of jobs

Fig. 7. Total utilization when executing different number of jobs

Fig. 8. Total execution time resulting from executing different

number of jobs

Impact of Using MTP

The proposed MTP has some impacts which are
detailed in the next sections.

Impact on the Number of Active PMs

The proposed MTP strategy results in the minimum
possible number of active PMs that are able to execute the
total jobs compared to RR and GA. This outcome is due to
the combination of high compute intensive jobs with data
intensive jobs in the same PM, as the high compute
intensive job mostly relies on the CPU performance,
whereas the data intensive job utilizes disk storage.

Fig. 9. Costs of executing different number of jobs

Fig. 10. Number of PMs needed when executing different sets

of jobs using MTP, GA and RR

Table 4. The cost prices offered by Amazon for VM types in

M3 family

VM type Cost/h Linux

M3.meduim $ 0.07
M3.large $ 0.14
M3.xlarge $ 0.28
M3.2xlarge $ 0.56

The MTP strategy forces the scheduler to combine

the VMs allocated to different types of jobs on the same

PM. There is no exception unless if there is an SLA

violation, or there is no available resources in an active

PM to serve the VM.
Figure 10 illustrates the differences in the number of

active PMs using RR, GA and MTP for different number
of jobs. The reason is that the compute and storage
resources of each PM is utilized in an optimal way. Such
utilization prevent the idle state for the resources (which
is not guaranteed in GA and RR). In turn, the total
number of switches on PMs needed to execute each set
of jobs is minimized.

Impact with DVFS on the Type of Job

Since the CPU architecture supports different
frequencies, the proposed algorithm minimizes the
CPU frequency to a minimum level
unconditionally when the type of job is data intensive.

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

125

Table 5. The resulted energy consumption when executing
different number of jobs using MTP strategy with and
without frequency scaling

 MTP without DVFS MTP with DVFS
No of jobs Energy W/h Energy W/h

200 820205 783161
400 1622788 1468543
600 2218623 2174261
800 3291324 2976292
1000 4080028 3927554

This does not affect the system performance and at the
same time reduces the power consumption by an
acceptable percentage. The percentage value differ
from workload to another depending on the number of
data intensive jobs it contains. Table 5 shows the
reduction in power consumption when applying the
frequency scale down to MTP strategy in executing
different number of jobs.

Conclusion

In this study, a model that identifies common patterns
for the jobs submitted to the cloud is presented. This
model predicts the type of the job submitted; and
accordingly, the set of users’ jobs is classified into four
subsets. Each subset contains jobs that have similar
requirements. In addition to the jobs’ common pattern
and requirements, the users’ history is considered in the
jobs’ type prediction model. The goal of job
classification is to find a way to propose useful strategy
that helps to improve power efficiency. Following the
process of jobs’ classification, a new VM placement
strategy, called Mixed Types Placement (MTP), is
proposed. Its core idea is to place the VMs of the jobs of
different types in the same PM. The evaluation of MTP
shows promising results in reducing the total energy
consumed in the cloud data centers. The reduction in the
consumed energy using MTP results in minimizing the
number of PMs involved in executing users’ jobs and the
resources of the involved PMs are utilized optimally.

As a future work, we are working to subdivide the
HPC and DI subsets based on new features and rely
on the new sub-subsets in the process of VM
placement. The HPC subset is divided into two main
categories: CPU intensive and Memory intensive.
Similarly, the DI subset is divided into two main
categories: Hard disk intensive and Bandwidth
intensive. Moreover, the VM management
approaches, such as VM migration and consolidation,
will be applied to the proposed model to make it more
integral to work in cloud computing paradigm.

Acknowledgement

The authors wish to thank the anonymous reviewers
for offering useful comments about this manuscript.

Funding Information

No funding information concerning to the work
presented in this manuscript.

Author’s Contributions

Auday Al-Dulaimy: Proposed the main idea of the
article, explained the methodology, analyzed the results,
and drafted the manuscript.

Ahmed Zekri, Wassim Itani and Rached Zantout:

Discussed, provided notes and revised the manuscript.
All authors read and approved the final manuscript.

Ethics

There are no ethical issues involved in publishing this
manuscript.

