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Abstract: The autonomy is the most crucial criteria in mobile robots. This 

operation aims to offer the ability of finding the position and build a map of 

the environment to the robot. Many methods have been proposed to solve 

this problem. In this study, an implementation of SLAM approach for 

unknown indoor environment exploring by mobile robot is proposed. In 

fact, the proposed approach touch on the unknown indoor environments 

exploring with static obstacles, based on robot mobile abilities 

(extereoceptive and proprioceptive sensors). In one hand, the measurements 

given by the proprioceptive sensor (odometry) are used for the auto 

localization system. In the other hand, the map building based on 

extereoceptive sensor scanning and robot position. Therefore, the approach 

maintains two maps: (1) (OM) map grid describe the occupancy of 

environment; (2) (TM) map grid memorizes the robot former positions. 

Furthermore, the use of the proposed maps afford an efficient description 

and exploitation of the environment resources over time. Finally, the results 

in simulation and real robots experiments using random exploration (for 

test), demonstrate the fusibility of the proposed approach. 
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Introduction 

For an autonomous mobile robot, self-localization and 

map building are essential requirements. It empowers the 

robot to move from an initial position to a final one, in an 

unknown environment a priori. A global and recent study 

on this domain are discussed in (Choset et al., 2005;    

Ge and Lewis, 2006). The robot equipped with odometry 

and exteroceptive sensors (e.g., sonar, range laser, CCD 

sensor), this sensors provides a set of measurements to 

solve the problem. For the localization system in indoor 

environment, odometry is the most used, while the sensor 

(exteroceptive) utilized by mapping system. 

An occupancy grid map (Elfes, 1989; Schiele and 
Crowley, 1994) is a discrete probabilistic map. For 
modeling the environment with grid map, the environment 
must divide into cells. Every cell has a probability of 
occupation which is determined based on the 

exteroceptive sensor data. Borenstein and Koren (1991) 
use a metric sonar model that increases all measured cell 
value then decreases the cells corresponding to free space. 
Arleo et al. (1999) use a neural network to form a local 
grid map, this local map is used subsequently to identify 

obstacle boundaries for building the variable-resolution 
partitioning map. Thrun (1998) proposed a method who 
trains an artificial neural network using Back-Propagation 
to convert sonars readings into occupancy grid values. 
Multi sonars interpretations are used over time to form a 
global map grid using Bayes rule. Oriolo et al. (1997; 

1998) giving a fuzzy reasoning method to update the map. 
Song and Chen (1996a) method based on Heuristic 
Asymmetric Mapping (HAM) (Song and Chen, 1996b), in 
which the probabilities of multiple cells that correspond 
to real occupied region, using one sonar reading. The 
probability of the cells is then integrated in a global grid 

map through a first-order digital filter to generate a 
certainty value from -1 to 1. 

In literature we come across two approaches for the 
localization problem, absolute and relative. Advantages 
and disadvantages of the two approaches are contrasted 
in Table 1. The relative localization; determine the 
current position of mobile robot, based on previous 
position and the travel measurements (distance, rotation 
angle). For the absolute localization, the current 
position determined by performing by measurements on 
known position beacons. 



Mohamed Emharraf et al. / Journal of Computer Sciences 2016, 12 (2): 106.112 

DOI: 10.3844/jcssp.2016.106.112 

 

107 

Table 1. Summary of advantages and disadvantages of the two 

localization families 

  Relative Absolute  

 localization localization 

Related to the origin Yes No 

Continuously operates Yes No 

Related to the environment No Yes 

Accuracy related to the position No Yes 

Precision drift over time Yes No 

Model easily errors Yes No 

 

Position tracking (relative localization) is the must 

use for a mobile robot explore an unknown indoor 

environment. Position tracking with odometry is a basic, 

easily work in real time and inexpensive system. The 

disadvantage of odometry system is the unbounded 

accumulation of errors over time. Two types of errors 

marked; systematic errors and non-systematic ones. 

Several sources can be the cause of the systematic 

errors such as: Limitation of the encoder resolution and 

sampling frequency, uncertainty about the length of the 

center distance, misaligned wheels and unequal wheels 

diameters. All these defects lead to an unbounded 

accumulation of the localization error. A proposed 

solution and study of this type of error can be found in 

(Borenstein and Feng, 1996; 1995; Martinelli, 2001). 

