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ABSTRACT 

This study proposes a novel load-balancing algorithm for managing virtual servers in a Peer-To-Peer (P2P) 
system through mobile agents. The proposed algorithm is implemented in a fully decentralized manner for a 
structured P2P system. It uses mobile agents and is independent of the geometry of the P2P auxiliary 
networks. The load-balancing algorithm effectively reduces the load imbalance of the system using the load 
per unit capacity derived by the mobile agents. A unique feature of the proposed algorithm is the mutual 
swapping of virtual servers between overloaded and underloaded peers to efficiently use the available 
resources. The proposed solution has been verified in a P2P environment consisting of peers and embedded 
glassfish server instances, created dynamically to act as virtual servers. 
 
Keywords: Load Balance, Virtual Servers, Heterogeneity, P2P Systems 

1. INTRODUCTION 

Load balancing is an important factor to consider when 
optimizing productivity in Peer-to-Peer (P2P) computing. 
The load must be distributed among peers based on their 
ability to get better throughput (Wang and Vanninen, 
2006; Zou et al., 2002). Instead of transferring tasks 
between peers, the trend for some time has been to migrate 
virtual servers from one peer to another. In this case, each 
peer hosts a number of virtual servers. To balance the load 
of the system, the virtual servers are moved from an 
overloaded to an underloaded peer (Rao et al., 2003; Li and 
Shao, 2011; Wang and Vanninen, 2006; Zou et al., 2002; 
Hsiao et al., 2011; Godfrey et al., 2004). In earlier work, 
the virtual servers were transferred from overloaded to 
underloaded peers in only one direction (Hsiao et al., 
2011). The work carried out by (Wang et al., 2004; Zhu 
and Hu, 2005) considered a node k that has a specified 
target load Tk, where Tk is less than Ck (the capacity of k). 
The node k can accept virtual servers only up to the target 
load Tk. Ideally, Tk should be the product of A and Ck 

(Wang et al., 2004), where A is the load per unit capacity 
of the system. In this case, k manages its load 
proportional to its capacity. Although this load balances 

the system, the load imbalance factor is not effectively 
minimized. Sometimes an overloaded peer cannot 
migrate a virtual server to an underloaded peer, because 
if the underloaded peer accepted the load it would 
become overloaded. The primary aim is to reduce the load 
of the overloaded peer until it becomes underloaded. Once 
an overloaded peer becomes underloaded, it remains that 
way until the next load balancing cycle, which is an 
inefficient use of resources. The unique feature of the 
proposed algorithm is the mutual swapping of virtual 
servers between the overloaded and underloaded peer, 
which overcomes the above limitation. 

Our primary aim is to reduce the load imbalance 
factor of the whole system. We propose a novel load 
balancing algorithm that exchanges virtual servers 
between overloaded and underloaded peers. This 
primarily helps to reduce the load imbalance factor of 
both overloaded and underloaded peers. Mobile Agents 
(MAs) are used to find the load per unit capacity and 
help overloaded peers to find underloaded peers to which 
to migrate their virtual servers. Using this method, the 
load imbalance of the whole system is significantly 
reduced. A virtual server can be migrated to the 
underloaded peer and some smaller virtual servers hosted 
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by the underloaded peer can be sent to the overloaded 
peer to create balance. This minimizes the load 
imbalanced factor. Previous studies have assumed only 
one bottleneck resource in the system (Wang et al., 
2004; Zhu and Hu, 2005). The study carried out in 
(Hsiao et al., 2011) also assumed only one bottleneck 
resource in the system, but it failed to assume a 
particular resource constraint. We have considered a 
specific resource as a constraint, namely the number 
of active TCP ports. As in earlier studies, we attempt to 
minimize the movement cost. In his pioneering work 
(Lamport, 1978), Lamport proposed that events must be 
ordered in a distributed multiprocessor system. The 
ordering of events using logical clocks removes most of 
the unexpected anomalous behaviors (Lamport, 1978). 
We apply this concept when handling requests to move 
virtual servers from overloaded to underloaded peers. 

The algorithm proposed addresses the challenge of 
load balancing. It reduces the load imbalance factor 
and movement cost. We also consider Lamport’s 
ordering of events when moving virtual servers. We 
have implemented these concepts with a 1-N scheme 
and tested the algorithm in a P2P environment where 
dynamic embedded glassfish servers instances were 
used as virtual servers. We experimented using the 
number of active TCP ports as a resource constraint in 
the proposed load-balancing algorithm. 

The remainder of this study is organized as follows. In 
section 2, we review some related work. Section 3 
presents the proposed framework for load balancing in 
structured P2P networks. In section 4, we explain the 
structure of our experiments. We present results from an 
experimental study in section 5. Section 6 discusses how 
the load is captured, using a TCP port as a resource 
constraint. Section 7 presents experimental results 
obtained based on load imbalance factor and movement 
cost. It also discusses the pros and cons of the proposed 
algorithm. Our conclusions are found in section 8. 

