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Abstract: Due to acoustic interferences and artifacts which are inherent in 

echocardiography images, automatic segmentation of anatomical structures 

in cardiac ultrasound images is a real challenge. This paper surveys state-

of-the-art researches on echocardiography data segmentation methods, 

concentrating on methods techniques developed for clinical data. We 

present a classification of methodologies for echocardiography image 

segmentation. By choosing ten recent papers which have proposed 

innovative ideas that they proved certain clinical advantages or potential 

especial role to the echocardiography segmentation task. The contribution 

of the paper would be serving as a tutorial of the field for both clinicians 

and technologists, providing large number of segmentation techniques in a 

comprehensive and systematic manner and critically review recent 

approaches in terms of their performance and degree of clinical evaluation 

with respect to the final goal of cardiac functional analysis.  
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Introduction  

The echocardiography and cardiac Computed 

Tomography (CT) are emerging diagnostic tools 

among modern imaging modalities for visualizing 

cardiac structure and diagnosing cardiovascular 

diseases. The echocardiography (Anderson, 2007) is 

real-time, non-invasive imaging modality which is 

less expensive than CT and Magnetic Resonance 

imaging (MR). Recently, the problem of automatic 

detection, segmentation and tracking of heart 

chambers in radiological imaging, such as ultrasound 

and CT, have received considerable attentions (Frangi 

et al., 2001). Quality of echocardiography images 

influence directly on segmentation result. There are 

some artifacts such as attenuation, speckle, shadows 

and signal dropout which make the segmentation 

process difficult; because of orientation dependence 

for acquisition data, result can lead to missing 

borders. Since the contrast between areas of interest is 

usually low, segmentation task in ultrasound images 

turns to a challenging one (Noble and Boukerroui, 

2006). Although, recently the quality of information 

from an ultrasound device has substantially improved, 

due to recent advances in transducer design, 

spatial/temporal resolution, digital systems, 

portability, etc. (Bridal et al., 2003). Due to these 

advances use of echocardiography has been increased 

in many ways; not only the traditional scope of 

application, CAD and diagnosis, but also new areas 

like therapy and image guided interventions. 

Therefore, currently, there is an urge in understanding 

how to do image segmentation, one of the oldest 

image processing tasks, to echocardiography data. 
In ultrasound data, the LV appearance is mainly 

characterized by a dark region, representing the blood 

pool inside the chamber, enclosed by the 

endocardium, myocardium and epicardium, which are 

roughly depicted by a brighter region (Fig. 1). In 

ultrasonic devices, there is a great variability of the 

gray value distribution and the spatial texture in each 

of the above-mentioned regions (Santiago et al., 2013). 

This happens among different ultrasound sequences 

and within the same sequence. This is due to the 

several reasons: Fast motion during systole phase, low 

signal-to-noise ratio, edge dropout (especially in the 

diastole phase) and the presence of shadows produced 

by the dense muscles, the specific properties and 

settings of the ultrasound machine and the anisotropy 

of the ultrasonic image formation (Bosch et al., 2002). 
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Fig 1. Echocardiography; apical four-chamber view (Chan 

and Veinot, 2011) 
 

 
 
Fig 2. Explanation of different views in echocardiography 

(Lohr and Sivanandam, 2009) 
 

Echocardiography images can be used for many 
different tests: Cardiac structure, heart development, 
function and also changes in normal physiologic states 
and pathologic conditions. For example, Left ventricular 
function can be obtained through 2 dimensional 
echocardiography images by calculating the ejection 
fraction. Depending on where on the chest the user 
positions the transducer, different views of the heart can 
be obtained. Some of the most common views are: Long 
axis view of the left atrium and the left ventricle, short 
axis views of the heart in planes from the base of the 
heart to the apex and the four chambers view; Fig. 2.  

Previous works in our lab towards the goal of Cardiac 
Intervention Environment, Cardiovascular Information 
System, and Heart Diseases Diagnostic Systems has 
included an automatic coronary arterial tree extraction in 
angiograms (Moosavi Tayebi et al., 2014), cardiac 
ultrasound fusion system development (Mazaheri et al., 
2014), Wavelet enhancement for x-ray angiography 
(Moosavi Tayebi et al., 2015), 3D Multimodal Cardiac 
Data Reconstruction in CT Angiography (Moosavi 
Tayebi et al., 2015), CT Angiography components 
categorization and coronary artery enhancement (Moosavi 
Tayebi et al., 2014), and some surveys including review 
on segmentation approaches (Mazaheri et al., 2013 and 
Moosavi Tayebi et al., 2014), and review on registration 
of cardiac images Mazaheri et al. (2015). 

The paper is organized as follows: In section II, we 
review the ideas in the field of segmentation methods; 
section III presents an overview of the proposed 
segmentation approaches for echocardiography images; 

section IV reviews the latest developments; and finally, 
section V concludes the paper with final remarks. 

