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Abstract: This paper proposed an efficient real time scheduling algorithm 

using global scheduling paradigm running in multicore environment known 

as Global Preemptive Utility Accrual Scheduling (GPUAS) algorithm. The 

existing TUF/UA multiprocessor scheduling algorithms known as Greedy-

Global Utility Accrual (G-GUA) and Non Greedy-Global Utility Accrual 

(NG-GUA) algorithms is seen to overlook the efficiency on its task 

scheduling algorithm. These algorithms have adapted the task migration 

attribute considering the load balancing problem in multi core platform. 

The existing PUAS uniprocessor scheduling algorithm is mapped into the 

multicore scheduling environment that consists of the global scheduling 

schemes considering the migration attribute of the executed tasks. The 

main principal of global scheduling is that it allows the executed tasks to 

migrate from one processor to the other processors whenever a scheduling 

event occurs in the system. The proposed GPUAS algorithm inherits the 

characteristics of PUAS in uniprocessor where it can preempt the highest 

PUD task at any event that occurs in the system. In this research, the 

proposed GPUAS algorithm enhanced the existing NG-GUA and G-GUA 

algorithms. The developed simulator has derived the set of parameter, 

events and performance metrics according to a detailed analysis of the 

base model. The proposed GPUAS algorithm achieved the highest 

accrued utility for the entire load range. The proposed GPUAS algorithm 

is more efficient than the existing algorithms, producing the highest 

accrued utility ratio and less abortion ratio making it more suitable and 

efficient for real time application domain. 

 

Keywords: Real Time System, Utility Accrual Scheduling, Multicore, 

Discrete Event Simulation 

 

Introduction 

In the presence of extremely overloaded tasks traffic, 

the RTS requires multicore environment with an 

efficient load sharing capability to accommodate the 

surplus load. The load sharing mechanism is required in 

order to migrate the executed tasks across multiple 

processors. This ensures that no processor is idle while 

some tasks are waiting to be scheduled on other 

processors. The load sharing problem in multiprocessor 

environment can be solved by deploying the task 

migration attribute in the executed tasks. 

Problem Statement 

The existing TUF/UA multiprocessor scheduling 

algorithms known as Greedy-Global Utility Accrual 

(G-GUA) and Non Greedy-Global Utility Accrual 

(NG-GUA) algorithms (Garyali et al., 2010) is seen to 
overlook the efficiency on its task scheduling in 
multicore platform. G-GUA uses a greedy strategy 
where task whose execution yields the maximum PUD is 
selected to be scheduled at a particular instance. For load 
sharing purpose, the requesting task is placed at the 

queue that has the least remaining execution cost. This 
requesting task assignment behavior in G-GUA may 
affect the total utility accrued because it does not 
consider the value of utility when determining the 
suitable queue at that particular instance. On the other 
hand, NG-GUA uses dual metric to overcome 

overloaded tasks in RTS. During under load it uses 
deadline and during overloaded condition, task whose 
execution yields the maximum PUD is selected to be 
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scheduled at a particular instance. However, NG-GUA 
immediately aborts the requesting task that has potential 
to produce zero utility to the system due to its 
infeasibility. The abortion of a task leading to a zero 

utility acquired by the requesting task to the system. This 
will have an effect on the total utility accrued to the 
system. If the underlying scheduling scheme can reduce 
the abortion of the requesting task efficiently, then the 
system will possibly attain a higher utility thus 
enhancing the overall system’s performance. 

Objective 

The objective of this research is to enhance the 
efficiency of the existing TUF/UA scheduling 
algorithms in multiprocessor environment i.e., NG-
GUA and G-GUA to accommodate the overloaded 
tasks traffic so that the maximum total utility accrued 
to the system. This paper proposed the GPUAS 
algorithm that considered an efficient task request 
location with migration task attribute for solving the 
overloaded situation. If the underlying scheduling 
scheme places the task's request among the processor's 
queue efficiently and reduce the abortion problems, 
then the system will gain higher utility thus enhancing 
the overall system’s performance. 

