Jour nal of Computer Science 10 (6): 948-960, 2014
ISSN: 1549-3636
© 2014 Science Publications

doi:10.3844/jcssp.2014.948.960 Published Onlinég)@014 (http://www.thescipub.com/jcs.toc)

USING MOBILE AGENTSFOR LOAD BALANCING IN
PEER-TO-PEER SYSTEMSHOSTING VIRTUAL SERVERS

VijayaKumar G. Dhas, S. Saibharath and V. Rhymend Uthariar aj

Anna University, Chennai, India

Received 2013-12-16; Revised 2013-12-23; Accepted-20127

ABSTRACT

This study proposes a novel load-balancing algeritbr managing virtual servers in a Peer-To-Pe2P[P
system through mobile agents. The proposed algoighimplemented in a fully decentralized mannerao
structured P2P system. It uses mobile agents amtdependent of the geometry of the P2P auxiliary
networks. The load-balancing algorithm effectivedguces the load imbalance of the system usintptte
per unit capacity derived by the mobile agents.nique feature of the proposed algorithm is the m@iutu
swapping of virtual servers between overloaded anderloaded peers to efficiently use the available
resources. The proposed solution has been veiifiad®P2P environment consisting of peers and endzbdd
glassfish server instances, created dynamicalfctas virtual servers.

Keywords: Load Balance, Virtual Servers, Heterogeneity, Bg&tems

1. INTRODUCTION

Load balancing is an important factor to consideemv
optimizing productivity in Peer-to-Peer (P2P) cortipyt
The load must be distributed among peers basetein t
ability to get better throughput (Wang and Vannjnen
2006; Zouet al., 2002). Instead of transferring tasks
between peers, the trend for some time has bemigtate
virtual servers from one peer to another. In thise; each
peer hosts a number of virtual servers. To balémedoad
of the system, the virtual servers are moved fram a
overloaded to an underloaded peer (Baab., 2003; Li and
Shao, 2011; Wang and Vanninen, 2006; Zoal., 2002;
Hsiaoet al., 2011; Godfreyet al., 2004). In earlier work,
the virtual servers were transferred from overlaate
underloaded peers in only one direction (Hséhal.,
2011). The work carried out by (Wamegal., 2004; Zhu
and Hu, 2005) considered a node k that has a makcif
target load T, where T is less than £(the capacity of k).
The node k can accept virtual servers only up eéatdinget
load T. Ideally, T, should be the product of A and, C
(Wanget al., 2004), where A is the load per unit capacity

the system, the load imbalance factor is not dffelst
minimized. Sometimes an overloaded peer cannot
migrate a virtual server to an underloaded peeralme

if the underloaded peer accepted the load it would
become overloaded. The primary aim is to reducdotiu

of the overloaded peer until it becomes underloa@ede

an overloaded peer becomes underloaded, it rerttzms
way until the next load balancing cycle, which is a
inefficient use of resources. The unique featurethef
proposed algorithm is the mutual swapping of virtua
servers between the overloaded and underloaded peer
which overcomes the above limitation.

Our primary aim is to reduce the load imbalance
factor of the whole system. We propose a novel load
balancing algorithm that exchanges virtual servers
between overloaded and underloaded peers. This
primarily helps to reduce the load imbalance faaibr
both overloaded and underloaded peers. Mobile Agent
(MAs) are used to find the load per unit capacitg a
help overloaded peers to find underloaded peenhioh
to migrate their virtual servers. Using this methtue
load imbalance of the whole system is significantly

of the system. In this case, k manages its loadreduced. A virtual server can be migrated to the

proportional to its capacity. Although this loaddraces

underloaded peer and some smaller virtual senasted

Corresponding Author: VijayaKumar G. Dhas, Anna University, Chennai, indi

////4 Science Publications 948

JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

by the underloaded peer can be sent to the ovextbad select the best possible underloaded peer to Inest t
peer to create balance. This minimizes the loadvirtual server. The N-N scheme uses a directory to
imbalanced factor. Previous studies have assumbd on share information. It reduces the load imbalance bu
one bottleneck resource in the system (Wahal., becomes similar to a centralized directory schele.
2004; Zhu and Hu, 2005). The study carried out inN is very useful when the overloaded peers have
(Hsiaoet al., 2011) also assumed only one bottleneckinformation about other overloaded peers in the
resource in the system, but it failed to assume aproximity. The overloaded peer can mutually
particular resource constraint. We have considered exchange the details of the underloaded peersithat
specific resource as a constraint, namely the numbehas interacted with in the past and present.
of active TCP ports. As in earlier studies, we rafteto Wang and Vanninen (2006) and Zeual. (2002)
minimize the movement cost. In his pioneering work focused on maximizing the throughput of the system
(Lamport, 1978), Lamport proposed that events rhest and reducing message overheads and considered the
ordered in a distributed multiprocessor system. TheCPU and memory capacities as load parameters. The
ordering of events using logical clocks removestnads maximum number of socket connections possible per
the unexpected anomalous behaviors (Lamport, 1978)unit time is considered to be a parameter. Although
We apply this concept when handling requests toemov they tried to maximize the throughput of the system
virtual servers from overloaded to underloaded peer they did not consider this parameter. In additidrey
The algorithm proposed addresses the challenge oflid not try to balance the load over the whole syst
load balancing. It reduces the load imbalance facto so that every peer reached its threshold level.
and movement cost. We also consider Lamport’s Hsiao et al. (2011) tried to reduce the load
ordering of events when moving virtual servers. We imbalance factor by transferring virtual serverenir
have implemented these concepts with a 1-N schem®verloaded to underloaded peers. They tried tocedu
and tested the algorithm in a P2P environment wherehe movement cost, but did not try to minimize the
dynamic embedded glassfish servers instances weréad imbalance factor. Their method used the virtua
used as virtual servers. We experimented using theserver concept for load balancing, by assigningl ltma
number of active TCP ports as a resource constiaint each object entering the system (Hsketcal., 2011;
the proposed load-balancing algorithm. Godfreyet al., 2004). However, their method assumed
The remainder of this study is organized as folldws that there was only one bottleneck resource in the
section 2, we review some related work. Section 3system and left the multiple resources as futurekwo
presents the proposed framework for load balan@ing Minimizing the load imbalance factor requires more
structured P2P networks. In section 4, we explam t movement cost. Although better balancing can be
structure of our experiments. We present resutis fan achieved by higher movement cost, the load
experimental study in section 5. Section 6 discu$sav imbalance factor must not be too high compared with
the load is captured, using a TCP port as a resourcthe system’s bandwidth.
constraint. Section 7 presents experimental results HiGLOB is a histogram-based global load balancing
obtained based on load imbalance factor and movemerframework (Vuet al., 2009). It uses a load-balancing
cost. It also discusses the pros and cons of theoped manager to redistribute the load among peers. Hemvev