References

Amazon, 2015. http://aws.amazon.com
Beloglazov, A., 2013. Energy-efficient management of

virtual machines in data centers for cloud computing.
PhD Thesis, Department of Computing and
Information Systems, The University of Melbourne.

Beloglazov, A., J. Abawajyb and R. Buyya, 2012. Energy-
aware resource allocation heuristics for efficient
management of data centers for Cloud computing.
Future Generat. Comput. Syst., 28: 755-768.

 DOI: 10.1016/j.future.2011.04.017
Berman, F., H. Casanova, A. Chien, K. Cooper and

H. Dail et al., 2005. New grid scheduling and
rescheduling methods in the grads project. Int. J.
Parallel Programm., 33: 209-229.

 DOI: 10.1007/s10766-005-3584-4
Bobroff, N., A. Kochut and K. Beaty, 2007. Dynamic

placement of virtual machines for managing SLA
violations. Proceedings of the 10th IFIP/IEEE
International Symposium on Integrated Network
Management, May 21-25, IEEE Xplore Press,
Munich, pp: 119-128.

 DOI: 10.1109/INM.2007.374776
Bradley, D., R. Harper and S. Hunter, 2003. Workload-

based power management for Parallel computer
systems. IBM J. Res. Develop., 47: 703-718.

 DOI: 10.1147/rd.475.0703
Brooks, D., V. Tiwari and M. Martonosi, 2000. Wattch:

A framework for architectural-level power analysis
and optimizations. Proceedings of the 27th Annual
International Symposium on Computer Architecture,
Jun. 10-14, IEEE Xplore Press, Vancouver, BC,
Canada, pp: 83-94. DOI: 10.1145/339647.339657

Burge, J., P. Ranganathan and J.L. Wiener, 2007. Cost-
aware scheduling for heterogeneous enterprise
machines. Proceedings of the International
Conference on Cluster Computing, Sept. 17-20,
IEEE Xplore Press, Austin, TX, pp: 481-487.

 DOI: 10.1109/CLUSTR.2007.4629273

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

126

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A. Rose
and R. Buyya, 2011. CloudSim: A toolkit for
modeling and simulation of cloud computing
environments and evaluation of resource
provisioning algorithms. Software: Pract,
Experience J., 41: 23-50. DOI: 10.1002/spe.995

Chakravarty, P. and R. Sinha, 2013. Power aware
approach of live migration for resource management
in cloud data centre. Int. J. Comput. Sci. Manage.
Res., 2: 1402-1407.

Reiss, C. and J. Charles, 2013. Google cluster-usage
traces: Format and schema. Google Inc.

Chase, J.S., D.C. Anderson, P.N. Thakar, A.M. Vahdat
and R.P. Doyle, 2001. Managing energy and server
resources in hosting centers. Proceedings of the 18th
ACM Symposium on Operating Systems Principles,
Oct. 21-24, Banff, Canada, pp: 103-116.

 DOI: 10.1145/502034.502045
Chaudhry, M.T., T.C. Ling, A. Manzoor, S.A. Hussain

and J. Kim, 2015. Thermal-aware scheduling in
green data centers. ACM Comput. Surveys.

 DOI: 10.1145/2678278
Chen, J. and L.K. John, 2011. Predictive coordination of

multiple on-chip resources for chip multiprocessors.
Proceedings of the International Conference on
Supercomputing, May 31-Jun. 04, Tucson, AZ,
USA, pp: 192-201.

 DOI: 10.1145/1995896.1995927
Deore, S.S. and A.N. Patil, 2013. Energy-efficient job

scheduling and allocation scheme for virtual
machines in private clouds. Int. J. Applied Inform.
Syst., 5: 56-60. DOI: 10.5120/ijais12-450842

Dong, Y.S., G.C. Xu and X.D. Fu, 2014. A distributed
parallel genetic algorithm of placement strategy for
virtual machines deployment on cloud platform. Sci.
World J. DOI: 10.1155/2014/259139

Duan, R., R. Prodan and T. Fahringer, 2007.
Performance and cost optimization for multiple
large-scale grid workflow applications. Proceedings
of the IEEE/ACM International Conference on
Super Computing, Nov. 10-16, Reno, NV, USA, pp:
1-12. DOI: 10.1145/1362622.1362639

Elnozahy, M., M. Kistler and R. Rajamony, 2003. Energy-
efficient server clusters. Proceedings of the 2nd
International Conference on Power-Aware
Computer Systems, (PCS’ 03), Cambridge, MA,
USA, pp: 179-197. DOI: 10.1007/3-540-36612-1_12

Eucalyptus, 2015. https://www.eucalyptus.com/
Feller, E., 2013. Autonomic and energy-efficient

management of large-scale virtualized data centers.
PhD Thesis, University of Rennes.