Materials and Methods 

Approach  

A discrete event simulation is used as a 

methodology to verify the performances of GPUAS 

and the existing algorithms. In order to precisely 

remodel and further enhance the algorithms, DES 

written in C language in Visual C++ environment is 

the best method to achieve this objective. Figure 1 

shows the deployed simulation framework. 

Simulation Framework 

The simulation of multicore infrastructure consists of 

a source, task entities and an array of utlist queues and 

resources to represent the various numbers of processors 

in the system. 

Task Model 

Tasks have one of two types of migration 

characteristics. The migration type of a task is denoted 

by Migration ∈ {NON_MIGRATE, MIGRATE}. Tasks 

that are not allowed to migrate among processors possess 

the NON_MIGRATE attribute while those with a 

MIGRATE attribute can be migrated among the 

processors and are considered only in the global 

scheduling paradigm. 

TUF Model 

The general dominant task attribute is associated to 

using timing constraint which is denoted as deadline. 

The timing constraint of a task is designed using the 

step and arbitrary TUF model in this study (Li et al., 

2006). A TUF describes a task utility contribution to 

the system as a function of its completion time. The 

TUF shape of a task is denoted by Shape ∈ {STEP, 

ARBITRARY}. The step TUF model used in the 

simulator is shown in Fig. 2. The maximum utility 

that could possibly be gained by a task is denoted as 

MaxAU. The random value of MaxAU abides normal 

distribution (10, 10) i.e., the mean value and variance 

is set 10 to conform to the benchmark. The InitialTime 

is the starting time for which the function is defined. 

The TerminationTime is the last time for which the 

function is defined. That is, MaxAU is defined in 

within the time interval of [InitialTime, 

TerminationTime]. The completion of a task at an 

instance i.e., sclock within this interval will yield a 

random positive utility denoted as Utility which is 

equal to the MaxAU for step TUF model as shown in 

Fig. 2a. The completion of a task breaching the 

stipulated deadline causes the value of Utility and 

MaxAU to become zero. If the TerminationTime is 

reached and the task has not finished its execution, it 

accrues zero utility to the system. 

The arbitrary shape TUF is represented as a 

continuous and derivable polynomial equation as 

shown in Fig. 2b. The maximum utility that could 

possibly be gained by a task is denoted as MaxAU. 

The random value of MaxAU abides normal 

distribution (10, 10) i.e., the mean value and variance 

is set 10 to conform to the benchmark. For arbitrary 

TUF, the completion of a task within the InitialTime 

and TerminationTime interval will yield a random 

positive utility denoted as Utility as shown in Fig. 2b. 

Task Assignment Algorithm  

All tasks are assigned to processors by task 

assignment algorithm as shown in Fig. 3. The number 

of processors is checked before the task is assigned to 

a specific processor. The Tgen.cpuid parameter is 

used to identify the assigned processor ID. In 

uniprocessor environment the value of Tgen.cpuid is 

equal to 0. This indicates that the processor ID zero is 

assigned to task Tgen. In multiprocessor environment, 

the generated task Tgen is assigned according to the 

value of ShortestCPU parameter. This parameter 

captures the processor ID that has the smallest value 

of TotalExec[cpuid]] value in their respective cpuid 

queue. The TotalExec[cpuid] measures the execution 

time of all requests that are currently pending in the 

cpuid queue. The TotalExec parameter is increased 

every time a request of a task is inserted into the cpuid 

queue. The TotalExec parameter is reduced every time 

a request of a task is deleted from the cpuid queue. 
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Fig. 1. Simulation framework (Idawaty et al., 2012) 
 

 
 

Fig. 2. TUF model 
 

 
 

Fig. 3. Task assignment algorithm
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Existing Algorithms  

The features of the existing G-GUA algorithm are 

simplified as follows: 

 

1. G-GUA uses the PUD metric i.e., task whose 

execution yields the maximum PUD over others is 

scheduled in the system. Once a scheduling event is 

triggered, a new schedule is created that may result in the 

task executing on the other processors to be preempted. 