algorithm. Our conclusions are found in section 8. this load-balancing manager is centralized and atabe
used in a fully decentralized P2P environment.
2. RELATED WORK In “single ID per node” only one popular object can

be stored in a single node. It failed because ef th
Load balancing is done by migrating the virtual popularity of some objects in the destination node
servers from an overloaded to underloaded peer andKarger and Ruhl, 2004; Serlst al., 2007). “Multiple
has been discussed in numerous studies (Godfrey antD per node” was then introduced, but it too igribtke
Stoica, 2005; Ledlie and Seltzer, 2005; Waatcal., popularity of objects (Raet al., 2003). Li and Shao
2004). There are three schemes for overloaded tq2011) and Nehrat al. (2007) used MAs to collect,
underloaded peer interaction: 1-1, 1-N and N-N. Theanalyze and locate peers. These MAs identify eaeh p
simplest is the 1-1 scheme, which involves lessas overloaded or underloaded. The MAs walk through
computation and overheads but does not select thehe entire network and try to load balance eactesy®y
best possible peer to host the virtual server (&ad., migrating the virtual server. The MAs are not
2003). In the 1-N scheme the overloaded peer canightweight, as they must perform a lot of procegsi

////4 Science Publications 949 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

They are responsible for coordinating the transfer
workload between overloaded and underloaded peers.
Shen and Xu (2007) have considered proximity of L C=Sum of loads
the peers in load balancing. There is a mismatdhén p 7z‘npeersc.
proximity abstraction of logical and physical loigat =
of peers. The mismatch makes load balancing
proposed by (Shen and Xu, 2007) suitable only for
specific topology. Hsiaet al. (2011) have pointed out
that the load balancing problem need not rely on
auxillary tree networks and should be independént o
the geometry of the P2P Substrate.
Local load information aggregation is done by :)
: : . : defined as:
sending messages with a time to live TTL value,
which is decremented by one when it is received by
the adjacent peer (Li and Xie, 2006). The load &t)
capacity is calculated using this information. The
limitation of this approach is that it leads todar
message overheads. As each peer collects informatio ~ MAs are used to monitor groups of several peers.
it forwards the message to the next peer. The Samé-he MA obtains the total load contributed by aleth
peers can be visited multiple times and the catedla Virtual servers hosted by a peer and the capaéityeo
load per unit Capacity iS not accurate because Hney peer. The various MAs share this information amd fi
counted many times. Therefore, a peer is coveredthe total Load per unit capacity (Lpc) of the syste
multiple times by different messages. When usirg th The load per unit capacity is given to all the [selr
local neighborhood method, only he bandwidth the system. Based on the Lpc, each peer calcuitstes
involved is minimized. However, the problem of threshold load value Twhich is proportional to the
reducing the load imbalance is not given importance capacity of the peer. The threshold load valuearid
Even if one tries to reduce the bandwidth laterthg, the load of the peerare compared. The peer is

load imbalance factor must also be considered. overloaded if the load of the pees greater than the
threshold load value ;T The status of the peer

(overloaded or underloaded) is communicated to the
MA. For each pegrthe MA stores the sum of loads,
We propose an innovative mechanism that usescapacity of each peer and status of the peer as
MAs to control virtual servers. The migration ofeth overloaded or underloaded. MAs periodically update
virtual servers is used to balance the loads inthe load per unit capacity of the system.
structured P2P systems. The proposed algorithm is event based and the
Consider a P2P system, with a set of virtual server fo|lowing events takes place.
and a set of peers, N, participating in the systesh.Lv
be the load of the virtual server v, where v isibset of
V. The load of the peer Loai the sum of the loads of
all virtual servers hosted by the peer. Let Ci he t
capacity of the peer i. The load per unit capagipc) of
the system is defined as the sum of loads of alliai
servers divided by the sum of the capacities ofttad|
peers. Some parameters used can be foumfidbte 1.

The load per unit capacity is defined as:

The load imbalance factor of a particular:

k virtual server

‘Peeir - Ty o L,

The load imbalance factor for the whole system is

n peer K virtual serverg

Load imbalance Zi =1 ﬂ T+ Zv -1 L,

3. PROPOSED SYSTEM

On receipt of load per unit capacity (Lpc) at Peer

Check status of the Peer

If overloaded

Send request message for load migration

On receiving request message by the under loaded pe

Process the message and send response message
On receiving the response message by overloaded pee

Add to message queue

3.1. Calculating L oad Per Unit Capacity

The sum of loads of all virtual servers is defired

npeer. k virtual servers
Sumof loads= Y "**%" L,

i=1

////4 Science Publications 950

On time out at over loaded peer
Process queue and send accept message
On receiving accept message at under loaded peer
Carry out exchange of virtual servers

The above algorithm is discussed in detail in saistion.

JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

Table 1. Notations frequently used

Set of virtual servers to be returned

T Threshold of peer R back from underloaded to overloaded peers

A Load per unit capacity L Load of virtual server v

G Capacity of peer \% Virtual server

LOAD; Load of peer Lpc Load per unit capacity

MA Mobile agent

Module 1 The underloaded peer receives the request to accept

virtual servers, with a maximum return af. The

On receipt of a load per unit capacity for péem
a MA.
When the peer finds that it is overloaded, soméhef

virtual servers whose load Lv is minimal need to be

migrated until its load becomes less than the tuies

load value, T Let A; be the difference between the new

load on pegrand T, after the required migration. That is,
peer is now underloaded by;.. This peercan now accept

underloaded peer checks that it will not exceed the
threshold value if it accepts then sends a response
(C(response)) to the overloaded peer. It also lamds
load imbalance, capacity and \Rilue (set as null). The

R; value is the set of virtual servers whose sum atllo
value is less than or equal Ap Let o be the difference
between the new load on the geerd the threshold load

a load value up ta to become load balanced, thereby value T. If a of peeris greater than of peey, then the
reducing the load imbalance factor.When peers @pdat request is rejected. Otherwise, the formload famcis
their sum of loads, the status is refreshed. So thecalled to find the combinational set of virtual\ens that

overloaded peer finds the underloaded peer thragh
MAs. The overloaded peer sends Bnd A; to the

underloaded peers identified by the MA. After sedi
the requests to the underloaded peer, the ovedoaeker
waits for responses. The above process is illestraty

the algorithm for an overloaded peer. This algonitis

activated when a peer becomes overloaded.

T,= LpC*Ci
if load > T;
Status = overloaded
else if load< T;
Status=underloaded
if (peer is overloaded)
while load >T;
Ui=min {L; s}
/IV hosted in pegr
A= Ti-(Load-L;,)

can be sent from the underloaded peethe overloaded
peer. If the formload function cannot find the
combinational set of virtual servers, then it vsifit Rto
null. If Ryis null, then the request from the overloaded
peer is rejected. If Ris not null, then the request from
the overloaded peeis accepted. The above process is
illustrated by the algorithm for the underloadecempe
This algorithm is activated when a peer is undeidaha

if (loaq + Liy < Tj)
Send (peerid, loadimbalance, capacity,
R; = Null) /I sending response
else

a=load+Liy—T,
if a> Ai
reject request

; Ise
Send (Y A;, peerids) € " .

/ISends request to many underloaded peers. Theidzeer R = call formload function, A))
of the underloaded peer is given by MA if (R =; Null) Jlunable to find
} e eject request//unable to find a peer
Module 2 Send (peerid,loadimbalance,capacity,

On receiving a request message by the under R) //sending response
loaded pegr

The underloaded peers can reply with a request to }
accept virtual servers whose sum of load is leas A Module 2a

This helps to load balance both the overloaded and

underloaded peers after the virtual servers hawn be

Form the load and selecting virtual servers todd s

exchanged. The load imbalances of both are minidnize from the underloaded pegdo the overloaded pgein

and both loads converge to their threshold.

////4 Science Publications

951

case of swapping [Minimurm and maximun].

JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

The formload function selects the set of virtual size - = Ild[n-1];
servers which can be transferred on return from decrement n
underloaded peer to the overloaded peer on acgefpin else
virtual server from the overloaded peer. This hdlps decrement n
reduce the load imbalance factor of both peers.aFray return R

Ld contains all the loads of virtual servers that laosted Thus, the overloaded peenigrates its virtual server
by the underloaded peer whose load value is lébs@r \yith minimal load to an underloaded peefThe

or equal to delta and n is the number of virtualees. overloaded peer continuously tries to migrate its
Initially, R; is set to null. K is a two dimensional array minimal virtual server until it becomes load baladc
that tracks the maximum load value which can beor its overall load is less than the threshold. The
returned as a set of virtual servers. The bestilpless underloaded peer never becomes overloaded.
combination of virtual servers whose sum is lesstar The set of virtual servers used to form the load is
equal to delta is selected. Variables i and w poiotthe tracked as discussed below. Initially, n is the hamof
virtual server and the load value for which thetbes virtual servers on the peer. The variable “size%és$ to
combination of virtual server is selected. K} is the delta. If K(i, size)! = K(i-1, size), the presenirtual
sum of load for a set of virtual servers that carsent to Server has been involved in forming the load. Sovintual
the overloaded peer. If K[n,w] is greater than alphis ~ server is added to the set R and size is decrechbytthe
rejected because the underloaded peer become@?d of the_lcErrentlvutu?l ste)n/er. This proce?(sc_utedhm
overloaded if the exchange process happens. Ifoda: @ loop until the value of n becomes zero and Reoesithe
to be formed is zero or r?o \F/)irtual serV(E,\)rp is coesd, SetX;V;ﬁ“:Lz‘:‘é?ers Itrr:aljr:?jreﬂ(t)g%le%agge(zi/w%— 50 and
K(i,w) is zero. The array is constructed in suclwvay S ' - '
that if the load of the virtual server is greateart the -°ad (Ja =40. In love_rloa<|jed paesaly Td: 50, Load (I)h:
load to be formed (w), then the load of the presiou 54 and minimal virtual server load; L= 15. T_e
virtual server (i-1) is retained (i.e., K(i.w) = Kw)). If overloaded peer tries to migrate this virtual serage=