2. RELATED WORK 

Load balancing is done by migrating the virtual 
servers from an overloaded to underloaded peer and 
has been discussed in numerous studies (Godfrey and 
Stoica, 2005; Ledlie and Seltzer, 2005; Wang et al., 
2004). There are three schemes for overloaded to 
underloaded peer interaction: 1-1, 1-N and N-N. The 
simplest is the 1-1 scheme, which involves less 
computation and overheads but does not select the 
best possible peer to host the virtual server (Rao et al., 
2003). In the 1-N scheme the overloaded peer can 

select the best possible underloaded peer to host the 
virtual server. The N-N scheme uses a directory to 
share information. It reduces the load imbalance but 
becomes similar to a centralized directory scheme. N-
N is very useful when the overloaded peers have 
information about other overloaded peers in the 
proximity. The overloaded peer can mutually 
exchange the details of the underloaded peers that it 
has interacted with in the past and present. 

Wang and Vanninen (2006) and Zou et al. (2002) 
focused on maximizing the throughput of the system 
and reducing message overheads and considered the 
CPU and memory capacities as load parameters. The 
maximum number of socket connections possible per 
unit time is considered to be a parameter. Although 
they tried to maximize the throughput of the system, 
they did not consider this parameter. In addition, they 
did not try to balance the load over the whole system 
so that every peer reached its threshold level. 

Hsiao et al. (2011) tried to reduce the load 
imbalance factor by transferring virtual servers from 
overloaded to underloaded peers. They tried to reduce 
the movement cost, but did not try to minimize the 
load imbalance factor. Their method used the virtual 
server concept for load balancing, by assigning load to 
each object entering the system (Hsiao et al., 2011; 
Godfrey et al., 2004). However, their method assumed 
that there was only one bottleneck resource in the 
system and left the multiple resources as future work. 
Minimizing the load imbalance factor requires more 
movement cost. Although better balancing can be 
achieved by higher movement cost, the load 
imbalance factor must not be too high compared with 
the system’s bandwidth. 

HiGLoB is a histogram-based global load balancing 
framework (Vu et al., 2009). It uses a load-balancing 
manager to redistribute the load among peers. However, 
this load-balancing manager is centralized and cannot be 
used in a fully decentralized P2P environment. 

In “single ID per node” only one popular object can 
be stored in a single node. It failed because of the 
popularity of some objects in the destination node 
(Karger and Ruhl, 2004; Serbu et al., 2007). “Multiple 
ID per node” was then introduced, but it too ignored the 
popularity of objects (Rao et al., 2003). Li and Shao 
(2011) and Nehra et al. (2007) used MAs to collect, 
analyze and locate peers. These MAs identify each peer 
as overloaded or underloaded. The MAs walk through 
the entire network and try to load balance each system by 
migrating the virtual server. The MAs are not 
lightweight, as they must perform a lot of processing. 
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They are responsible for coordinating the transfer of 
workload between overloaded and underloaded peers. 

Shen and Xu (2007) have considered proximity of 
the peers in load balancing. There is a mismatch in the 
proximity abstraction of logical and physical location 
of peers. The mismatch makes load balancing 
proposed by (Shen and Xu, 2007) suitable only for 
specific topology. Hsiao et al. (2011) have pointed out 
that the load balancing problem need not rely on 
auxillary tree networks and should be independent of 
the geometry of the P2P Substrate. 

Local load information aggregation is done by 
sending messages with a time to live TTL value, 
which is decremented by one when it is received by 
the adjacent peer (Li and Xie, 2006). The load per unit 
capacity is calculated using this information. The 
limitation of this approach is that it leads to larger 
message overheads. As each peer collects information, 
it forwards the message to the next peer. The same 
peers can be visited multiple times and the calculated 
load per unit capacity is not accurate because they are 
counted many times. Therefore, a peer is covered 
multiple times by different messages. When using the 
local neighborhood method, only he bandwidth 
involved is minimized. However, the problem of 
reducing the load imbalance is not given importance. 
Even if one tries to reduce the bandwidth latency, the 
load imbalance factor must also be considered. 

3. PROPOSED SYSTEM 

We propose an innovative mechanism that uses 
MAs to control virtual servers. The migration of the 
virtual servers is used to balance the loads in 
structured P2P systems. 

Consider a P2P system, with a set of virtual servers V 
and a set of peers, N, participating in the system. Let Lv 

be the load of the virtual server v, where v is a subset of 
V. The load of the peer Loadi is the sum of the loads of 
all virtual servers hosted by the peer. Let Ci be the 
capacity of the peer i. The load per unit capacity (Lpc) of 
the system is defined as the sum of loads of all virtual 
servers divided by the sum of the capacities of all the 
peers. Some parameters used can be found in Table 1. 

3.1. Calculating Load Per Unit Capacity 

The sum of loads of all virtual servers is defined as: 
 

n peers k virtual servers

i,vi 1 v 1
Sumof loads L

= =
=∑ ∑  

The load per unit capacity is defined as: 
 

ii 1

n peers

Sum of loads
Lpc

C
=

=
∑

 

 
The load imbalance factor of a particular: 
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The load imbalance factor for the whole system is 

defined as: 
 

n peers K virtual serversLoad imbalance Ti Lv 1i 1 i,v
 = −∑ ∑ ==  

 

 
MAs are used to monitor groups of several peers. 