Segmentation Methods 

Most considerations have been given to tracking the 
motion of the endocardium, e.g., blood pool or tissue 
border to allow for approximation of left ventricular 
volumes or areas and derived measures such as the 

ejection fraction and for regional wall motion analyzing. 
Especially, these measures are used in assessment and 
diagnosis of ischaemic heart disease. Most analysis is 
based on 2D acquisitions in which it is implicitly 
assumed that the principal component of motion is in the 
plane of the acquisition slice. Parasternal Short-Axis 

(SAX) is the standard 2D diagnostic views used for this 
and apical two-chamber (2C), Four-Chamber (4C) and 
Three-Chamber (3C) views. The latter three are also 
sometimes referred to as (apical) Long-Axis (LAX) 
views. The quality of data and therefore issues for 
segmentation, vary regarding to the view due to the 

anisotropy of ultrasound image acquisition, artifacts like 
attenuation and shadowing from the lungs which can be 
severe. Segmentation methods should also have 
strategies for avoiding the papillary muscles. Reliably 
finding the epicardial border, i.e., outer wall is more 
challenging, especially from apical views. 

Lots of the preliminary works concentrated on one 
frame segmentation yet; considering maximum expansion 
or end diastole and maximum contraction or end systole 
frames to calculate some measurements like EF (the 
ejection fraction). Although, analysis should be done for the 
whole cardiac cycle for fully assess heart function. 

Cardiologists also use a movie of a heart in decision-
making as the speckle pattern associated with de-forming 
tissue can be observed in a movie whereas in a still frame 
the speckle pattern is not always useful. As a result and in 
contrast to some other clinical application areas, in 
echocardiography it is perhaps more logical to view 

segmentation as a spatio-temporal problem. Lots of recent 
successful techniques have taken this point of view. A priori 
research of endocardial boundary detection is proposed in 
(Hammoude, 1998). In Fig. 3, there are some examples of 
segmentation results from (Bridal et al., 2003). 

Echocardiography images suffer from several 

specific drawbacks, which impede both human 
interpretation and automated analysis. 
 
• There is no simple relation between pixel 

intensity and any physical property of the tissue 
visualized. Echocardiography images are formed 
as a combination of interference patterns 
(speckle) and reflections at tissue transitions. 
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Different tissues are mostly not distinguishable by 
their intensity values or texture 

• Echocardiographic image information is highly 

anisotropic and position dependent, since 

reflection intensity, spatial resolution and signal 

to noise ratio depend on the depth and the angle 

of incidence of the echocardiography beam, as 

well as of user controlled depth gain settings 

• Many imaging artifacts occur, resulting in local 

loss of anatomical information: Significant 

amounts of noise, dropouts (for structures parallel 

to the echocardiography beam), shadowing 

(behind acoustically dense structures), side lobes, 

reverberations and limited echo windows. Still-

frame images, therefore, often only contain partial 

information 

 

For these reasons, automated segmentation of 

echocardiographic image sequences has proven to be a 

challenging task. Many approaches to segmentation 

echocardiographic data have been proposed. They can be 

divided into the following classes: Level Set (LS) 

approaches, Deformable templates, Active Shape Models 

(ASM), Active contours methods, Active Appearance 

Models (AAM), Bottom-up approaches and Database-

guided (DB-guided) segmentation (Santiago et al., 2013). 

Level Set Segmentation Approaches 

The use of level sets for medical image segmentation 

aims at improving the performance of active contours 

due to the following. First, LS are able to increase 

robustness of the model by combining both region and 

boundary segmentation. Second, the texture and shape 

priors are jointly used with a continuous parametric 

function to model the implicit segmentation function 

(Bernard et al., 2007; 2009; Cremers et al., 2006; Lin 

et al., 2003; Lynch et al., 2008; Paragios and Deriche, 

2002; Sarti et al., 2005; Debreuve et al., 2001; 

Paragios, 2003). 

Deformable Templates 

Alternatively, these issues can also be faced using 

deformable templates (Chen et al., 2008; Duan et al., 

2010; Nascimento and Marques, 2008; Zagrodsky et al., 

2005) that use an unsupervised scheme for learning. 

However, deformable template-based methods require 

the knowledge of how the initialization is performed. 

Both level-sets and deformable templates have 

demonstrated good results when dealing with medical 

images. Nonetheless, they also present some 

drawbacks regarding the prior knowledge included in 

the optimization function. 

Active Shape Models (ASM) and Active Appearance 

Models (AAM) 

The previously raised issues have also motivated the 

development of the supervised based models, in which the 

shape and appearance of the LV are learned from a 

manually annotated training set. This class of methods 

includes the Active Shape Model (ASM) (Cootes et al., 

1995; Parker et al., 1994; Cootes et al., 1994) and Active 

Appearance Model (AAM) (Bosch et al., 2002; 

Cootes et al., 1999; Mitchell et al., 2001). However, 

both methods need a large set of annotated training 

images and the initialization must be close to a local 

optimum. Furthermore, these methods assume a 

Gaussian distribution of the shape and appearance 

derived from the training samples. 