4 SR U Ti-(Load-L;,) = 50-(54-15) = 9. The underloaded peer
the load of the V|rtu_al server is less than thejltm be receives a requeibm overloaded pegwith <Ly, A>
formed (w), then K(i,w) is equal to the maximumtbé ¢ <15 9> respectively. The underloaded peer ¢anno
load formed in the previous virtual server (K(i-)and — accept V- directly without return of virtual serveas
the load of the current virtual server (Id[i-1])upl the LOAD; + Lj,> T,

load formed in Ki-1][w-Id[i-1]]. _ _ a = LOAD; + Ly — T;, « = 5 units respectively: is
I Thti above process is illustrated in the following not greater than;. So formload function is called.
algorithm.
Formload: Module 3.
Id[] = For each Pwhose L, < A, On receiving the response message by the overlqead
Let n be size of array Id After the overloaded peer sends the minimum virtual
declare K[n+1]}; +1], R = NULL server's load value and delta value to the undddda
fori=0ton peers, the overloaded peer waits for a time owtctur.
for w = 0 toA| While it is waiting, it saves the responses reagifrem
ifl==0||w== underloaded peers.
K[i][w] = 0; On receiving a response message from the overloaded
else if Id[i-1]< w peer:
K[il[w] = max(ld[i-1] + K[i-1][w- /I for each response
[d[i-1]], K[i-1][w]); Response[K] = recv(peerid, loadimbalance, capaRjly
else Increment K.
K[il[w] = K[i-1][w];
if(K[][w] < o) Module 4.
return NULL; On time out at over loaded peer.
else) Multiple request handling by an underloaded peer.
size =Al When requests arrivat an underloaded peer and it
while n>0 responds positively, only some of the overloaded
if K[n][size]! = K[n-1][size]) peers can migrate their loads to it, or it will bewe
R=R UV, // Viq has load Id[n-1] too overloaded.

////4 Science Publications 952 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

Two approaches to avoid this overloading are peer's load to increase, because the loads of ithealv

possible. First, when there is a positive respdogbe servers change when they handle other requesthisin
overloaded pegrthe load of the underloaded pesr case, responses from the other underloaded peerseca
temporarily increased to ;L units. When another wused to transfer virtual servers. The above proigss
overloaded peer sends a request, j projects i &sa illustrated by the following algorithm.

Load + > L;,, even though it has not yet been selected)

to host additional virtual servers. Then the ureteted O @ time out at the overloaded peer:

peey cannot become overloaded. When this peer is notMin = -1

selected to host a virtual peer by the overloadsetpit for each response[K] whosg B Null
decreases its load by} units. However, this is very if (loadimbalance*capacity > min)
conservative approach, because not all the positive Index =K
responses will succeed and this peer will not kectsd as Min = response[k].loadimbalance *
the best peer by the overloaded peers. response[k].capacity

The second approach orders events (Lamport, 1978).if min != -1 // means a response is selected
Suppose an overloaded_pesends a request withy L Select the peer(response[index].peer id) for gfan
and a positive response C(respghde sent from the of virtual server
underloaded peer. Then another overloaded, seeds Load = Load - L,
a request (with },), it sends a positive response V =V-U,
C(responsg. The ordering ensures that. return

C(responsg < C (responsg, for response[K] whose Rs not Null

i.e., C(response< C (responggwhere j>i. max = delta

The overloaded_pegrreceives the response and sum=} responsel[k].|,
processes it. Suppose that overloadedpeeplies if sum< max
before overloaded peerThe underloaded peer checks Index = k
whether C(responggis less than C(responjelf it is Max = sum

not, the reply is not in order. It does not host tirtual Select the peer(response[index].peer id) for tranef
server of overloaded_peauntil it receives the response virtual server

from overloaded_pegrunless it can host,} and Ly, Load = Load + Rindex - L

without exceeding its threshold. V=V-U,

3.2. Selection of Peer for Migration V=VUR

The overloaded peer collects responses from thdViodules.

underloaded peers, which contain load imbalang®a® On receiving an accept message at an underloaded pe
and the set of virtual servers to be exchanged thieh When theunderloaded peer receives an accept
underloaded pegeiThe overloaded peer first checks through message from the overloaded peer, it accepts the
the list for peers that do not need to exchangdealiservers virtual server load. If the underloaded peer’s dtind

(R is null). Priority is given to underloaded pedrattnot has changed and it will become overloaded, the
need to exchange any virtual servers with the osddd alternate best choice is used.

peer. The underloaded peer that has the maximudugtro If there are no alternate peers available, the
of load imbalance and capacity is selected. Ifehisrno underloaded peer restarts the load-balancing #fgori
underloaded peer that has nuj] Rchecks the remaining)

responses, which are from peers that need to eyetmeet ~Receive accept message

of virtual servers to the overloaded peer. The losded if (message = = accept message) {

peer selects the underloaded peer from which is taks ~ receive (peerid,l,reponse[])

the minimum number of virtual servers. Module 2uees if(could not host v)

that the overloaded peer will not become overloanfeze Choose best underloaded peer from reponse]]
again, because it will not accept any servers iloiad after and transfer

exchanging is greater than its threshold. After the if could not find a peer from response]]

overloaded peer has selected the appropriate oaded Restart load balancing algorithm
peer, it migrates the minimum set of virtual sesvéralso else

sends the responses that it received from the other V=(V-R) Uy,

underloaded peers. It is possible for the undeddad }

////4 Science Publications 953 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