2. G-GUA allows the request of a task to migrate to 

the idle resource in another processor in the system. It 

also allows the request of a task to be inserted into a 

processor’s queue with the least of total remaining 

execution cost for the respective resource. 

 

The existing NG-GUA algorithm is a TUF/UA 

multiprocessor real time scheduling algorithm that 

allows tasks to be subject to run-time uncertainties, 

overloads and global migration (Garyali et al., 2010). 

The none greediness in the name of this algorithm 

describes the tendency of the algorithm to accrue as 

much total utility during overload situation while in 

under load situation it uses deadline as its metric and 

schedule task with the earliest deadline first. The features 

of the existing NG-GUA are simplified as follows: 

 

1. NG-GUA uses two metrics for task scheduling 

depending on the overload condition in the system. 

During overloaded, the PUD metric i.e., task whose 

execution yields the maximum PUD over others is 

scheduled in the system. In under load situation, the 

deadline metric i.e., task with the earliest deadline is 

scheduled in the system. Once a scheduling event is 

triggered, a new schedule is created that may result in the 

task executing on the other processors to be preempted. 

2. NG-GUA allows the request of a task to migrate to 

the idle resource in another processor in the system. It 

also allows the request of a task to be inserted into a 

processor’s queue with the least of total remaining 

execution cost for the respective resource. 
 

Proposed Algorithm 
The different approach of GPUAS is in the decision 

for queuing the requesting task with the lowest PUD in 

the system. GPUAS uses the lowest PUD metric as 

opposed to G-GUA that used the least sum of total 

remaining execution cost for the respective resource. 

GPUAS uses only the PUD metric to schedule the 

incoming task as opposed to the existing algorithms 

that uses dual metrics i.e., PUD and deadline to 

schedule tasks in the system according to the current 

load in the system. Figure 4 shows the different 

between these algorithms to identify the most suitable 

queue to insert the requesting task i.e., Treq when it 

cannot be instantaneously scheduled to use a resource 

in the system. There are two parameters being used by 

the scheduling algorithms on the decision to locate task 

Treq as follows: 

 

i. NG-GUA, G-GUA and GPUAS measure the least 

sum of remaining execution cost for resource rid among 

the utlist queues. The LeastTime parameter is used to 

represent the least sum of remaining execution cost. 

Additionally, the LeastUtlist parameter is used to 

represent which utlist queue possess the least sum of 

remaining execution cost. The remaining execution cost 

for a resource i.e., rid in a queue is captured from the 

remaining HoldTime parameter of each task that 

requesting for resource rid in the respective utlist queue. 

The sum of the remaining HoldTime of each identified 

request is accumulated in the TotalCost parameter. 

Therefore, before the searching procedure for a request 

in any utlist queue is executed, the value of TotalCost is 

initialized to 0.0000 as depicted in Fig. 4. 

ii. GPUAS additionally measures the highest PUD 

of task request for the resource rid in the respective 

utlist queue. The HighestPUD parameter is used to 

represent the highest PUD among the task request in 

the respective queue. Initially, this parameter is set to 

0.0000 as shown in Fig. 4. 
 

Referring to Fig. 4, the TotalCost and HighestPUD 

parameter is initialized to 0.0000. The identification of 

which utlist queue for the respective rid is depicted in 

the in res[rid].cpuid parameter. The scheduler search for 

a request for resource rid in a queue. Two additional 

pointers are needed for the searching procedure i.e., the 

work and prev_utlist pointers. The work pointer moves 

from one element to the next element starting from the 

head_utlist to the tail_utlist searching for the 

corresponding request. The prev_utlist points to the 

previous element before the currently processing element 

that is shown by the work pointer. Initially both of these 

pointers point to the first element in the utlist queue as 

depicted in Fig. 4. The work pointer then checks the 

resource rid of the first element in the utlist queue. If it 

does not discover the request for resource rid, it will 

search for the next element. This is repeated to the 

subsequent elements until the end of the utlist queue. 