Active Contours Segmentation Methods 

Active contours methods inspired the development of 

Level Set (LS) methods (Malladi et al., 1995; Kass et al., 

1987; Chalana et al., 1996; Hozumi et al., 1997) which 

significantly reduce the sensitivity to initial conditions. 
 

 
 (a) (b) (c)  
 
Fig 3. Some reults of echocardiography image segmentation. Short Axis images (SAX) from (a) (Dias and Leitão, 1996) and from 

(b) (Mikic et al., 1998) (c) Long Axis images (LAX) from (Bosch et al., 2002) 
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Bottom-up Segmentation Approaches 

Bottom-up approaches detect the LV boundary 

using edge detection that constitutes features to 

represent the object boundary. Although these 

methods have low computational complexity, they are 

sensitive to initial conditions and generally lack 

robustness to imaging conditions (Sonka et al., 1995; 

Zhang and Geiser, 1984). 

Database-Guided (DB-Guided) Segmentation 

The above issues motivated the proposal of the 

DB-guided segmentation approaches that use 

supervised learning techniques (Georgescu et al., 2005; 

Zhou et al., 2005). Specifically, discriminative 

learning model based on boosting techniques (Freund 

and Schapire, 1997) is developed to segment LV from 

ultrasound images. Another important point in the DB-

guided approach is its independence regarding an initial 

guess. Instead of that, a full search is conducted in the 

parameter space. However, these methods have several 

drawbacks. Besides the high complexity of the search 

process, super-vised learning methods face two main 

difficulties which are the large number of training images 

(in the order of hundreds) needed to estimate the parameters 

of the model and the robustness to imaging conditions 

absent from the training set (Carneiro and Nascimento, 

2010; Carneiro et al., 2008; Zhou et al., 2005). 

Though partially successful, three major problems 

are associated with many of the existing 

echocardiographic contour detection strategies. 

 

• The current methods typically do not include 

information about the allowable range of shape 

and appearance variations of the segmented 

objects. Ultrasonic image information is often ill-

defined or incomplete. Therefore, extensive 

model knowledge about the characteristic organ 

shape and appearance, its anatomical and 

pathological shape variations and spatial organ 

embedding should form an integral part of a 

robust segmentation approach 

• Most existing methods use implicit, global and 

oversimplified models for the contour location. The 

location of strong local image features, however, 

does not always correspond to the desired contour as 

drawn by an expert human observer. The exact 

location of the contour cannot always be determined 

from the strongest image evidence, but should be 

modeled or learned from examples provided by 

expert observers. Moreover, contour characteristics 

vary for different parts of the local (and still 

unknown) anatomy 

• Many automated techniques perform a static 

segmentation on single 2D frames or use 

rudimentary continuity constraints and, therefore, 

often produce segmentation results that are 

inconsistent with the dynamics of the cardiac 

cycle. An expert observer, however, utilizes 

knowledge about cardiac contraction dynamics 

and temporal coherence of structures and texture 

to resolve ambiguities and to determine the exact 

LV boundary location, mostly after reviewing the 

image data in a cine loop. Recently, several 

methods have been reported that try to deal with 

the third problem in time sequences of either 2D 

or 3D echocardiograms 

 

Nonetheless, 3D echocardiography has gained 

increasing interest and several methods to perform the 

3D segmentation of the LV have become available in 

literature (Noble and Boukerroui, 2006). One approach 

to perform 3D segmentation is to consecutively 

applying 2D segmentations to each image plane and 

assembling them into a 3D structure (Nillesen et al., 

2006; Scowen et al., 2000) as cardiologists manually 

do in such cases. However, such approaches require 

additional methods to pre-vent spatial inconsistencies 

in the surface. Other approaches have performed the 3D 

segmentation using 3D active contours such as level-set 

(Hang et al., 2004; Yu et al., 2006; Juang et al., 2011). 

Furthermore, over the last decade some effort has been put 

into developing 3D+t LV tracking systems that are 

able to segment the LV over the course of the cardiac 

cycle, such as (Orderud et al., 2007; Yang et al., 2008). 

Echocardiography Image Segmentation 

Approaches 

2-Dimensional Endocardial Boundary Estimation 

For echocardiography endocardial segmentation, 

finding contour method is the most common technique 

which has been considered. Since contrast 

surrounding the boundary of the left ventricle differs 

relating to the appropriate situation of the transducer 

orientation and also artifacts and attenuation, the 

boundary would not be clear. Therefore, conventional 

gradient intensity based techniques don’t have success 

on common ultra-sound data. 