The MA obtains the total load contributed by all the 
virtual servers hosted by a peer and the capacity of the 
peer. The various MAs share this information and find 
the total Load per unit capacity (Lpc) of the system. 
The load per unit capacity is given to all the peers in 
the system. Based on the Lpc, each peer calculates its 
threshold load value Ti, which is proportional to the 
capacity of the peer. The threshold load value, Ti and 
the load of the peeri are compared. The peer is 
overloaded if the load of the peeri is greater than the 
threshold load value Ti. The status of the peer 
(overloaded or underloaded) is communicated to the 
MA. For each peeri, the MA stores the sum of loads, 
capacity of each peer and status of the peer as 
overloaded or underloaded. MAs periodically update 
the load per unit capacity of the system. 

The proposed algorithm is event based and the 
following events takes place. 

On receipt of load per unit capacity (Lpc) at Peeri 
 Check status of the Peer 
 If overloaded 
 Send request message for load migration 
On receiving request message by the under loaded peer 
 Process the message and send response message 
On receiving the response message by overloaded peer 
 Add to message queue 
 On time out at over loaded peer 
  Process queue and send accept message 
 On receiving accept message at under loaded peer 
  Carry out exchange of virtual servers 
The above algorithm is discussed in detail in this section. 
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Table 1. Notations frequently used 
   Set of virtual servers to be returned  
Ti Threshold of peeri Ri back from underloaded to overloaded peers 
A Load per unit capacity Lv Load of virtual server v 
Ci Capacity of peeri V Virtual server 
LOAD i Load of peeri Lpc Load per unit capacity 
MA Mobile agent 
 
Module 1 

On receipt of a load per unit capacity for peeri from 
a MA. 

When the peer finds that it is overloaded, some of the 
virtual servers whose load Lv is minimal need to be 
migrated until its load becomes less than the threshold 
load value, Ti. Let ∆i be the difference between the new 
load on peeri and Ti, after the required migration. That is, 
peeri is now underloaded by ∆i. This peeri can now accept 
a load value up to ∆i to become load balanced, thereby 
reducing the load imbalance factor.When peers update 
their sum of loads, the status is refreshed. So the 
overloaded peer finds the underloaded peer through the 
MAs. The overloaded peer sends Lv and ∆i to the 
underloaded peers identified by the MA. After sending 
the requests to the underloaded peer, the overloaded peer 
waits for responses. The above process is illustrated by 
the algorithm for an overloaded peer. This algorithm is 
activated when a peer becomes overloaded. 

{ 
 Ti = Lpc*Ci 
 if loadi > Ti 
 Status = overloaded 
 else if loadi < Ti 
 Status=underloaded 
 if (peer is overloaded) 
  while loadi >Ti 
  Ui = min {L i, v}  
  //V hosted in peeri 
  ∆I = Ti-(Loadi-L i,v) 
  Send (Ui, ∆i , peerids)  
//Sends request to many underloaded peers. The peer ids 
of the underloaded peer is given by MA 
} 

Module 2 

On receiving a request message by the under 
loaded peerj. 

The underloaded peers can reply with a request to 
accept virtual servers whose sum of load is less than ∆i. 
This helps to load balance both the overloaded and 
underloaded peers after the virtual servers have been 
exchanged. The load imbalances of both are minimized 
and both loads converge to their threshold. 

The underloaded peer receives the request to accept 
virtual servers, with a maximum return of ∆i. The 
underloaded peer checks that it will not exceed the 
threshold value if it accepts then sends a response 
(C(response)) to the overloaded peer. It also attaches its 
load imbalance, capacity and Rj value (set as null). The 
Rj value is the set of virtual servers whose sum of load 
value is less than or equal to ∆i. Let α be the difference 
between the new load on the peerj and the threshold load 
value Tj. If α of peerj is greater than ∆ of peeri, then the 
request is rejected. Otherwise, the formload function is 
called to find the combinational set of virtual servers that 
can be sent from the underloaded peerj to the overloaded 
peeri. If the formload function cannot find the 
combinational set of virtual servers, then it will set Rj to 
null. If Rj is null, then the request from the overloaded 
peeri is rejected. If Rj is not null, then the request from 
the overloaded peeri is accepted. The above process is 
illustrated by the algorithm for the underloaded peer. 
This algorithm is activated when a peer is underloaded. 