Non-systematic errors caused by the exploring 

environment such as uneven environment, slippery 

ground, passing over unexpected objects, an excessive 

acceleration, extreme sharp turning and external forces. 

Martinelli (2002a; 2002b) proposed an evaluation 

method of the non-systematic of errors. 

This paper is organized as follows: Section 2 presents 

the overall framework for grid map building; Section 3 

discusses our localization system and we terminate with 

Summary. 

Map Building 

Our solution of map building, presents the 

environment using grid cells. The map defined as a 

vector MA (A, B, L), where L is the length of cell and 

(A, B) represent the rows and columns. In the aim to 

determine (a, b); the robot coordinate in the grid map, 

we must transform the coordinate (x, y) given by the 

localization system (odometry in our case). The real 

physical position of the robot is transformed (mapped) 

into a position in the grid map, in order to save the 

corresponding information in the map. The coordinate 

mapping equations are given as follows: 
 

( )/a int x l=  (1) 

 

( )/b int y l=  (2) 

 

where, int(a) represent the integer part of a. 

 
 

Fig. 1. Determination of the obstacle position 

 

Moreover, the proposed map building system use two 

maps grid cell; Obstacle Map (OM) and Trajectory Map 

(TM). The values OM (i, j) of OM map indicates the 

level of confidence that an obstacle occupies the cell (i, 

j), where i = 1, 2, …, A and j = 1, 2, …, B. For the TM 

map values, the TM (i, j) indicates how much robot 

traverses the cell (i, j). The TM map is made in order to 

record the previously traversed cells as well as the cost 

to traverse the cell area. The TM information exploited 

for robot online path-planning. The given information 

are saved and updated in the maps every control period 

(10 ms in our case). The update algorithm is described in 

Section (The map update). 

Sonar Interpretation 

For the obstacles detection, we exploit an ultrasonic 

sensor. The sensor is equipped with engine in the front 

face, the engine can rotate from 65° up to 155°, which 

make the sensor able to cover the substantially all the 

front. Six measurements are taken for each engine turn 

(65° to 155°), which provides an excellent detection of 

obstacles in front face. 

So as to determine the positions of the obstacle (xo, yo), 

we base on the position of the robot (Xr, Yr, θr) and the 

obstacle position (d, θo). With d is the distance between the 

robot and the obstacle in the angle θo (Fig. 1): 

 

( / 2 )r oθ θ π θ= + −  (3) 

 

 ( )Xo xr d cos θ= +  (4) 

 

 ( )yo yr d sin θ= +  (5) 
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Building Map System 

The proposed map use the localization system and 

sonar scanning. The system includes two modules: Map 

post processing and map update. 

The Map Update 

The map update module used to analyze the sensor 

measurements (obstacles position) and include them into 

OM map who models the occupancy. The sonar 

measurements are transformed into frequency values 

(i.e., OM’s values) which represent the confidence of the 

cells if they are reserved by obstacles. The OM values 

are combined over time to get an integrated estimation of 

occupancy in a map using addition or subtraction of OM 

values. In the other hand the update of TM map 

concerned only the cell present the current position of 

robot, the cell value increment in each control period. 

The update method of the proposed map involves two 

things: The update of TM map and OM map. 

Furthermore, both OM and TM are made at zero in the 

start (unknown environment): 
 

( ) ( ),  , 1,  

 max max

OM i j OM i j

if OM OM OM Otherwise

= +

<
 (6) 

 

The update of OM map process by increment the 

value of one cell for each angle reading (i.e., the cell 

occupied by obstacle). In parallel, the cells represent free 

areas in this range reading remains unchangeable. The 

update algorithm makes the update fast. The update cell 

is the one corresponds to the measured distance d and 

lies on the current angle. The incremental cell is updated 

by Equation 6: 

 

( ) ( ), , 1,

max max,  

TM i j TM i j

if TM TM TM Otherwise

= +

< =
 (7) 

 

where, OM max is a constant representing the maximum 

value of OM cells (if the value of a cell has OM max, 

then the robot classify this cell occupies OM max times), 

experimentally determine this value (in our case 20), it 

depend on the environment complexity and algorithm 

used for the navigation. The increment is 1. In the end, 

only the cells that are presented inside a circular sector 

of radius centered at the angle position (confidence 

sector) are updated. 