Mishra et al. (2003) presented an active contour 

approach which for optimization used a genetic 

algorithm. Two experts have done manual 

descriptions on twenty frames and the usual amount 

compared with the automatic technique to indicate 

that the inter-variability among experts was resemble 

to the difference between the manual and automatic 

techniques. Mignotte and Meunier (2001) for the 

segmentation of short axis parasternal images, apply a 

statistical external energy in a discrete active contour 

and discussed this is work best for echocardiography 
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images which they have huge noise and disappeared 

borders. With this aim, a shifted Rayleigh distribution 

was applied to show the statistics of gray levels. 

Mignotte et al. (2001) suggested a border detection 

algorithm, using Bayesian framework which used 

deformable templates for modeling the precedent 

information. This technique is unsupervised and fully 

automatic. The approximation problem which is 

formulated as a Maximum A Posteriori (MAP) 

optimization solved via a genetic algorithm. They also 

presented a comparison to manual descriptions which is 

done by two experts. Boukerroui et al. (2003) proposed 

the same Bayesian methodological method where the 

segmentation is region-based. They used level sets which 

they are usually considered as an alternative to active 

contours for echocardiography image segmentation.  

Lin et al. (2002) proposed a different level set 

segmentation approach where fuses region and edge 

information with spatial scales. For this method they 

considered a closed curve as a border. They applied 

segmentation method to single 2D slices, while used their 

proposed method to rotational 3D echocardiography 

images. When the quality of echocardiography images is 

good, their method work well. Yan and Zhuang (2003) 

used an adaptation of the fast marching cube technique for 

applying the level set technique on echocardiography data. 

They used a mean gradient intensity based measure to 

deduct errors related to local feature measurements. They 

discussed the results only quantitatively, but applied their 

algorithm to an apical four chamber view and a SAX 

(parasternal short axis) view. 

Boukerroui et al. (2003), proposed an accurate 

adaptive region segmentation which works in a Bayesian 

frame-work. The adaptive property for compensating 

existence inhomogeneity and non-uniformity of 

echocardiography data within the same tissue, considers 

a slow spatial variation and local class mean. They 

evaluated their method by manual description which is 

done by an observer on a LAX (long axis view) and 

compared with another segmentation which is also 

region based method, Xiao et al. (2002). 

ANN-based (Artificial neural network) techniques 

also have been used for region based segmentation 

(Rekeczky et al., 1999; Noble and Boukerroui, 2006). 

For example, Binder et al. (1999) applied a 2 layer back 

propagation network to end-systolic and end-diastolic 

SAX images (parasternal short axis view) from thirty-

eight patients with different quality data which consist 

of 12 images with good quality, 13 images with 

moderate quality and 13 images with poor quality. This 

is one of the few researches that have done experience 

at data of different quality. Result of segmentation was 

successful in thirty-four of the thirty-eight database. 

The automatic technique was compared with manual 

tracking which is done by 2 experts. 

Spatio-Temporal Methods (2D+T) 

We can consider echocardiography image 

segmentation as a Spatio-temporal problem, as the Region 

Of Interest (ROI) changes in a non-rigid manner and it has 

inhomogeneity over the frames. Spatio-temporal 

examination gives a local approximate of image velocity 

along with segmentation and leads to more suitable 

localization of a boundary. For example, Mulet-Parada 

and Noble (2000) presented a local-phase-based approach 

for detection endocardial border with Spatio-temporal 

space. They showed that local phase would be a better 

basic for echocardiography feature detection and also 

segmentation; because local phase is fixed to intensity 

magnitude. They used a derived measure from phase, 

which is called feature asymmetry for identifying the 

endocardium in a 2D+T space (Spatio-temporal). Since 

then local phase approach has been used for feature 

identify in lots of ultrasound researches (Mulet-Parada, 

2000; Ye et al., 2002; Sanchez-Ortiz et al., 2002). 

Mikic and others presented an active contour 

technique, provided by the method of Singh and Allen 

(1992; Boukerroui et al., 2003), which propagation of a 

contour from one single frame to another one was 

guided by optical flow approximates (Mikic et al., 

1998). This information can be used for determining 

the initialization of an active contour. Metrics in 

active contour empirically determined. The approach 

was evaluated on 3 long axis, 3 short axis and 2 aortic 

roots images; and compared with three to five manual 

delineations (Fig. 3a). 

Dias and Leitão (1996), presented an approach for 

the both epicardial and endocardial boundary 

approximation like the former research of Friedland 

and Adam (1989) and also Teles de Figueiredo and 

Leitaa (1992). In (Friedland and Adam, 1989; Teles de 

Figueiredo and Leitaa, 1992), they used polar 

coordinates for contour description; although, as far as 

we know, this is the first method which considers 

noise statistics in border optimization. They modeled 

the estimation problem in a Bayesian frame-work as a 

MAP estimation problem with a Spatio-temporal MRF 

for the regularization term and Rayleigh statistics for 

the data term. For solving the optimization problem, 

they used a repetitive multi-grid dynamic 

programming algorithm. They presented results on 

one short axis view image and also on synthetic data. 