{ 
  if (loadj + Li,v ≤ Tj) 
 Send (peerid, loadimbalance, capacity, 
Rj = Null) // sending response 
  else 
 { 
 α = loadj + Li,v – Tj 
 if α > ∆i 
  reject request 
 else  
   Rj = call formload function(α, ∆i) 
   if ( Rj = = Null ) 
   Reject request//unable to find a peer 
   else 

Send (peerid,loadimbalance,capacity,  
    Rj) //sending response 

 } 
 } 

Module 2a 

Form the load and selecting virtual servers to be sent 
from the underloaded peerj to the overloaded peeri in 
case of swapping [Minimum α and maximum ∆i]. 
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The formload function selects the set of virtual 
servers which can be transferred on return from 
underloaded peer to the overloaded peer on accepting the 
virtual server from the overloaded peer. This helps to 
reduce the load imbalance factor of both peers. The array 
Ld contains all the loads of virtual servers that are hosted 
by the underloaded peer whose load value is lesser than 
or equal to delta and n is the number of virtual servers. 
Initially, Rj is set to null. K is a two dimensional array 
that tracks the maximum load value which can be 
returned as a set of virtual servers. The best possible 
combination of virtual servers whose sum is less than or 
equal to delta is selected. Variables i and w points to the 
virtual server and the load value for which the best 
combination of virtual server is selected. K[n, ∆i] is the 
sum of load for a set of virtual servers that can be sent to 
the overloaded peer. If K[n,w] is greater than alpha, it is 
rejected because the underloaded peer becomes 
overloaded if the exchange process happens. If the load 
to be formed is zero or no virtual server is considered, 
K(i,w) is zero. The array is constructed in such a way 
that if the load of the virtual server is greater than the 
load to be formed (w), then the load of the previous 
virtual server (i-1) is retained (i.e., K(i,w) = K(i-1,w)). If 
the load of the virtual server is less than the load to be 
formed (w), then K(i,w) is equal to the maximum of the 
load formed in the previous virtual server (K(i-1,w)) and 
the load of the current virtual server (ld[i-1]) plus the 
load formed in K[i-1][w-ld[i-1]]. 

The above process is illustrated in the following 
algorithm. 
Formload: 

   ld[ ] = For each Uj whose Lj,v ≤ ∆i 
   Let n be size of array ld  
   declare K[n+1][ ∆j +1], Rj = NULL 
   for I = 0 to n 
    for w = 0 to ∆j 
     if I = = 0 || w = = 0 
       K[i][w] = 0; 
     else if ld[i-1] ≤ w 
       K[i][w] = max(ld[i-1] + K[i-1][w- 

ld[i-1]], K[i-1][w]); 
     else 
       K[i][w] = K[i-1][w]; 
  if(K[n][w] < α)      
     return NULL; 
  else 
     size = ∆i 
     while n>0 
      if K[n][size]! = K[n-1][size]) 
        Rj = Rj U Vn-1 // Vn-1 has load ld[n-1] 

        size - = ld[n-1]; 
        decrement n 
    else 
     decrement n 
  return Rj 

Thus, the overloaded peeri migrates its virtual server 
with minimal load to an underloaded peerj. The 
overloaded peer continuously tries to migrate its 
minimal virtual server until it becomes load balanced, 
or its overall load is less than the threshold. The 
underloaded peer never becomes overloaded. 

The set of virtual servers used to form the load is 
tracked as discussed below. Initially, n is the number of 
virtual servers on the peer. The variable “size” is set to 
delta. If K(i, size)! = K(i-1, size), the present virtual 
server has been involved in forming the load. So this virtual 
server is added to the set R and size is decremented by the 
load of the current virtual server. This process is executed in 
a loop until the value of n becomes zero and R contains the 
set of virtual servers that form the load K(n,w).  

As an example, In underloaded peerj, say Tj = 50 and 
Load (j) = 40. In overloaded peeri, say Ti = 50, Load (i) = 
54 and minimal virtual server load Li,v = 15. The 
overloaded peer tries to migrate this virtual server. ∆i = 
Ti-(Loadi-L i,v) = 50-(54-15) = 9. The underloaded peerj 
receives a request from overloaded peeri with <Li,v, ∆i> 
as <15, 9> respectively. The underloaded peer cannot 
accept V directly without return of virtual servers as 
LOAD i + Li,v > Tj.

 
 

α = LOADj + Li,v – Tj, α = 5 units respectively. α is 
not greater than ∆i. So formload function is called. 

Module 3. 

On receiving the response message by the overloaded peer 
After the overloaded peer sends the minimum virtual 

server’s load value and delta value to the underloaded 
peers, the overloaded peer waits for a time out to occur. 
While it is waiting, it saves the responses received from 
underloaded peers. 
On receiving a response message from the overloaded 
peeri: 
 // for each response 
 Response[K] = recv(peerid, loadimbalance, capacity, Rj) 
 Increment K. 

Module 4. 

On time out at over loaded peer. 
Multiple request handling by an underloaded peer. 
When requests arrive at an underloaded peer and it 

responds positively, only some of the overloaded 
peers can migrate their loads to it, or it will become 
too overloaded. 
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Two approaches to avoid this overloading are 
possible. First, when there is a positive response to the 
overloaded peeri, the load of the underloaded peerj is 
temporarily increased to Li,v units. When another 
overloaded peer sends a request, j projects its load as 
Loadj + ∑ Li,v, even though it has not yet been selected 
to host additional virtual servers. Then the underloaded 
peerj cannot become overloaded. When this peer is not 
selected to host a virtual peer by the overloaded peerk, it 
decreases its load by Lk,v units. However, this is very 
conservative approach, because not all the positive 
responses will succeed and this peer will not be selected as 
the best peer by the overloaded peers. 