4. ARCHITECTURE DIAGRAM has failed. Peers that are monitored by the same MA
know each other's address. When an MA fails, these

Every peer in the P2P environment hosts a number opeers communicate among themselves and create a new
virtual servers. Peer modules contain all the remngs MA using an established mechanism.
algorithms. The peers share their sum of loadsthad

capacities. The virtual server hosted by the pees the 5.EXPERIMENTAL SETUP
application, handles and processes the requests and
interacts with the peer. Each MA calculates thel Ipar Systems were connected through local area network

unit capacity for the set of peers it is monitorifigne ~ With capacities of random access memory varyingfiio
load per unit capacity is shared and updated betwee to 8 GB and processors of Intel Pentium 4 or coreooe
adjacent MAs, they calculate the global load peit un 2 duo or atom or i3 or i5. Every system runs withuotu
Capacity and inform the peer. The peer informshNtfe 12.04 OS and simulation was done in Java and Netbea

when there is a change in load on a virtual sefthe IDE was used. Virtual servers were dynamically iget

architecture diagram of the system is showfimn 1. by embedded glassfish server instances in each peer
Each instance runs the application in WAR file.this

4.1. MAs simulation, ticket booking application runs on each

A MA supervises a group of several peers. It instance. User request frqm html webpage on agivin
periodically obtains the sum of load for each \ttu are mapped to a random virtual server instancepefes.
server and the capacity of the peer. In JSP, the request was mapped to the peer whists ho

Load per unit capacity is the sum of the load afhea the virtual server through its ip address. Firsg peer
virtual server of every peer divided by the sumtlud module handles the incoming request. It allocates t
capacity of all peers. This Lpc is shared betweentask to the virtual server which was selected in
MAs.Sum of loads of all virtual servers and capasiof random. Suppose the virtual server was not found in
peers which are shared among mobile agents arehe peer in which it was located, peer allocates th
organized in the following manner: task to one of its virtual servers at random. The
application on the virtual server handles the rastue
books the ticket, and updates in database. Duhigy t
process, virtual server in the peer may not be doinn
the peer as it could have been migrated by the load
balancing algorithm which was running concurrently.

Every MA maintains this and calculates the load per Mobile agent was implemented in Java aglets
unit capacity after the information is globally sbd. which exchanges loads of virtual servers and peers
Instead of each agent adding all the values, itgedirthe with other mobile agents and calculated load pét un
sum of the loads and capacities from adjacent MAs.capacity. It also helps overloaded peers to identif
Therefore, this MA can add the remaining MA's underloaded peers for sending requests. One MA was
collected load and capacity, find the load per unit allocated per two peers. Load balancing algoritlsm i
capacity for its monitored peers and also sharesthma implemented in a Java file which captures the load
of loads and capacities with the MA so that is each virtual server and shares the load and capacit
communicated to other MAs. This is the only funotif with the mobile agent. On receiving load per unit
MAs when they are not participating in any load capacity from mobile agent, the event based load
balancing or when the virtual servers are beingedov balancing algorithm runs in the system.

struct load_cap {

double sum_load_vs,sum_cap;
int ma_id;

} mobile_agents[N];

4.2. MA Management 6. EXPERIMENTAL ANALYSIS
The MAs can be deleted or created. A MA failure is
detected in the following way. First, the mobileeats ~ 6.1. Capturing the Load of the System
periodically share their load per unit capacity. 8ih g |oaq of the virtual server was calculated by:
none of the MAs receive a message from a particular
MA, it is said to have failed. Peers that were keait by e Obtaining the pid’s of the virtual server
that MA should then be monitored. Therefore, eyagr e Determining the memory and CPU utilization in the
maintains a status to show that it is being moaidoy Linux environment using all the pid’s
some MA. Secondly, if some peer’s status is nalliveA « Finding the ports used by the particular pid’s

////4 Science Publications 954 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

W4

VS Modules|

V8 Modules

Peer Modules R

(Ca’:ulate LPC

;h*re info with MA's l]

\Monltor Peers p,

VS Modules

Run Application

Interact with node

‘ ‘ VS Modules |
Peer Modules |

Transfer Virtual Servers

PEERMODULES

Overloaded Peer Module

Rec & ProcessResponse

Underloaded Peer Module

VS Modules
Peer Modules

Formload Module

Calculate Load of VS Module

=

Exchange info with MA

Fig. 1. Architecture diagram

Thus, we defined the load by using the above peer changed periodically and was monitored by a
parameters. The capacity of the peer is the men@Py MA that calculated the new load per unit capacitg a
capacity, bandwidth and available open ports. Weinformed each peer that it monitored.
determined the load of a virtual server using iBUC
consumption, memory usage and the TCP/IP connaction
used by the virtual server at that particular sdcdfirst, In this simulation, we have assumed that systems
the system captured the process ids being usedey t have considerable CPU and memory capacities. Tien t
virtual server. We obtained the CPU usage of theseMaximum possible number of socket connectionshair t
process id’s using the command %cpu, the memoryeusa ¢an be guaranteed per unit time, becomes important. -
using %mem. We determined the number of TCP/IP The I_oad is dramaucally_ increased in a system with
connections used by the virtual server and thendneber less ava_|IabIe TCP connections, or where thererame
ports using "/proc/pid’s/". These values were pfidally ?no;nnyecigﬂieﬁ% ?]Speleggt t;)r;e tﬁgd \‘/’}'25;? tggrr\?efsre
I(z)k:glsneo(i ;2dvifttgﬁds.e:-vr;zers.pegéfiainzilc'?olbegpt(:lgﬁ Similarly, when fewer connections are used and more