Figure 3(a) shows an example result from (Teles de 

Figueiredo and Leitaa, 1992).  

Figueiredo  et al. (2000), inside the same framework, 

proposed a parametric contour segmentation in an 

unsupervised way, based on B-spline descriptions. They 

applied a MDL (minimum description length) parameter to 

estimate B-spline knots’ number. 

Jacob et al. (1999; 2001; 2002) proposed a Kalman 

filter based epicardial and endocardial boundary 
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tracing technique based on contour tracking method of 

(Blake and Isard, 1998). They built a Spatio-temporal 

contour model where it has 2 sections; a shape model 

made from manual description of the left ventricle 

boundaries of a motion model and a training set. 

Bosch et al. (2002) presented the Active 

Appearance Motion Model (AAMM) to represent the 

appearance and shape of the endocardium, also its 

motion by applying an adaption of the Active 

Appearance Model (AAM) technique; Fig. (3c) shows 

an example of this technique. Mitchell et al. (2002) 

proposed a 3D active appearance model for 

segmentation of 4 chamber cardiac ultrasound images 

(2D with the third dimension time, 2D+T). This 

technique adjusts itself in time and space; it means it is 

Spatio-temporal. They trained the model from manually 

segmented instances in a learning phase. 

Endocardial Boundary Detection in 3D and 4D 

Images 

In previous research on 3D endocardial boundary 

detection, Coppini et al. (1995) have taken into 

account reconstruction and segmentation of Left 

Ventricle (LV) from freehand echocardiography 

images which they are captured at 4 set angles 

regarding to the 4 chambers view. 

Song and others considered the segmentation 

process in a Bayesian framework as a surface fitting 

problem which finding a 3D surface where has the 

largest previous probability is the aim (Song et al., 

2002). Wolf and others (Wolf, et al., 2002) proposed 

the Restricted Optimal Path Exploring Segmentation 

(ROPES) method, where is a semi-automatic 

segmentation. They applied their method to 2D slices 

of 3D TEE (transesophageal echocardiography) data. 

Angelini et al. (2001) considered segmentation of 

real time 3D echocardiographic images from a 

volumetric process. Montagnat et al. (2003) extended a 

3D+T model based segmentation method for 

rotational 3D echocardiographic data. This research 

used a combined edge and region-based approach and 

for analysis it uses a cylindrical geometry. Especially, 

the orientation and intensity gradient magnitude are 

applied, together with a region-based on a local 

analysis of intensity values. The answers are set in a 

variational frame and some of their features make 

them well suited to 3D echocardiographic 

segmentation. Sarti et al. (1999) proposed a model for 

multiple scale analysis of space time 

echocardiography images which trying to solve a 

nonlinear (partial) differential equation fusing 

proposed methods of the Galilean invariant movie 

multi scale analysis of Guichard with anisotropic 

diffusion model from Perona Malik (Guichard, 1998; 

1994). In (Mikula et al., 2000), authors extended 

spatial diffusion from Perona Malik and substituted it 

with a nonlinear anisotropic smoothing curvature 

driven level sets (Preußer and Rumpf, 2002). Then, 

Mikula and others proposed a truly-coupled Spatio-

temporal anisotropic diffusion (Mikula et al., 2004). In 

this research, time smoothing was curvature driven 

and they discussed, it resulted in better smoothing 

with velocity discontinuity preservation in compare 

with the last acceleration-based smoothing. 

Corsi et al. (2002) applied a level-set based 

segmentation algorithm to real-time 3D 

echocardiographic data from a volumetric system. The 

level-set’s initialization is defined by manual 

delineation on a few Short Axis frames (SAX). Sarti 

and others proposed a level set segmentation method 

for images, like echocardiographic data, that can have 

missing borders (Sarti et al., 2000; 2002). This method 

differs completely with anterior level-set 

segmentation methods that consider just the zero 

level-set. Their research was later developed by 

(Corsaro et al., 2004) and Mikula et al., (2004); a robust 

and accurate semi-implicit numerical volume scheme 

was presented to solve the Riemannian mean 

curvature flow equation in 2D (Mikula et al., 2004) 

and 3D (Corsaro et al., 2004). Examples of 

segmentation from classical Kanizsa triangle were 

presented to show that the technique can find missing 

borders. They also presented some examples on 3D 

cardiac (Mikula et al., 2004) and fetal 

echocardiography images (Sarti et al., 2000). 

Myocardium and Epicardium Segmentation 

Eventually, for analysis and segmentation of 

myocardium, there is a very limited literature (Kerut et al., 

2000) and also for epicardial boundary estimation (Dias 

and Leitão, 1996; Feng et al., 1991; Malassiotis and 

Strintzis, 1999). These two tasks are both difficult to do 

directly on B-mode images. Also it is done a little research 

for finding methods which work on general clinical 

data rather than data from subjects with a good 

acoustic window. We addressed to some of the few 

researches which have done so above (Bosch et al., 

2002; Binder et al., 1999; Mitchell et al., 2002). One 

further exception is the work of Boukerroui et al. 