The second approach orders events (Lamport, 1978). 
Suppose an overloaded_peer1 sends a request with L1v 

and a positive response C(response1) is sent from the 
underloaded peer. Then another overloaded_peer2 sends 
a request (with L2v), it sends a positive response 
C(response2). The ordering ensures that. 
 C(response1) < C (response2),  
i.e., C(responsei) < C (responsej) where j>i. 

The overloaded_peer1 receives the response and 
processes it. Suppose that overloaded_peer2 replies 
before overloaded_peer1. The underloaded peer checks 
whether C(response2) is less than C(response1). If it is 
not, the reply is not in order. It does not host the virtual 
server of overloaded_peer2 until it receives the response 
from overloaded_peer1, unless it can host L1v and L2v 
without exceeding its threshold.  

3.2. Selection of Peer for Migration  

The overloaded peer collects responses from the 
underloaded peers, which contain load imbalance, capacity 
and the set of virtual servers to be exchanged with the 
underloaded peerj. The overloaded peer first checks through 
the list for peers that do not need to exchange virtual servers 
(Rj is null). Priority is given to underloaded peers that not 
need to exchange any virtual servers with the overloaded 
peer. The underloaded peer that has the maximum product 
of load imbalance and capacity is selected. If there is no 
underloaded peer that has null Rj, it checks the remaining 
responses, which are from peers that need to exchange a set 
of virtual servers to the overloaded peer. The overloaded 
peer selects the underloaded peer from which is must take 
the minimum number of virtual servers. Module 2 ensures 
that the overloaded peer will not become overloaded once 
again, because it will not accept any servers if its load after 
exchanging is greater than its threshold. After the 
overloaded peer has selected the appropriate underloaded 
peer, it migrates the minimum set of virtual servers. It also 
sends the responses that it received from the other 
underloaded peers. It is possible for the underloaded 

peer’s load to increase, because the loads of the virtual 
servers change when they handle other requests. In this 
case, responses from the other underloaded peers can be 
used to transfer virtual servers. The above process is 
illustrated by the following algorithm. 

On a time out at the overloaded peer: 
 Min = -1 
 for each response[K] whose Rk is Null 
   if (loadimbalance*capacity > min) 
 Index = K 
 Min = response[k].loadimbalance *  

response[k].capacity 
 if min != -1 // means a response is selected 
  Select the peer(response[index].peer id) for transfer 

of virtual server 
  Loadi = Loadi - Lu,v 
  V = V- Ui 

   return 
  for response[K] whose Rk is not Null 
  max = delta 
  sumk = ∑ response[k].Lj,v 
  if sumk< max 
 Index = k 
 Max = sumk 
Select the peer(response[index].peer id) for transfer of 
virtual server 
Loadi = Loadi + Rindex - Li,v 

V = V- Ui  
V = V U Rj 

Module 5. 

On receiving an accept message at an underloaded peer. 
When the underloaded peer receives an accept 

message from the overloaded peer, it accepts the 
virtual server load. If the underloaded peer’s condition 
has changed and it will become overloaded, the 
alternate best choice is used.  

If there are no alternate peers available, the 
underloaded peer restarts the load-balancing algorithm: 

Receive accept message 
if (message = = accept message) { 
 receive (peerid,Lu,v,reponse[]) 
 if(could not host v) 
 Choose best underloaded peer from reponse[]  

and transfer 
    if could not find a peer from response[] 
  Restart load balancing algorithm 
 else 
  V = (V-Ri) U Ui  
 } 
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4. ARCHITECTURE DIAGRAM 

Every peer in the P2P environment hosts a number of 
virtual servers. Peer modules contain all the necessary 
algorithms. The peers share their sum of loads and the 
capacities. The virtual server hosted by the peer runs the 
application, handles and processes the requests and 
interacts with the peer. Each MA calculates the load per 
unit capacity for the set of peers it is monitoring. The 
load per unit capacity is shared and updated between 
adjacent MAs, they calculate the global load per unit 
capacity and inform the peer. The peer informs the MA 
when there is a change in load on a virtual server. The 
architecture diagram of the system is shown in Fig. 1.  

4.1. MAs 

A MA supervises a group of several peers. It 
periodically obtains the sum of load for each virtual 
server and the capacity of the peer.  