. connections are available to the peer, the load
consumption, c2 to be the memory usage and c3 thébe jecreases. The change in load helps us to better

ports and TCP/IP connections. In our experimehissd categorize the peers as overloaded or underloaded.
were given equal weight and set to 0.33, so C1+32+L. A system that is classified as underloaded without

Similarly, the capacity of the system was considering TCP/IP connections, but which has fess
determined using the CPU capacity, memory capacityconnections, will performance worse in terms of the
and maximum number of TCP/IP connections. The number of requests handled in unit time. Howeenei
CPU and memory capacity were static. At each consider the TCP/IP connections the load of eadhali
period, we determined the used and free TCP/IPserver is increased and system’s overall load is
connections. Therefore, the load and capacity ef th increased.

6.2. Considering Maximum TCP/IP Connections

,///4 Science Publications 955 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

Now the peer has a higher chance of becoming390. It was considered load balanced because #uedb
overloaded or load balanced. The same applies to athe peers equaled their thresholds, although nuckes
overloaded peer. It may have abundant free TCP/IPconnections could be used. When we did consider the
connections, so it can host more virtual serverd an TCP connections, additional virtual servers werstéad
can handle more requests per second. In additian, i if the peer was underloaded (considering CPU, mgmor
peer is classified as underloaded without consideri and available free TCP connections). The average
TCP/IP connections and has more available number of connections used in a load-balanced syste
connections, it can become more underloaded with awvas then 425. We carried out the same experiment on
higher load imbalance. The converse is also trde. A systems with 766 and 1530 maximum possible
these four cases are possible. connections. The results are shown kig. 3 and

Loads of the peers are calculated using CPU anddemonstrate that more socket connections are used p
memory usage as load parameters and CPU, memorynit of time when TCP is considered as a parameter.
usage and TCP IP as load parameters simultaneousl ; . .

Then the mobile agents calculate and send loadimier 63, Migration of Virtual Servers
capacity to the peer for each of the load calouhatOf Each peer’'s module receives requests to execute
all the underloaded peers under CPU and memoryeusagtasks. They randomly select a virtual server arsiigas

as load parameters, 70% remain as underloaded, 18% the task. When the task is completed, the peer
become load balanced and 12% become overloadethodule sends a reply. When a virtual server is rdove
when TCP IP parameter is included along with CPY an from an overloaded to an underloaded peer, the
memory usage as load parameters. Similarly offel t application file that is running on the server ahe
overloaded peers when CPU and memory usage wer@mbedded glassfish server instance creation file is
used as load parameters, 63% remain overloaded, 24%ansferred to the underloaded peer. The undertbade
become overloaded and 13% become load balance@eer deploys the instance and the application is
when TCP IP parameter is included. launched on the server instance. The overloaded

The changes to the classification of peers showfign peer’s module checks all the requests or tasks that
2 would result in a different virtual server migaatiby the have been allocated but not successfully completed
proposed load-balancing algorithm. More requestsichoe 5 these tasks are moved to the selected undedoad
handled per unit time. We obtained the range oflabla peer's module. The underloaded peers module
open ports using the command sysctl 5jgcates these tasks after the virtual server e
net.ipv4.ip_local port_range and the minimum lifeti for successfully deployed.

a TCP/IP connection using sysctl net.ipv4.tcp_fimebut _ _
stackoverflow.com/questions/410616/increasing-the- 6.4. Local Vs. Global Load Per Unit Capacity
maximum-number-of-tcp-ip-connections-in-linux. The and L oad Balancing by MAs

maximum connection that a system can guarantee per \ye ran two types of simulations using MAs. In the
unit time is the range of open ports divided by imum first, each MA monitored N peers. It calculates the

lifetime. The range in our experimental system was, : : o N
oad per unit capacity of the peers it is monitgrand
32768-61000 and the minimum lifetime was 60. per Unit capacity P " "9

Therefore, it could guarantee 470 socket connes tpmn
unit time. So the maximum possible connections wa
considered as a load parameter, which we set tp76@

and 1530. The maximum possible connection Wasprocess, the adjacent MAs share their load per unit

increased to 766 by increasing the open ports ramge : . .
15000-61000 and 1530 connections were made possiblg"ip"leIty and inform the peers about the new loadipie

by reducing the minimum lifetime to 30. cgpacity. Noyv, the overloaded peer first at?emmis t
We ran the proposed load-balancing algorithm, migrate the virtual server tq the underloaQed gxeehe
considering only the CPU, memory and the list oftpo ~ S@Me MA'’s coverage. If this is not possible, iegrito
used by the system. When we did not consider the TC find the nearest underloaded peer in the adjaceNsM
connections as a parameter, the average number gfoverage. This process repeats. By using this sehtva
possible connections for a load-balanced system wasequired overheads and bandwidth are reduced.

informs its peers. An overloaded peer tries to atigr
its virtual servers to the underloaded peers irs thi
SMA's coverage. This reduced the bandwidth latency
needed to transfer the virtual server. After thigial

////4 Science Publications 956 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

Classification of peers

120 B] oad balanced (T-g) < present load < (T+&)
© Over loaded present load = (T+g)

E B Underloaded. present load < (T-&
5 100
=
i
o
57 80
=2
=
S o
E=
P
E =
-~ 8 40
(s
o
z 20

0

Under loaded Over loaded Load balance
peer peer peer

Fig. 2. Classification of peers
1600

1400

1200
1000
800 ® Maximum connection= 470
600 » Maximum connection = 766
400 m Maximum connection= 1530
200 -
0 |