As shown in Fig. 4, in the case the work pointer 

discovers a request for rid, the information of the task 

request is obtained from the tid element of the work 

pointer i.e., work-tid. For the purpose of clarification, 

the respective task is known as Twait in the figure. The 

execution mode of task Twait in Twait.Mode is 

checked. Subsequently, the execution mode for task 

Twait is classified into the NORMAL or ABORT mode 

as stated below: 
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i.  Task Twait is currently executing in the 
NORMAL mode. In this case, the scheduler measures 
the least sum of remaining execution cost for resource 
rid in the respective utlist queue. The remaining 
execution cost for resource rid in a utlist queue is 
captured from the remaining HoldTime parameter 
obtained from the work->HoldTime parameter. The sum 
of remaining HoldTime of each identified request is 
accumulated in the TotalCost parameter. Referring to 
Fig. 4, the PUD of this task request is calculated as 
Twait.PUD. The calculation formula of PUD is 
elaborated in (Jensen et al., 1985; Li et al., 2006). 
Subsequently, the PUD is then compared with the 
HighestPUD parameter that contains the value that is 
currently producing highest PUD among the tasks in the 
respective utlist queue. Initially, the value of largest 
PUD is set to 0.0000. If task Twait produces a larger 
PUD than the value currently in HighestPUD, the 
Twait.PUD is considered as the highest PUD so far. 
Thus, the value of HighestPUD is updated to be equal to 
the Twait.PUD. 

ii. Task Twait is currently executing in the ABORT 
mode. In this case, the request of task Twait for 
resource rid in the respective utlist queue can be 
delayed. Thus, the AbortTime is not accumulated in 

the TotalCost parameter. The PUD of Twait is equal 

to 0.0000.The scheduler then proceed searching for 
the next element in the respective utlist. The above 
mentioned procedure is repeated to the subsequent 
elements until to the end of the utlist. The outcome of 

this procedure is to obtain the value of TotalCost and 
HighestPUD parameters. 

 

The measurement in GPUAS and the existing NG-

GUA and G-GUA algorithms differ as follows: 

 

i. NG-GUA and G-GUA algorithms use the 

measured TotalCost parameter and compares to the 

LeastTime parameter. Note that the LeastTime parameter 

is used to represent the least sum of remaining execution 

cost among the utlist queues for resource R. If the value 

of LeastTime exceeds the TotalCost parameter, the 

LeastTime is updated to reflect the least sum of total 

remaining execution cost among the utlist queues in the 

system. The LeastUtlist parameter specifies which utlist 

that contained the least sum of total remaining execution 

cost i.e., res[rid].cpuid. 

ii. GPUAS uses two parameters i.e., the TotalCost 

and HighestPUD to decide which utlist queue to 

locate task Treq. 

 

 
 

Fig. 4. Scheduling algorithms
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There are three (3) conditions to validate each utlist 

as stated below: 

 

a. GPUAS firstly identifies the LeastUtlist queue 

that is identical to the above mentioned G-GUA. The 

calculated TotalCost parameter is compared to the 

LeastTime parameter. If the value of LeastTime exceeds 

the TotalCost parameter, the LeastTime is updated to 

reflect the least sum of total remaining execution cost 

among the utlist queues in the system. The LeastUtlist 

parameter specifies which utlist that contained the least 

sum of total remaining execution cost i.e., res[rid].cpuid. 

b. GPUAS compares the highest PUD in this utlist 

(i.e., HighestPUD) with the PUD of the requesting task 

Treq (i.e., Treq.PUD). If the value in Treq.PUD exceeds 

the HighestPUD parameter, the PUDflag parameter is 

tagged as TRUE to reflect the existence of a utlist with a 

lower PUD compared to task Treq. The LeastPUDUtlist 

parameter specifies which utlist that contained a lower 

PUD compared to Treq i.e., res[rid].cpuid. Referring to 

Fig. 4, in the case the value in Treq.PUD is less than or 

equal to the HighestPUD parameter, the PUDflag value 

remained unchanged. 

c. GPUAS considers the LeastUtlist parameter in the 

case none of the task in utlist queue produced a lower 

PUD as compared to the PUD of task Treq. In this case, 

GPUAS considers the LeastUtlist as its LeastPUDUtlist. 