Load per unit capacity is the sum of the load of each 
virtual server of every peer divided by the sum of the 
capacity of all peers. This Lpc is shared between 
MAs.Sum of loads of all virtual servers and capacities of 
peers which are shared among mobile agents are 
organized in the following manner: 

struct load_cap { 
double sum_load_vs,sum_cap; 
int ma_id; 
} mobile_agents[N]; 

Every MA maintains this and calculates the load per 
unit capacity after the information is globally shared. 
Instead of each agent adding all the values, it can get the 
sum of the loads and capacities from adjacent MAs. 
Therefore, this MA can add the remaining MA’s 
collected load and capacity, find the load per unit 
capacity for its monitored peers and also share the sum 
of loads and capacities with the MA so that is 
communicated to other MAs. This is the only function of 
MAs when they are not participating in any load 
balancing or when the virtual servers are being moved. 

4.2. MA Management 

The MAs can be deleted or created. A MA failure is 
detected in the following way. First, the mobile agents 
periodically share their load per unit capacity. When 
none of the MAs receive a message from a particular 
MA, it is said to have failed. Peers that were tracked by 
that MA should then be monitored. Therefore, every peer 
maintains a status to show that it is being monitored by 
some MA. Secondly, if some peer’s status is null, an MA 

has failed. Peers that are monitored by the same MA 
know each other’s address. When an MA fails, these 
peers communicate among themselves and create a new 
MA using an established mechanism. 

5. EXPERIMENTAL SETUP 

Systems were connected through local area network 
with capacities of random access memory varying from 1 
to 8 GB and processors of Intel Pentium 4 or core or core 
2 duo or atom or i3 or i5. Every system runs with Ubuntu 
12.04 OS and simulation was done in Java and Netbeans 
IDE was used. Virtual servers were dynamically set up 
by embedded glassfish server instances in each peer. 
Each instance runs the application in WAR file. In this 
simulation, ticket booking application runs on each 
instance. User request from html webpage on arriving 
are mapped to a random virtual server instance of a peer. 
In JSP, the request was mapped to the peer which hosts 
the virtual server through its ip address. First, the peer 
module handles the incoming request. It allocates the 
task to the virtual server which was selected in 
random. Suppose the virtual server was not found in 
the peer in which it was located, peer allocates the 
task to one of its virtual servers at random. The 
application on the virtual server handles the request, 
books the ticket, and updates in database. During this 
process, virtual server in the peer may not be found in 
the peer as it could have been migrated by the load 
balancing algorithm which was running concurrently. 

Mobile agent was implemented in Java aglets 
which exchanges loads of virtual servers and peers 
with other mobile agents and calculated load per unit 
capacity. It also helps overloaded peers to identify 
underloaded peers for sending requests. One MA was 
allocated per two peers. Load balancing algorithm is 
implemented in a Java file which captures the load of 
each virtual server and shares the load and capacity 
with the mobile agent. On receiving load per unit 
capacity from mobile agent, the event based load 
balancing algorithm runs in the system. 

6. EXPERIMENTAL ANALYSIS 

6.1. Capturing the Load of the System  

The load of the virtual server was calculated by: 

• Obtaining the pid’s of the virtual server  
• Determining the memory and CPU utilization in the 

Linux environment using all the pid’s  
• Finding the ports used by the particular pid’s 
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Fig. 1. Architecture diagram 

 
Thus, we defined the load by using the above 

parameters. The capacity of the peer is the memory, CPU 
capacity, bandwidth and available open ports. We 
determined the load of a virtual server using its CPU 
consumption, memory usage and the TCP/IP connections 
used by the virtual server at that particular second. First, 
the system captured the process ids being used by the 
virtual server. We obtained the CPU usage of these 
process id’s using the command %cpu, the memory usage 
using %mem. We determined the number of TCP/IP 
connections used by the virtual server and then the number 
ports using "/proc/pid’s/". These values were periodically 
obtained and stored. The peer periodically updated the 
loads of its virtual servers. Define c1 to be the CPU 
consumption, c2 to be the memory usage and c3 to be the 
ports and TCP/IP connections. In our experiments, these 
were given equal weight and set to 0.33, so c1+c2+c3 = 1. 

Similarly, the capacity of the system was 
determined using the CPU capacity, memory capacity 
and maximum number of TCP/IP connections. The 
CPU and memory capacity were static. At each 
period, we determined the used and free TCP/IP 
connections. Therefore, the load and capacity of the 

peer changed periodically and was monitored by a 
MA that calculated the new load per unit capacity and 
informed each peer that it monitored.  

6.2. Considering Maximum TCP/IP Connections  

In this simulation, we have assumed that systems 
have considerable CPU and memory capacities. Then the 
maximum possible number of socket connections, or that 
can be guaranteed per unit time, becomes important. 

The load is dramatically increased in a system with 
less available TCP connections, or where there are more 
connections used per unit time and where there are 
many connections used by the virtual servers. 
Similarly, when fewer connections are used and more 
connections are available to the peer, the load 
decreases. The change in load helps us to better 
categorize the peers as overloaded or underloaded.  