With only CPU, TCP+other
memory and ports parameters

Average maximum socket connection
used per unit time

Load parameters

Fig. 3. Number of connections used when load balancing

/////’ Science Publications 957 JCS

VijayaKumar G. Dhas et al. / Journal of ComputereSce 10 (6): 948-960, 2014

However, the disadvantage is that the derived load
unit capacity is inaccurate, because it is firdtaated

receive any response for one way transfer, it ch®os
the response from underloaded peer which returns

locally and then shared with adjacent peers. Anminimum load. When a transfer is not possible, by
alternative scheme is to have the MAs monitoring th exchanging the load imbalance factor is reduced for
peers. All MAs share the sum of loads and capacidfe both the overloaded and underloaded peer. Befare th
all peers. The MAs calculate the overall load peit u exchange of the virtual server, the load balanctofa
capacity of the entire network using this shared of the overloaded peer isT _zkvi“ua'sewefsl_iv _The set
information and inform the peers. This involves mor vt '
overheads, but the classifications are more aceura
because they use almost perfect information to
calculate the load per unit capacity. When the peed
virtual servers join and leave, each MA updatesstima
of loads of peers and capacities in its monitoramge.

The MAs periodically share their information aneé th
new load per unit capacity is calculated.

7.RESULT AND DISCUSSION

¢ of virtual servers returned back will always besl¢isan
the virtual server moved from overloaded to undatéx
peer, i.e., < L, Infact the response with minimal Ri is
chosen. After the exchange it is reduced to

|T, =Y sy +R, — L, | Similarly the overall load

v=1
of the system is increased in receiver peer ancelblye
decreasing the negative magnitude of

|T -y emesenes | of the underloaded peer j. Thus it

v=1
contributes in minimizing the magnitude of load
Our proposed algorithm was specially designed toimbalance factor of the underloaded peer.
make use of heterogeneity in the load of virtual Figure 4 shows the load imbalance of the system.
servers and capacity of peers to reduce the loadVe determined the number of virtual servers moved
imbalance factor through exchange mechanism wherfor 10 and 100 peers using the simulation discussed
direct transfer from overloaded to underloaded pger the experimental setup. The proposed load balancing

not possible. Due to this load imbalance factokept algorithm d_ecides when to migrate a virtual server.
minimum which is one of the highlight of the We determined the number of virtual servers moved

proposed algorithm. But in homogenous systemfor thousanq and ten thc.)usanld peers by run_ning the
suppose every virtual server or task to be tranefer |0@d balancing algorithm in a single program witR-a

is considered as only one unit of load, this aldoni P d|str|but|_on. Our propc_)sed sc_hemes of local and
degenerates to 1-N scheme (sender initiated)-s$torte global sharing scheme (with inbuilt exchange scheme

. . . : has slightly higher load imbalance factor than
selection policy with polling only the under loaded centralized directory because it uses 1-N scheife. |

peers indicated by the_ mobile agent. T.hls happensthe same algorithm is implemented as N-N scheme or
because when there is no heterogeneity formload

functi Il not b d 1 derloaded ewh as centralized directory with exchange mechanism it
unction will not be used. 'n underioaded peer oW will do better than existing central directory digeits
a request arrives, if loadj + Li,¥ Tj succeeds a

. . : additional exchange mechanism which will allow
response is sent back and if it fails the else part

; : more load sharing and thereby minimizing the load
always rejects request in homogenous systemsinnalance further.

Though sender initiated scheme suffers during high Movement cost includes both the virtual servers

loads as it can't find underloaded peers therebyich are moved from overloaded peer to underloaded
increasing the polling activity, our algorithm adsi oo and some of the virtual servers which arermetl

unnecessary requests during high loads because thg, . by underloaded peer from its set of servete T
mobile agent only gives the details of underloadedmovement cost is given by:

peers and so one can classify our scheme stabfieisen
initiated algorithm due to its above feature.

To our knowledge compared to all the existing load
balancing algorithms, our proposed work minimizes t
load imbalance factor to the greatest extent in The number of virtual servers transferred moved in
heterogeneous systems. This is mainly due to theP-P distribution is shown irFig. 5. Although the
exchange scheme which is used when one way transfemovement cost and the number of virtual servers
of virtual server from overloaded to underloadedrgs moved is high, the load imbalance of the system is
not possible. When the overloaded peer does nosignificantly reduced

Movementcostz ‘,—Vmoved+z ereturnedbacl«

////4 Science Publications 958 JCS

VijayaKumar G. Dhas et al. / Journal of Computee8ce 10 (6): 948-960, 2014

Load balance in P-P

16
14
s 12
f:_;’ 10
E
£ 3 -+ Centralized directory
E (S. Zhou et al., 1988)
=
S 6 Imperfect information
- (Hosia er al., 2011)
4 - Proposed local sharing
2
- Proposed global sharing
0
No. ofpeers 10 100 1000 10000
Fig. 4. Load balancing in a P-P distribution
Movement costin P-P
7000
6000
E]
z 5000
g m Centralized directory
Z 4000 (S.Zhouer al., 1988)
2
;j Imperfect information
= (Hosiaeral..2011)
Z 3000 m Proposedlocal sharing
5
é 2000 W Proposed global sharing
z
1000 I
| '
10 peers 100 peers 1000 peers 10,000 peers
No. ofpeers

Fig. 5. Number of virtual servers moved in a P-P distribati

8. CONCLUSION

servers is slightly increased, because we havdadsrnesl
reducing the load imbalance to be the primary isShe

We have presented and discussed a novel loadmethod uses mobile agents to calculate the loadipier
balancing algorithm that reduces the load imbalancecapacity. Local and global sharing techniques aedu

factor. The movement cost due to the transfer dtiai

,///4 Science Publications

959

by MAs to calculate the load per unit capacity. We

JCS

VijayaKumar G. Dhas et al. / Journal of Computee8ce 10 (6): 948-960, 2014

included the maximum possible number of socketLi, H. and F. Shao, 2011. An improved load balagcin

connections per unit time as one of the load patensie
Our analysis shows how this improves the classifioa
of the peers into overloaded and underloaded.