(2001) which considers how to enhance B-mode images 

to reduce the effect of attenuation and enhance features. 

Although that meth-od was shown quantitatively to 

reduce attenuation, enhance features and not introduce 

artifacts after enhancement, that approach has not to date 

been fully tested in clinical practice. 
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Review the Latest Developments 

Kucera and Martin (1997) presented an approach with 

an external force region based in their previous research 

for LV segmentation. In an active contour 3D model, they 

defined this force with time as one dimension. The 

proposed technique is relatively reliable on Short and 

Long Axis (SAX and LAX) views.  

Sarti et al. (2005) applied a region based method in 

their proposed segmentation technique which they 

assemble a prior knowledge for statistical distribution 

of gray levels. They used a level set technique to drive 

the curve evolution to get a maximum likelihood 

segmentation of the target, regarding to the statistical 

distribution law of image pixels. When comparing the 

area enclosed by the resulting contours from this 

technique with manually outlined contours the 

correlation is excellent. 

Sarti et al. (2005) also proposed a region-based 

segmentation in their adaptive segmentation approach. 

They use a weighting function that considers both 

global and local statistics during the segmentation 

process. The segmentation of the left ventricle shows 

good results when compared with manual outlines by 

a medical expert. 

Mishra et al. (2003) use an active contour model when 

segmenting the left ventricle in Short Axis (SAX) view. 

They solve the optimization problem with using a Genetic 

Algorithm (GA) and the performance is com-parable with 

interobserver variations. 

Mignotte and Meunier (2001) proposed a multi-

scale approach to the contour optimization. Their 

external energy in the snake energy function is also 

region based. They demonstrated some segmentation 

results for Short Axis (SAX) views that are 

qualitatively good. 

Chen et al. (2007) built an active contour algorithm 

in a geometric way with a prior intensity and shape. 

The results of applying the method to a 2 chamber 

view are promising. 

Bosch et al. (2002) proposed an Active Appearance 

Motion Model (AAMM) that was used to do a 

segmentation of the left ventricle. This is an extension of 

Active Appearance Models (AAM) and they did an 

automated segmentation over the full heart cycle. Their 

results are comparable with inter-observer variations. 

Mitchell et al. (2002) did a fully 3 dimensional 

Active Appearance Models (AAM) with time as one 

of the dimensions in echocardiography images. They 

obtained a correlation coefficient of 0.79 when 

comparing the area of the Left Ventricle (LV) defined 

by their method and an observer respectively. 

Several other methods have also been evaluated for 

this segmentation problem, including a fuzzy multi-

scale edge detector (Setarehdan and Soraghan, 1999), 

artificial neural Networks (Binder et al., 1999; 

Rekeczky et al., 1999) and a Kalman filter based 

tracking method (Jacob et al.,  2002). 

All of these methods give acceptable segmentations 

of the Left Ventricle (LV) in Long Axis (LAX) and/or 

Short Axis (SAX) views. 

Santiago et al. (2013) offered a bottom-up 

deformable-based model for the segmentation of the Left 

Ventricle (LV) in 3D ultrasound data. The presented 

methodology is based on Probabilistic Data Association 

Filter (PDAF). After a rough initialization given by the 

user, the following steps are performed: (1) low-level 

transition edge points are detected based on a prior 

model for the intensity of the LV, (2) middle-level 

features or patch formation is accomplished by linking 

the low-level information, (3) data interpretations are 

computed based on the reliability (belonging or not to 

the LV boundary) of the previously obtained patches, (4) 

a confidence degree is assigned to each data 

interpretation and the model is updated taking into 

account all data interpretations. 

Landgren et al. (2013) presented a semi-automated 

segmentation method that used a region based snake. To 

avoid any unwanted concavities in the segmentations due 

to the cardiac valve they use two anchor points in the 

snake that are located to the left and to the right of the 

cardiac valve respectively. For the possibility of 

segmentations in different stages of the heart cycle these 

anchor points are tracked through the cycle. This tracking 

is based both on the resemblance of a region around the 

anchor points and a prior model of the movement in the y-

direction of the anchor points. The tracking of the anchor 

points also seems to work well. The use of a prior model 

turned out to be necessary when testing the tracking 

algorithm without it. With no prior model the anchor 

points have a tendency to wander away or not follow the 

cardiac valve back when the heart relaxes. 

McManigle et al. (2012) proposed a two-step Hough 

transform and introduced a myocardial segmentation 

technique based on the circular Hough transform. They 

developed a preliminary segmentation technique which 

takes advantage of both endocardial and epicardial image 

information. The segmentations generated are com-pared 

to expert manual segmentation of 3D+t echocardiogram 

data and evaluated for their appropriateness to initialize a 

subsequent segmentation step. 