A system that is classified as underloaded without 
considering TCP/IP connections, but which has less free 
connections, will performance worse in terms of the 
number of requests handled in unit time. However, if we 
consider the TCP/IP connections the load of each virtual 
server is increased and system’s overall load is 
increased. 
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Now the peer has a higher chance of becoming 
overloaded or load balanced. The same applies to an 
overloaded peer. It may have abundant free TCP/IP 
connections, so it can host more virtual servers and 
can handle more requests per second. In addition, if a 
peer is classified as underloaded without considering 
TCP/IP connections and has more available 
connections, it can become more underloaded with a 
higher load imbalance. The converse is also true. All 
these four cases are possible. 

Loads of the peers are calculated using CPU and 
memory usage as load parameters and CPU, memory 
usage and TCP IP as load parameters simultaneously. 
Then the mobile agents calculate and send load per unit 
capacity to the peer for each of the load calculation. Of 
all the underloaded peers under CPU and memory usage 
as load parameters, 70% remain as underloaded, 18% 
become load balanced and 12% become overloaded 
when TCP IP parameter is included along with CPU and 
memory usage as load parameters. Similarly of all the 
overloaded peers when CPU and memory usage were 
used as load parameters, 63% remain overloaded, 24% 
become overloaded and 13% become load balanced 
when TCP IP parameter is included. 

The changes to the classification of peers shown in Fig. 
2 would result in a different virtual server migration by the 
proposed load-balancing algorithm. More requests would be 
handled per unit time. We obtained the range of available 
open ports using the command sysctl 
net.ipv4.ip_local_port_range and the minimum lifetime for 
a TCP/IP connection using sysctl net.ipv4.tcp_fin_timeout 
stackoverflow.com/questions/410616/increasing-the-
maximum-number-of-tcp-ip-connections-in-linux. The 
maximum connection that a system can guarantee per 
unit time is the range of open ports divided by minimum 
lifetime. The range in our experimental system was 
32768-61000 and the minimum lifetime was 60. 
Therefore, it could guarantee 470 socket connections per 
unit time. So the maximum possible connections was 
considered as a load parameter, which we set to 470, 766 
and 1530. The maximum possible connection was 
increased to 766 by increasing the open ports range to 
15000-61000 and 1530 connections were made possible 
by reducing the minimum lifetime to 30.  

We ran the proposed load-balancing algorithm, 
considering only the CPU, memory and the list of ports 
used by the system. When we did not consider the TCP 
connections as a parameter, the average number of 
possible connections for a load-balanced system was 

390. It was considered load balanced because the load of 
the peers equaled their thresholds, although more socket 
connections could be used. When we did consider the 
TCP connections, additional virtual servers were hosted 
if the peer was underloaded (considering CPU, memory 
and available free TCP connections). The average 
number of connections used in a load-balanced system 
was then 425. We carried out the same experiment on 
systems with 766 and 1530 maximum possible 
connections. The results are shown in Fig. 3 and 
demonstrate that more socket connections are used per 
unit of time when TCP is considered as a parameter. 

6.3. Migration of Virtual Servers 

Each peer’s module receives requests to execute 
tasks. They randomly select a virtual server and assign 
it the task. When the task is completed, the peer 
module sends a reply. When a virtual server is moved 
from an overloaded to an underloaded peer, the 
application file that is running on the server and the 
embedded glassfish server instance creation file is 
transferred to the underloaded peer. The underloaded 
peer deploys the instance and the application is 
launched on the server instance. The overloaded 
peer’s module checks all the requests or tasks that 
have been allocated but not successfully completed 
and these tasks are moved to the selected underloaded 
peer’s module. The underloaded peer’s module 
allocates these tasks after the virtual server has been 
successfully deployed.  

6.4. Local Vs. Global Load Per Unit Capacity 
and Load Balancing by MAs 

We ran two types of simulations using MAs. In the 
first, each MA monitored N peers. It calculates the 
load per unit capacity of the peers it is monitoring and 
informs its peers. An overloaded peer tries to migrate 
its virtual servers to the underloaded peers in this 
MA’s coverage. This reduced the bandwidth latency 
needed to transfer the virtual server. After this initial 
process, the adjacent MAs share their load per unit 
capacity and inform the peers about the new load per unit 
capacity. Now, the overloaded peer first attempts to 
migrate the virtual server to the underloaded peer in the 
same MA’s coverage. If this is not possible, it tries to 
find the nearest underloaded peer in the adjacent MA’s 
coverage. This process repeats. By using this scheme, the 
required overheads and bandwidth are reduced.  
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Fig. 2. Classification of peers 
 

 
 

Fig. 3. Number of connections used when load balancing 
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However, the disadvantage is that the derived load per 
unit capacity is inaccurate, because it is first calculated 
locally and then shared with adjacent peers. An 
alternative scheme is to have the MAs monitoring the 
peers. All MAs share the sum of loads and capacities of 
all peers. The MAs calculate the overall load per unit 
capacity of the entire network using this shared 
information and inform the peers. This involves more 
overheads, but the classifications are more accurate 
because they use almost perfect information to 
calculate the load per unit capacity. When the peers and 
virtual servers join and leave, each MA updates the sum 
of loads of peers and capacities in its monitoring range. 

The MAs periodically share their information and the 
new load per unit capacity is calculated. 