In our case the radius of the confidence sector is 

fixed at 1 meter, which is an acceptable value to have a 

correct measurement for the robotic system. Owing to 

the update method, a likelihood distribution of 

occupancy is given by continuously reading the sonar 

sensor in each turn angles as the robot moving. 

The update method of the TM map is simple (Equation 

7). Only the cell where the robot is located, is incremented 

for each control cycle. Where, TM max represent the 

maximum of TM. The TM max value experimentally 

determined (in our case 15), based on the max number of 

trajectory planning that can be done on a cell. The 

trajectory experienced by the robot cannot be forgotten. 

For every control cycle (10 ms for our system), the 

presented algorithm in below is called to update a grid 

map (TM and OM): 

 

Input: (x0, y0) = current robot location;  

Oi = current robot heading angle; 

di (i = 0, 1, …, 5) = sonar readings from current turn 

angle. 

Output: OM= The OM matrix; TM = The TM matrix. 

BEGIN: 

Step 1. Update the TM matrix TM. 

Step 1.1. Do the coordinate mappings to transform 

current robot coordinate (x0, y0) into coordinate (a0, 

b0) of grid map by Equation (1) and (2); 

Step 1.2. Update the TM value TM(a0, b0) of 

corresponding cell (a0, b0) in TM By Equation (7); 

Step 2. Update the OM matrix OM.  

 Read current sonar angle Oi (i=0 to 5) 

IF the sonar reading di is less than the radius of 

confidence sector, THEN 

Step 2.1. Calculate the coordinate (xSd, ySd) of 

obstacle cell Sd based on the sonar angle’s coordinate 

(xSi, ySi) and sonar reading di; 

Step 2.2. Do the coordinate mapping to transform 

(xSd, ySd) into grid coordinate (aSd, bSd) by Equation 

(1) and (2); 

Step 2.3. Increment the OM value OM(aSd, bSd) of 

cell (aSd, bSd) in OM By Equation (6); 

End 
 

Map Post Processing 

The post processing model is working offline to 

filter the learned map for updating the misclassified 

cells and to obtain a consistent and complete map. The 

first task is the threshold operation in order to update 

the misclassified cells from the perspective of cell’s 

value (OM value). The second task relates to the delete 

operation who remove the most misclassified cells from 

the perspective of neighboring correlation. The final 

task is the insert operation in order to add some 

undetected cells. 

The Threshold Task 

This operation eliminates some of misclassified cells 

from the perspective of cell’s value. The misclassified 

cells for this operation are the free cells classified as 

occupied because of the sonar measurements errors. 

Using this operation, the OM’s value set to free of each 

cell not larger than threshold, otherwise it is set to the 

OM max value. 
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The Delete Task 

The objective of the operation is to appreciate the 

next heuristic rule: Isolated cells (i.e., cells with free 

neighbors) come from erroneous sonar measurements. 

Each cell of map don’t have at least surround by four 

occupied neighbors is matched. For example, if the cell 

surround by occupied cells, in this case the cell matched 

successfully (occupied cell), otherwise it fails. The OM’s 

value of the cell is updated in the global map if it’s 

detected successfully. If it fails to match, the OM’s value 

of the cell is set to free. 

The Insert Task 

The occupied cells mistakenly classified as free cells 

(undetected cells) because of sonars errors and robot 

moving. The objective of this task is to realize the 

following heuristic rule: The cells with neighbors on 

both sides are occupied, should be occupied. If any it 

detected successfully, the OM value of the detected cell 

is set to OM max, otherwise its value is maintained. 

Experimentation 

For testing the map accuracy, we evaluate the robotic 

system with an interactive control model for 

communication (Emharraf et al., 2012), in limited 

unknown indoor environment (about 20 m square), with 

variable size of cells. For the navigation we exploit a 

random exploration system (avoid the obstacles while 

the robots move). 

The quality of map former for small size of cell are 

close and relatively larger for the important size of cell. 