Skalski et al. (2012) presented an application of 

active contour without edges method to left ventricle 



Samaneh Mazaheri et al. / Journal of Computer Sciences 2015, 11 (9): 957.970 

DOI: 10.3844/jcssp.2015.957.970 

 

964 

segmentation in ultrasound echocardiographic images. 

The proposed procedure consists of three basic modules: 

ROI calculation by means of Hough transform, image 

denoising by means of SRAD filtration and, finally, 

image segmentation by means of active contour without 

edges method. The proposed scheme can be modified 

and in conjugation with deformable image registration 

methods, e.g., B-Spline Free Form Deformation or 

Spring Mass system can be used for calculation of 

deformations of hearts structures like heart walls. 

Pearlman et al. (2012) presented an algorithm for 

segmenting left ventricular endocardial boundaries 

from RF ultrasound. Their method incorporates a 

computationally efficient linear predictor that exploits 

short-term spatio-temporal coherence in the RF data. 

Segmentation is achieved jointly using an independent 

identically distributed spatial model for RF intensity 

and a multi-frame conditional model that relates 

neighboring frames in the image sequence. 

Segmentation using the RF data overcomes challenges 

due to image inhomogeneities often amplified in B-

mode segmentation and provides geometric 

constraints for RF phase-based speckle tracking. The 

incorporation of multiple frames in the conditional 

model significantly increases the robustness and 

accuracy of the algorithm. 

Dietenbeck et al. (2012) they proposed a method to 

segment the whole myocardium (endocardial and 

epicardial con-tours) in 2D echographic images. This 

is achieved using a level set model constrained by a 

new shape formulation that allows modeling both 

contours. Also their framework allows segmenting the 

whole myocardium for the four main views used in 

clinical routine. They approximated the heart 

boundaries by two hyper-quadrics that are then used 

as a shape prior for the evolving contour. The method 

is validated on a dataset of clinical images and 

compared with expert segmentation. 

Robust and fast 3D tracking of deformable objects, 

such as heart, is a challenging task because of the 

relatively low image contrast and speed requirement. 

Many existing 2D algorithms might not be directly 

applied on the 3D tracking problem. The 3D tracking 

performance is limited due to dramatically increased 

data size, landmarks ambiguity, signal drop-out or 

complex non-rigid deformation. Yang et al. (2011) 

presented a 3D tracking algorithm, Prediction based 

Collaborative Trackers (PCT) and tested in both 3D 

ultrasound and CT. Compared with tracking by 

detection and 3D optical flow, PCT provides the best 

results. They demonstrated that PCT increases the 

tracking accuracy and especially speed dramatically. 

Their tracker is tested on three clinical datasets for 

three 3D heart tracking problems with two different 

imaging modalities: endocardium tracking of the left 

ventricle, dense tracking in the myocardial regions 

between the epicardium and endocardium of the left 

ventricle and whole heart four chambers tracking. 

Recently, introduced variant of the level set 

method called level set without edges. This variant 

takes ad-vantage of the intensity value of area 

information instead of module of gradient which is 

typically used. Such approach guarantees stability and 

correctness of algorithm working on the border 

between object and back-ground with small absolute 

value of image gradient. 

Skalski and Turcza (2011) proposed an algorithm 

for heart shape estimation (segmentation) in ECHO 

images using this level set method without edge. They 

proceeded the image segmentation with automatic 

Region Of Interest (ROI) calculation. The main idea 

of ROI calculations is to receive a triangle-like part of 

the acquired ECHO image, using linear Hough 

transform, thresholding and simple mathematics. The 

described algorithm involves the following three 

steps: Removing multiplicative noise from an image 

by nonlinear diffusion filtration, determination of 

diagnostically relevant area by Hough image 

transformation and finally image segmentation with 

active contour algorithm. Erroneous situations with 

pixels representing background are classified as an 

object by an algorithm were excluded by the proper 

restriction of the segmented area and controlling 

contour evolution process using information other 

than image gradient magnitude. 

Juang et al. (2011) proposed a method to 

automatically segment the left ventricle and atrium 

without any user input in 3D ultrasound volumes. 

Their method can segment volumes with open and 

closed mitral valves. They utilized the radial 

symmetry transform to determine a central axis along 

which the 3D volume is warped into a cylindrical 

coordinate space. A graph is constructed for the 

volume in this space and a min-cut algorithm is 

applied to segment the left ventricle and atrium from 

the background. The segmented results are 

transformed back to the Cartesian coordinate space. 