 

The rationale to select the LeastPUDUtlist queue that 

has a lower PUD as compared to the requesting task i.e., 

Treq in GPUAS is to ensure that if task Treq is to be 

inserted into the utlist queue, the condition in the 

LeastPUDUtlist will ensure that task Treq can use the 

resource rid soon after the owner task has releases it. 

Experimental Setting 

The performances of real time scheduling algorithms 

are measured by the metrics which rely on the respective 

application specifications. The Accrued Utility Ratio 

(AUR) metric defined in (Jensen et al., 1985) has been 

extensively utilized in the existing TUF/UA scheduling 

algorithms and is considered as the standard metric in this 

domain (Wu et al., 2004; Li et al., 2006). 

AUR is defined as the ratio of accrued aggregate utility 

to the maximum possibly attained utility. Equation 1 

shows that each task i has its maximum value of utility 

which is denoted as MaxAU(i). After a task i has 

completed its execution, it will yield a value denoted as 

Util(i). These values are then accumulated for all tasks i.e., 

MAX_TASKS. The AUR is calculated as: 

 

1

1

( )

( )

MAX _TASKS

i

MAX _TASKS

i

Utill i
AUR

MaxAU i

=

=

=

∑

∑
 (1)  

Results 

Based upon the results acquired from the simulation, 
the interpretations of the results are performed. The 
numbers of processors considered in the system are two, 
four and eight (Garyali et al., 2010). The scheduling 
algorithm that is proposed in the multiprocessor 
scheduling environment is known GPUAS. The NG-
GUA and G-GUA algorithms are used to compare the 
performance of GPUAS algorithm. The plots from all 
the results cover an average load in the range of [1-10] in 
the multiprocessor environment with two, four and eight-
core platform (Garyali et al., 2010) for step and arbitrary 
TUF task model. 

Figure 5 depicts the AUR result under an increasing 

load for step TUF. From the overall results, as the 

number of processors increase, a higher utility is 

recorded for all scheduling algorithms. Overall, the 

nature of the curves indicates that the proposed GPUAS 

algorithm has achieved better performance by producing 

a higher accrued utility as compared to the existing NG-

GUA and G-GUA algorithms. 

Figure 6 depicts the AUR results for execution of the 
arbitrary TUF tasks in the system. Overall, the patterns 
of the curves from the results in the arbitrary TUF tasks 
set are similar to the step TUF tasks set. In the case of 
arbitrary TUF, a task may not be able to accrue its 
maximal possible utility even though the execution is 
completed before its termination time. Although these 
algorithms guarantee that the highest PUD task to be 
selected, it does not necessarily represent that the 
maximum possible utility gained by the executed tasks. 
 

 
 

Fig. 5. Results for step TUF 
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Fig. 6. Results for arbitrary TUF 

 

From the overall results, as the number of processors 

increase, a higher utility is recorded for all scheduling 

algorithms. From the overall results, GPUAS shows 

significant improvement compared to NG-GUA 

algorithm in all multicore platforms. GPUAS also 

shows a significant improvement compared to the G-GUA 

algorithm in the dual core platform. From the results, it is 

observed that the GPUAS8 and G-GUA8 algorithms that 

are executed in the eight core platform have produced 

the highest utility to the system as compared to the dual 

and quad core platforms. 