If every virtual server or task which is to be
transferred is considered as one unit load, théange
scheme doesn't work at all. Our proposed scheme

algorithm for P2P system based on mobile agent.
Proceedings of the 2nd International Conference on
Artificial Intelligence, Management Science and
Electronic Commerce, Aug. 8-10, IEEE Xplore Press,
Deng Leng, pp: 2791-2794. DOI:
10.1109/AIMSEC.2011.6010282

degenerates to stable sender initiated algorithih wi Li, Z. and G. Xie, 2006. A distributed load balargi

shortest selection policy in this case.

One can consider TCP connections as a significant
parameter when there is a considerable CPU and
memory capacity. However, we need to address the
problem when these resources are scarce. In thesfut

this 1-N scheme should be converted to a N-N scheme

by sharing the responses that are sent by the loaded

algorithm for structured P2P systems. Proceedings
of the 11th IEEE Symposium on Computers and
Communications, Jun. 26-29, IEEE Xplore Press,
pp: 417-422. DOI: 10.1109/ISCC.2006.8

Rao, A., K. Lakshminarayanan, S. Surana, R. Karplan

Stoica, 2003. Load balancing in structured P2P
systems.

peer. After the overloaded peer has selected tis¢ be Serbu, S., S. Bianchi, P. Kropf and P. Felber, 2007

response, the remaining responses can be shatethwit
other overloaded peers that are monitored by theesa
MA. This can further reduce the message overheads.

9. REFERENCES

Dynamic load sharing in peer-to-peer systems. |IEEE
Int. Comput. Published omput Society, pp: 53-56.

Shen, H. and C.Z Xu, 2007. Locality-aware and churn

resilient load-balancing algorithms in structureskp
to-peer networks. IEEE Trans. Parallel Distributed
Syst., 18: 849-862. DO1:0.1109/TPDS.2007.1040

Godfrey, B., K. Lakshminarayanan S. Surana and R.VU, Q.H., B.C. Ooi, M. Rinard and K.L. Tan, 2009.

Karp, 2004. Load balancing in dynamic structured
P2P systems. Proceedings of the 23rd Annual Joint
Conference of the |IEEE Computer and
Communications Societies, Mar. 7-11,
Xplore Press, pp: 2253-2262.
10.1109/INFCOM.2004.1354648

Godfrey, P.B. and |. Stoica, 2005. Heterogeneitg an
load balance in distributed hash tableésoceedings
of the IEEE 24th Annual Joint Conference of the
IEEE Computer and Communications Societies,
Mar. 13-17, IEEE Xplore Press, pp96-606. DOI:
10.1109/INFCOM.2005.1497926

DOLl:

Histogram-based global load balancing in structured
peer-to-peer systems. Knowl. Data Eng. IEEE
Trans., 21: 595-608. DO1:0.1109/TKDE.2008.182

|EEE Wang, J. and M. Vanninen, 2006. Self-configuration

protocols for P2P networks. Web Intell. Agent Syst.
4: 61-76.

Wang, X., Y. Zhang, X. Li and D. Loguinov, 2004. On

zone-balancing of peer-to-peer networks: Analysis
of random node join. Proceedings of the Joint
International Conference on Measurement and
Modeling of Computer Systems, Jun. 12-16, ACM
New York, NY, USA., pp: 211-222. DOI;
10.1145/1005686.1005713

Hsiao, H.C., H. Liao, S.T. Chen and K.C. Huang, 7z, v and Y. Hu, 2005. Efficient proximity-awalead

2011. Load balance with imperfect information in
structured peer-to-peer systeniarallel Distrib.
Syst. IEEE Trans.,, 22: 634-649. DOI:
10.1109/TPDS.2010.105

Karger, D. and M. Ruhl, 2004. Simple efficient load
balancing algorithms for peer-to-peer systems.
Proceedings of the 16th ACM Symp. Parallelism in
Algorithms and Architectures, (AA ‘04ACM New
York, NY, USA, pp: 36-43. DOI:
10.1145/1007912.1007919

Lamport, L., 1978. Time, clocks and the ordering of

balancing for DHT based P2P systems. IEEE Trans.
Parallel Distributed Syst., 16: 349-361. DOI:
10.1109/TPDS.2005.46

Zou, L., EW. Zegura and M.H. Ammar, 2002. The eiffe

of peer selection and buffering strategies on the
performance of peer-to-peer file sharing systems.
Proceedings of the 10th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Oct. 16-16, IEEE
Xplore Press, pp: 63-70. DOI:
10.1109/MASCOT.2002.1167061

events in a distributed system. Commun. ACM,. Nehra, N., R.B. Patel and V.K. Bhat, 2007. A framew

21: 558-564. DOI: 10.1145/359545.359563
Ledlie, J. and M. Seltzer, 2005. Distributed, sedoad
balancing with skew, heterogeneity and churn.

////4 Science Publications 960

for distributed dynamic load balancing in
heterogeneous cluster. J. Comput. Sci., 3: 14-24.
DOI: 10.3844/jcssp.2005.323.331

JCS