Gao, Y., H. Guan, Z. Qi, Y. Hou and L. Liu, 2013. A
multi-objective ant colony system algorithm for
virtual machine placement in cloud computing. J.
Comput. Syst. Sci., 79: 1230-1242.

 DOI: 10.1016/j.jcss.2013.02.004

Garg, S.K., C.S. Yeob, A. Anandasivamc and R. Buyya,
2011. Environment-conscious scheduling of HPC
applications on distributed Cloud-oriented data
centers. J. Parallel Distrib. Comput., 71: 732-749.
DOI: 10.1016/j.jpdc.2010.04.004

Google, 2015.
https://cloud.google.com/storage/docs/overview

Guenter, B., N. Jain and C. Williams, 2011. Managing
cost, performance and reliability tradeoffs for
energy-aware server provisioning. Proceedings of
the IEEE INFOCOM, Apr. 10-15, IEEE Xplore
Press, Shanghai, pp: 1332-1340.

 DOI: 10.1109/INFCOM.2011.5934917
Heo, J., P. Jayachandran, I. Shin, D. Wang and

T. Abdelzaher et al., 2011. OptiTuner: On performance
composition and server farm energy minimization
application. IEEE Trans. Parallel Distrib. Syst., 22:
1871-1878. DOI: 10.1109/TPDS.2011.52

Horvath, T., T. Abdelzaher, K. Skadron and X. Liu,

2007. Dynamic voltage scaling in multitier web

servers with end-to-end delay control. IEEE Trans.

Comput., 56: 444-458. DOI: 10.1109/TC.2007.1003
Intel Corporation, 2008. Intel-64 and IA-32 architectures

software developers manual. 3B System
Programming Guide, Part 2.

Iverson, M.A., F. Ozguner and G.J. Follen, 1996. Run-
time statistical estimation of task execution times for
heterogeneous distributed computing. Proceedings of
the 5th IEEE International Symposium on High
Performance Distributed Computing, Aug. 6-9, IEEE
Xplore Press, Syracuse, NY, USA, pp: 263-270.
DOI: 10.1109/HPDC.1996.546196

Josyula, V., M. Orr and G. Page, 2011. Cloud
Computing: Automating the Virtualized Data
Center. 1st Edn., Cisco Press, Indianapolis, IN,
ISBN-10: 1587204347, pp: 371.

Lang, W. and J.M. Patel, 2010. Energy management for
map-reduce clusters. Proceedings of the 36th
International Conference on Very Large Data Bases,
(LDB’ 10), pp: 129-139.

Lawson, B. and E. Smirni, 2005. Power-aware resource
allocation in high-end systems via online simulation.
Proceedings of the 19th Annual International
Conference on Supercomputing, Jun. 18-21,
Cambridge, MA, USA, pp: 229-238.

 DOI: 10.1145/1088149.1088179
Lee, G., 2012. Resource allocation and scheduling in

heterogeneous cloud environments. PhD Thesis,
College of Engineering, University of California,
Berkeley.

Li, S., T. Abdelzaher and M. Yuan, 2011. TAPA:
Temperature aware power allocation in data center
with Map-Reduce. Proceedings of the International
Green Computing Conference and Workshops,
Jul. 25-28, IEEE Xplore Press, Orlando, FL, pp: 1-8.
DOI: 10.1109/IGCC.2011.6008602

Auday Al-Dulaimy et al. / Journal of Computer Sciences 2016, 12 (3): 113.127

DOI: 10.3844/jcssp.2016.113.127

127

Moustafa, S.B., 2015. SLA monitoring for federated

cloud services. MSc Thesis, School of Computing,

Queen’s University.