Experimentally we find that the size 10 cm
2
 of cell 

provides a good compromise between map accuracy and 

space requirement of map storage. The next (Fig. 2) 

present the results of exploring simple environment. 

Localization 

The odometer is the most used method for land mobile 

robotics notably for the small dimensions environment (up 

to a hundred meters). Its operating as follows: A mobile 

robot equipped with two independents wheels not aligned 

with the direction of movement and an increments 

encoders (optical encoders) in each wheel. The encoders 

used to measure the displacement of each wheel. These 

displacements called dUg and dUd (Fig. 3). 

The localization by odometry exploits the 

knowledge of the previous positions to determine the 

new one. the method start from the known position 

Pn(Xn, Yn, Ψn) and use the values given by the 

encoders to determine the new position Pn+1(Xn+1, Yn+1, 

Ψn+1). Using geometrical relations (Wang, 1988) we 

have the following Equation 8-12: 

 

( ) /d dUd dUg hψ = −  (8) 

 

dU dUd dUg= +  (9) 

 

( )1 1. / 2n n n nX X dU cos ψ ψ+ +
 = + +   (10) 

 

( )1 1.sin / 2n n n nY Y dU ψ ψ+ +
 = + +    (11) 

 

1n n
dψ ψ ψ+ = +  (12) 

 

Form the equations shape, we finds that the errors 

accumulated each iteration. If we add more slippage of 

the wheels, the weaknesses of odometry is key. Two 

sources of errors that can be identified: 

 

• Systematic errors, can be identified and corrected by 

calibration methods 

• The validity of assumptions underlying model of 

rolling without sliding of the robot on level 

ground pose the non-systematic errors. This type 

of errors are almost impossible to compensate 

without using absolute localization methods. 

Martinelli et al. (2003) proposed in a method of 

estimating this type of error 

 

 
 

Fig. 2. Environment exploration with robot 
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Fig. 3. Position determination by odometry 
 

 
 (a) (b) 

 
Fig. 4. Odometry Calibration (a) Experiment 1, (b) Experioment 2 

 

Reduction of Systematic Errors 

Practically, systematic errors, are weak for an 

odometry localization when the robot travel a certain 

distance (about ten meters). To minimize the influence of 

those errors, a first approach consist to identify the errors 

in order to introduce a compensation in the localization 

process. The identification or calibration is usually done 

by making the robot follow a reference trajectory set 

(e.g., a square, circle). By measuring the means of the 

offset between the reconstructed trajectory by odometry 

and the real one, it is possible to detect the systematic 

errors and correct them. An example of correcting those 

errors is given in (Martinelli, 2002b). 
As a second approach to reduce odometry errors, we 

get as close to the conditions of validity of the model 

used in rolling, without sliding odometry equations 

(Wang, 1988). 

Experimentation 

In order to test the feasibility of the proposed 

localization system, the following experiment are 

performed, in an environment without slippage, the 

beginning position known and the measurements of the 

wheels rotation (odometry) allow to evaluate 

approximately the position of the robot. The experiment 

results show in Fig. 4. 

For the first experiment the robot used with a great 

acceleration and without calibration. The gap between 

the real trajectory and the experimental one are very 

large, which allow to an important variable accumulation 

of errors over time. As result the error correction came 

impossible. The localization system diverges once the 

exploring trajectory becomes more than 20 m square. 

To achieve our goal which is reduction of errors. We 

calibrate the localization system and we use an acceptable 
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average acceleration (Experiment 2). The localization 

errors still existing, but for an indoor environment (about 

100 m
2
) exploration the error is bounded, which provides 

acceptable results for localization. 

Conclusion 

The present article proposes a map grid learning and 

auto-localization approach. The approach includes a 

localization model, map model, a map update method 

and a map post processing method. The localization 

system use odometry, which exploit the sensor 

measurements and the start position to locate the current 

position of the robot. The proposed map adopts a grid-

based representation and uses probability value to 

measure the confidence that a cell is occupied or not. 

The fast map update system make the approach a strong 

candidate for real-time implementation on mobile robots. 

The proposed map post processing method, including a 

threshold operation, a template operation and an insert 

operation, is useful to improve the accuracy of the 

learned map offline. 
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