7. RESULT AND DISCUSSION 

Our proposed algorithm was specially designed to 
make use of heterogeneity in the load of virtual 
servers and capacity of peers to reduce the load 
imbalance factor through exchange mechanism when 
direct transfer from overloaded to underloaded peer is 
not possible. Due to this load imbalance factor is kept 
minimum which is one of the highlight of the 
proposed algorithm. But in homogenous system 
suppose every virtual server or task to be transferred 
is considered as only one unit of load, this algorithm 
degenerates to 1-N scheme (sender initiated)-shortest 
selection policy with polling only the under loaded 
peers indicated by the mobile agent. This happens 
because when there is no heterogeneity formload 
function will not be used. In underloaded peer j when 
a request arrives, if loadj + Li,v ≤ Tj succeeds a 
response is sent back and if it fails the else part 
always rejects request in homogenous systems. 
Though sender initiated scheme suffers during high 
loads as it can’t find underloaded peers thereby 
increasing the polling activity, our algorithm avoids 
unnecessary requests during high loads because the 
mobile agent only gives the details of underloaded 
peers and so one can classify our scheme stable sender 
initiated algorithm due to its above feature. 

To our knowledge compared to all the existing load 
balancing algorithms, our proposed work minimizes the 
load imbalance factor to the greatest extent in 
heterogeneous systems. This is mainly due to the 
exchange scheme which is used when one way transfer 
of virtual server from overloaded to underloaded peer is 
not possible. When the overloaded peer does not 

receive any response for one way transfer, it chooses 
the response from underloaded peer which returns 
minimum load. When a transfer is not possible, by 
exchanging the load imbalance factor is reduced for 
both the overloaded and underloaded peer. Before the 
exchange of the virtual server, the load balance factor 

of the overloaded peer is i v 1

k virtualservers

i,v| T L
=

−∑ . The set 

of virtual servers returned back will always be less than 
the virtual server moved from overloaded to underloaded 
peer, i.e., Ri < Li,v Infact the response with minimal Ri is 
chosen. After the exchange it is reduced to 

i i iv 1

k virtualservers

i,v| T L R L |
=

− + −∑ . Similarly the overall load 

of the system is increased in receiver peer and thereby 
decreasing the negative magnitude of 

j v 1

k virtualservers

i,v| T L
=

−∑  of the underloaded peer j. Thus it 

contributes in minimizing the magnitude of load 
imbalance factor of the underloaded peer.  

Figure 4 shows the load imbalance of the system. 
We determined the number of virtual servers moved 
for 10 and 100 peers using the simulation discussed in 
the experimental setup. The proposed load balancing 
algorithm decides when to migrate a virtual server. 
We determined the number of virtual servers moved 
for thousand and ten thousand peers by running the 
load balancing algorithm in a single program with a P-
P distribution. Our proposed schemes of local and 
global sharing scheme (with inbuilt exchange scheme) 
has slightly higher load imbalance factor than 
centralized directory because it uses 1-N scheme. If 
the same algorithm is implemented as N-N scheme or 
as centralized directory with exchange mechanism it 
will do better than existing central directory due to its 
additional exchange mechanism which will allow 
more load sharing and thereby minimizing the load 
imbalance further. 

Movement cost includes both the virtual servers 
which are moved from overloaded peer to underloaded 
peer and some of the virtual servers which are returned 
back by underloaded peer from its set of servers. The 
movement cost is given by: 
 

i,V moved i returned backMovementcos t L R+=∑ ∑  

 
The number of virtual servers transferred moved in 

P-P distribution is shown in Fig. 5. Although the 
movement cost and the number of virtual servers 
moved is high, the load imbalance of the system is 
significantly reduced 
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Fig. 4. Load balancing in a P-P distribution 
 

 
 

Fig. 5. Number of virtual servers moved in a P-P distribution 
 

8. CONCLUSION 

We have presented and discussed a novel load-
balancing algorithm that reduces the load imbalance 
factor. The movement cost due to the transfer of virtual 

servers is slightly increased, because we have considered 
reducing the load imbalance to be the primary issue. The 
method uses mobile agents to calculate the load per unit 
capacity. Local and global sharing techniques are used 
by MAs to calculate the load per unit capacity. We 
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included the maximum possible number of socket 
connections per unit time as one of the load parameters. 
Our analysis shows how this improves the classification 
of the peers into overloaded and underloaded.  

If every virtual server or task which is to be 
transferred is considered as one unit load, the exchange 
scheme doesn’t work at all. Our proposed scheme 
degenerates to stable sender initiated algorithm with 
shortest selection policy in this case. 

One can consider TCP connections as a significant 
parameter when there is a considerable CPU and 
memory capacity. However, we need to address the 
problem when these resources are scarce. In the future, 
this 1-N scheme should be converted to a N-N scheme 
by sharing the responses that are sent by the underloaded 
peer. After the overloaded peer has selected the best 
response, the remaining responses can be shared with the 
other overloaded peers that are monitored by the same 
MA. This can further reduce the message overheads. 
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