Discussion 

From the overall results shown in Fig. 5, GPUAS 

shows significant improvement compared to NG-GUA 

algorithm in all multicore platforms for the entire load 

range. However, GPUAS shows a significant 

improvement compared to the G-GUA algorithm only in 

the dual core platform. In dual core platform, the average 

load of 2 is estimated as the starting point of an 

overloaded situation in the system. At this load, GPUAS2 

achieved 96.58% and G-GUA2 algorithm achieved 

96.05% and NG-GUA2 with 93.14% of the accumulated 

utilities. At this load, GPUAS2 has improved the NG-

GUA2 algorithm for 3.44% and improved G-GUA2 for 

0.53% of the accumulated utilities. 

However, as the load increases, more significance of 

GPUAS2 is observed in the system as compared to the 

G-GUA and NG-GUA algorithms. When load is equal to 

6, in the dual core platform, GPUAS2 accrued 75.03%, 

G-GUA2 accrued 70.05% and NG-GUA2 accrued 

66.76% of utilities. GPUAS2 algorithm has improved G-

GUA2 for 4.98% and outperformed NG-GUA2 

algorithm for 8.27% of the accumulated utilities. At the 

highest load (i.e., load = 10), GPUAS2 has achieved 

58.89%, G-GUA2 with 56.61% and NG-GUA2 gained 

53.24% of the accumulated utilities. Thus, GPUAS2 has 

improved G-GUA2 for 2.28% and outperformed NG-

GUA2 algorithm for 5.65%. GPUAS2 outperformed the 

G-GUA2 algorithm because GPUAS2 ensure that the 

newly request is inserted into the utlist queue that has the 

highest possibility to be executed as soon as the owner 

task releases the respective resource. Therefore, the 

requesting tasks may produce positive utility to the 

system. On the other hand, G-GUA2 locates the 

requesting task into the utlist that has the least remaining 

execution cost. Therefore, G-GUA2 does not guarantee 

that the requesting task will be scheduled to use the 

respective resource as soon as the task being scheduled 

in GPUAS. Therefore, more requesting tasks are ending 

up waiting in the utlist without being scheduled in G-

GUA2. This reflects the lower utility accrued in G-

GUA2 as compared to GPUAS2 in dual core platform. 

The improvement of GPUAS2 is small i.e., at most only 

4.98% because in the dual core platform, although more 

number of tasks inserted into the selected queues in 

GPUAS2 but more tasks are overdue and therefore 

ending up being aborted. This is why the task placement 

in GPUAS2 is less over the G-GUA2. 

It is observed that GPUAS2 outperformed NG-GUA2 
for the entire load range. The excellent performance of 
GPUAS2 is also observed over the NG-GUA2 for the 
entire load range. This is because GPUAS2 is a 
greedy scheduling algorithm and uses PUD as a 
metric to achieve the highest accrued utility at any 
instance while NG-GUA2 uses the deadline metric 
during under load and PUD during overloaded 
conditions. On the other hand, during overloads NG-
GUA aborts any requesting task that produced lowest 
PUD to overcome the overloaded situation. The 
abortions reduced the value of utility accrued to the 
system in NG-GUA2. GPUAS omits the abortion and 
inserts the lowest PUD task into a queue. 

From Fig. 5, it is observed that a sharper degradation 

as the load increases in dual core platform. Although 

algorithms allows tasks to migrate to the available 

resources or move to the resources with the least PUD in 

the utlist queue, in dual core platform the number of 

available resources is limited. Due to the limited 

resources, many backlogged tasks are ending up not been 

migrated anywhere although these algorithms allows 

them to do so. Due to the limited resources, more tasks 

are overdue and therefore ending up being aborted. More 

aborted tasks are produced as the load increases and 

consequently produced more zero utility tasks to the 
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system. This is why a sharper degradation is observed as 

the load increases in the dual core platform. 