This method can be extended to other types of 

segmentation techniques, such as level sets and 

watershed. The method is generic enough to be 

applied to other imaging modalities such as MRI or 

CT (Table 1). 
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Table 1. Validation of echocardiography image segmentation 

        Performance 
       Segmented -------------------------------------------------------------- 
Ref Year Modality Method Dimension Automation Evaluation part Measure Value 

Santiago 2013 4C Contour method 3D No Quantitatively LV -The Hammoude  0.15±0.1mm 
et al., 2013        metric (dHMD) 
        -The average distance, 2.5±1.1 mm  
        dAV 
        -Hausdorff metric, 6.9±2.6 mm  
        dHDF 
        -Mean absolute 3.6±0.9 mm 
        distance, dMAD  
Landgren 2013 SAX4C Region based 3D Semi-automated Qualitatively LV -The computation time for  40 s 
et al., 2013        performing segmentation in  
        each frame in one cardiac cycle 
McManigle 2012 SAX Modified 3D+t Yes Quantitatively LV -Distance between manual and 3.31±2.65 mm 
et al., 2012   Hough     Hough transform center points 
   transform     -RMSD between manual and  2.57±1.78 mm 
   method     Hough transform endocardial  
        radii over 8 angles 
        -RMSD between manual and 3.04±2.10 mm  
        Hough transform epicardial radii  
        over 8 angles 
        -Dice’s coefficient 0.70±0.17 
Skalski 2012 4C Active Contour 2D Yes Quantitatively LV -Borders calculation 1.64 
et al., 2012   (snake) Model     -SRAD filtering  0.2 
   -Hough transform     -Initial contour calculation 0.008 
        -Contour evolution 0.48 
Pearlman 2012 RF Spatio-temporal 3D RF Yes Quantitatively LV -Dice coefficient 0.8-0.93 mm 
et al., 2012  ultrasound predictor    boundaries -Mean absolute distance 1.5-2.7 mm 
        -Hausdorff distance 4.8-9.1 mm 
Dietenbeck 2012 SAX LAX  Geometrically 2D Yes Quantitatively Myocardium -Hausdorff Distance (HD) 1.23-2.96 mm 
et al., 2012  4C 2C constrained     -Mean Absolute Distance  0.5-1.07 mm 
   level-set method     (MAD) 
        -Dice’s coefficient 0.96-0.01 mm 
Yang 2011 SAX  Prediction based 3D Yes Quantitatively LV tracking -3D optical flow 0.94 - 10.38 
et al., 2011  4C 3C 2C Collaborative     -Tracking by detection  0.59 - 9.89 
   Trackers (PCT)     -PCT 0.38 - 9.80 
Skalski and 2011 4C Level set  3D Yes Quantitatively Heart  -True Positive Fraction 0.91 
Turcza, 2011   Method-active     (TPF) 
   contour algorithm     -False Negative Fraction 0.10 
        (FNF) 
        -False Fraction 0.82 
        (FF) 
Juang 2011 2C Graph cuts and 3D Yes Quantitatively LV cavity Mean Error ± StdDev 2.37 ± 3.59 mm 
et al., 2011   the radial    and atrium on data A1 
   symmetry     Mean Error ± StdDev 2.79 ± 3.36 mm 
   transform     on data A2 
        Mean Error ± StdDev 2.28 ± 3.49 mm 
        on data B1 
        Mean Error ± StdDev 2.10 ± 2.37 mm 
        on data B2 

Table Explanations 

Tables I summarize the evaluation which has been done on well-known techniques which explained in last Sections related to 6 common views echocardiography image 
for segmentation. 
Key to table: 
 

• Modality: SAX = Short Axis, LAX = Long Axis, XC = apical X Chamber (X= 2, 3, 4) 

• Performance Metric: as mentioned, since researches are different in their measurements and naming, it is so difficult to set them through the studies 
• Automation: (yes) full, (no) interactive guidance/correction 

 

Conclusion 

Usually, for examining medical image 
segmentation techniques in a quantitative way, we can 

use animal mod-el studies, phantom studies, 
simulation and manual delineation; one modality as a 
“reference” or “gold standard”, or some relation 
between clinical result. Mostly, clinical info is utilized 
in evaluation. However, there is some literature on 
echocardiography segmentation techniques shows that 

some phantom and simulation studies also have been 
done. This somehow indicates problems in defining 
real phantoms and simulations. The most popular 
metric of performance evaluation is manual 
delineation on clinical data; although regarding to 

clinical area, there can be huge inter-expert and intra-
expert variability; it is due to the fact that manual 

segmentation is not a routine task that they normally do. 
Therefore, delineation can be difficult to do. So, when 
manual delineation is applied as the gold standard, we 
should to take care in explaining results. Because there is 
no standardization of performance metrics, it is hard to 
compare techniques directly. That’s why, in some 

researches, they use multiple experts to define the 
reference. We have made comparison between methods 
which proposed by research groups, since there is no 
standard database to compare results. Lacking of a 
standard dataset is confusing, since quality of 
echocardiography images varies a lot, in compare with 

other clinical imaging such as CT or MRI. 
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