Nudd, G., D. Kerbyson, E. Papaefstathiou, S. Perry and

J. Harper et al., 2000. PACE: A toolset for the

performance prediction of parallel and distributed

systems. In. J. High Perform. Comput. Applic., 14:

228-251. DOI: 10.1177/109434200001400306

Pisinger, D., 1995. Algorithms for knapsack problems.

PhD Thesis, University of Copenhagen.

Portaluri, G., S. Giordano, D. Kliazovich and

B. Dorronsoro, 2014. A power efficient genetic

algorithm for resource allocation in cloud computing

data centers. Proceedings of the 3rd IEEE

International Conference on Cloud Networking,

Oct. 8-10, IEEE Xplore Press, Luxembourg, pp:

58-63. DOI: 10.1109/CloudNet.2014.6968969

Reistad, B. and D. Gifford, 1994. Static dependent costs for

estimating execution time. Proceedings of the ACM

Conference on LISP and Functional Programming,

Jun. 27-29, Orlando, FL, USA, pp: 65-78.

 DOI: 10.1145/182409.182439

Sanjay, H. and S. Vadhiyar, 2008. Performance modeling

of parallel applications for grid scheduling. J. Parallel

Distrib. Comput., 68: 1135-1145.

 DOI: 10.1016/j.jpdc.2008.02.006

Tesauro, G., R. Das, H. Chan, J.O. Kephart and

C. Lefurgy et al., 2007. Managing power

consumption and performance of computing

systems using reinforcement learning. Proceedings

of the 21st Annual Conference on Neural

Information Processing Systems, (IPS’ 07),

Vancouver, Canada, pp: 1497-1504.

Wang, L. and Y. Lu, 2008. Efficient power management

of heterogeneous soft real-time clusters. Proceedings

of the Real-Time Systems Symposium, Nov. 30-

Dec. 3, IEEE Xplore Press, Barcelona, pp: 323-332.

DOI: 10.1109/RTSS.2008.31

Wang, X., X. Fu, X. Liu and Z. Gu, 2009. Power-aware
CPU utilization control for distributed real-time
systems. Proceedings of the 15th IEEE Real-Time
and Embedded Technology and Applications
Symposium, Apr. 13-16, IEEE Xplore Press, San
Francisco, CA, pp: 233-242.

 DOI: 10.1109/RTAS.2009.12
Wu, L. and R. Buyya, 2011. Service Level Agreement

(SLA) in Utility Computing Systems. In:
Performance and Dependability in Service
Computing: Concepts, Techniques and Research
Directions, Cardellini, V. (Ed.), Information Science
Reference, Hershey, PA, ISBN-10: 1609607953, pp:
1-25.

Yang, J., I. Ahmad and A. Ghafoor, 1993. Estimation of
execution times on heterogeneous supercomputer
architectures. Proceedings of the International
Conference on Parallel Processing, Aug. 16-20, IEEE
Xplore Press, Syracuse, NY, USA, pp: 219-226.
DOI: 10.1109/ICPP.1993.80

Zhang, F., J. Cao, K. Li, S.U. Khan and K. Hwang,
2014a. Multi-objective scheduling of many tasks in
cloud platforms. Future Generat. Comput. Syst., 37:
309-320. DOI: 10.1016/j.future.2013.09.006

Zhang, W., H. Xie, B. Cao and A.M. Cheng, 2014b.
Energy-aware real-time task scheduling for
heterogeneous multiprocessors with particle swarm
optimization algorithm. Mathem. Prob. Eng.

 DOI: 10.1155/2014/287475
Zhang, Z. and J.M. Chang, 2014. A cool scheduler for

multi-core systems exploiting program phases. IEEE
Trans. Comput., 63: 1061-1073.

 DOI: 10.1109/TC.2012.283
Zhu, J., D. Li, J. Wu, H. Liu and Y. Zhangy et al., 2012.

Towards bandwidth guarantee in multi-tenancy
cloud computing networks. Proceedings of the 20th
IEEE International Conference on Network
Protocols, IEEE Xplore Press, Austin, TX, pp: 1-10.
DOI: 10.1109/ICNP.2012.6459986