Referring to Fig. 5, in four core platform, 
approximately the system is considered to be 
overloaded when the average load is equal to 4. At this 
load, GPUAS4 has successfully gained 99.63% of 
utility and G-GUA4 moderately accrued 99.33% while 
NG-GUA4 accrued 93.84% of the utilities. Thus, the 
GPUAS4 algorithm outperforms G-GUA4 for 0.30% 
and NG-GUA for 5.79% at this load. It is observed that 
G-GUA and GPUAS accrued the same utility in the 
quad and eight core platforms. At the highest load (i.e., 
load = 10), GPUAS4 has achieved 94.96%, G-GUA4 
with 94.71% and NG-GUA4 gained 82.42% of the 
accumulated utilities. Thus, GPUAS4 has improved G-
GUA4 for 0.25% and outperformed NG-GUA4 
algorithm for 12.54%. 

From the results in Fig. 5, it is observed that the 

GPUAS8 and G-GUA8 algorithms that are executed in 

the eight core platform have produced the highest 

utility to the system as compared to the dual and quad 

core platforms. In eight core platform, approximately 

the system is considered to be overloaded when the 

average load is equal to 8. At this load, GPUAS8 and 

G-GUA8 have successfully gained 100% of utility and 

NG-GUA moderately accrued 88.45% of the utilities. 

Thus, the GPUAS8 and G-GUA8 algorithms 

outperformed NG-GUA8 for 11.55% at this load. From 

the figure, at the highest load (i.e., load = 10), 

GPUAS8 and NG-GUA8 have achieved 100% and NG-

GUA8 with 87.56% of the accumulated utilities. Thus, 

GPUAS8 and G-GUA8 have improved NG-GUA8 for 

12.44%. As the number of processors increase, the 

higher utility accrued to the system by the GPUAS 

algorithm as compared to the existing G-GUA and NG-

GUA algorithms. The enhancement of GPUAS has 

tremendously improved the utility accrued to the 

system in multiprocessor environment. 

Overall, the improvement of GPUAS over the G-

GUA algorithm is observed only in the dual core 

platform. In the quad and eight core platforms, the 

performances of these algorithms are similar. Note that, 

GPUAS ensures that a task is inserted into a selected 

queue that has the highest possibility to be executed. In 

dual core platform, due to limited resources more 

number of tasks inserted into the selected queues. In dual 

core platform, only two queues are available for the 

insertion of tasks in the queues. Therefore, the insertion 

always occurs between these queues and more number of 

tasks inserted into the queues. Hence, the PUD metric 

used in GPUAS for selection of queues for task insertion 

has an impact to the system. On the other hand, in the 

quad and eight core platforms, more resources are 

available. Therefore, less number of tasks inserted into 

the queues. Therefore, the metric used for task insertion 

in GPUAS has a minor impact to the system. 

Conclusion 

This paper has discussed the design and evaluation 

of GPUAS in the multiprocessor environment. The 

proposed GPUAS algorithm is compared with the 

existing NG-GUA and G-GUA algorithms. Simulation 

results revealed that GPUAS2 has improved for less 

than 4.98% on G-GUA in dual core platform and 

remain the same performances in quad and eight core 

platforms. Since GPUAS has improved G-GUA in the 

metric used for insertion of task in a queue, GPUAS 

only has impact on the system with less number of 

queue i.e., in the dual core platform with only two 

queues available. In the quad and eight core platforms, 

more resources are available and therefore less number 

of tasks is inserted into a queue. Therefore insertion 

procedure is less significant in this environment. 

Simulation results also revealed that GPUAS has 

improved the NG-GUA at most 12.44% for the entire 

load range in all platforms. This is because GPUAS 

omits the unnecessary abortions that occur in NG-

GUA. Overall, the GPUAS algorithm outperforms the 

existing algorithms by accruing the highest utility to 

the system due to the highest resource consumption by 

exploiting the migration and task insertion attributes of 

the executed tasks. This chapter also has confirmed the 

advantage of GPUAS as compared to the existing NG-

GUA algorithm in all platforms for at most 12.44% and 

has improved the G-GUA algorithm at most 4.98% in 

the dual core platform. The contribution of GPUAS 

algorithm in the dual, quad and eight core platforms 

that achieved the highest accrued utility and success 

ratio making it suitable and efficient scheduling 

algorithm for real time application. 
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