
Journal of Computer Science 10 (6): 948-960, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.948.960 Published Online 10 (6) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: VijayaKumar G. Dhas, Anna University, Chennai, India

948 Science Publications

JCS

USING MOBILE AGENTS FOR LOAD BALANCING IN
PEER-TO-PEER SYSTEMS HOSTING VIRTUAL SERVERS

VijayaKumar G. Dhas, S. Saibharath and V. Rhymend Uthariaraj

Anna University, Chennai, India

Received 2013-12-16; Revised 2013-12-23; Accepted 2014-01-27

ABSTRACT

This study proposes a novel load-balancing algorithm for managing virtual servers in a Peer-To-Peer (P2P)
system through mobile agents. The proposed algorithm is implemented in a fully decentralized manner for a
structured P2P system. It uses mobile agents and is independent of the geometry of the P2P auxiliary
networks. The load-balancing algorithm effectively reduces the load imbalance of the system using the load
per unit capacity derived by the mobile agents. A unique feature of the proposed algorithm is the mutual
swapping of virtual servers between overloaded and underloaded peers to efficiently use the available
resources. The proposed solution has been verified in a P2P environment consisting of peers and embedded
glassfish server instances, created dynamically to act as virtual servers.

Keywords: Load Balance, Virtual Servers, Heterogeneity, P2P Systems

1. INTRODUCTION

Load balancing is an important factor to consider when
optimizing productivity in Peer-to-Peer (P2P) computing.
The load must be distributed among peers based on their
ability to get better throughput (Wang and Vanninen,
2006; Zou et al., 2002). Instead of transferring tasks
between peers, the trend for some time has been to migrate
virtual servers from one peer to another. In this case, each
peer hosts a number of virtual servers. To balance the load
of the system, the virtual servers are moved from an
overloaded to an underloaded peer (Rao et al., 2003; Li and
Shao, 2011; Wang and Vanninen, 2006; Zou et al., 2002;
Hsiao et al., 2011; Godfrey et al., 2004). In earlier work,
the virtual servers were transferred from overloaded to
underloaded peers in only one direction (Hsiao et al.,
2011). The work carried out by (Wang et al., 2004; Zhu
and Hu, 2005) considered a node k that has a specified
target load Tk, where Tk is less than Ck (the capacity of k).
The node k can accept virtual servers only up to the target
load Tk. Ideally, Tk should be the product of A and Ck

(Wang et al., 2004), where A is the load per unit capacity
of the system. In this case, k manages its load
proportional to its capacity. Although this load balances

the system, the load imbalance factor is not effectively
minimized. Sometimes an overloaded peer cannot
migrate a virtual server to an underloaded peer, because
if the underloaded peer accepted the load it would
become overloaded. The primary aim is to reduce the load
of the overloaded peer until it becomes underloaded. Once
an overloaded peer becomes underloaded, it remains that
way until the next load balancing cycle, which is an
inefficient use of resources. The unique feature of the
proposed algorithm is the mutual swapping of virtual
servers between the overloaded and underloaded peer,
which overcomes the above limitation.

Our primary aim is to reduce the load imbalance
factor of the whole system. We propose a novel load
balancing algorithm that exchanges virtual servers
between overloaded and underloaded peers. This
primarily helps to reduce the load imbalance factor of
both overloaded and underloaded peers. Mobile Agents
(MAs) are used to find the load per unit capacity and
help overloaded peers to find underloaded peers to which
to migrate their virtual servers. Using this method, the
load imbalance of the whole system is significantly
reduced. A virtual server can be migrated to the
underloaded peer and some smaller virtual servers hosted

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

949 Science Publications

JCS

by the underloaded peer can be sent to the overloaded
peer to create balance. This minimizes the load
imbalanced factor. Previous studies have assumed only
one bottleneck resource in the system (Wang et al.,
2004; Zhu and Hu, 2005). The study carried out in
(Hsiao et al., 2011) also assumed only one bottleneck
resource in the system, but it failed to assume a
particular resource constraint. We have considered a
specific resource as a constraint, namely the number
of active TCP ports. As in earlier studies, we attempt to
minimize the movement cost. In his pioneering work
(Lamport, 1978), Lamport proposed that events must be
ordered in a distributed multiprocessor system. The
ordering of events using logical clocks removes most of
the unexpected anomalous behaviors (Lamport, 1978).
We apply this concept when handling requests to move
virtual servers from overloaded to underloaded peers.

The algorithm proposed addresses the challenge of
load balancing. It reduces the load imbalance factor
and movement cost. We also consider Lamport’s
ordering of events when moving virtual servers. We
have implemented these concepts with a 1-N scheme
and tested the algorithm in a P2P environment where
dynamic embedded glassfish servers instances were
used as virtual servers. We experimented using the
number of active TCP ports as a resource constraint in
the proposed load-balancing algorithm.

The remainder of this study is organized as follows. In
section 2, we review some related work. Section 3
presents the proposed framework for load balancing in
structured P2P networks. In section 4, we explain the
structure of our experiments. We present results from an
experimental study in section 5. Section 6 discusses how
the load is captured, using a TCP port as a resource
constraint. Section 7 presents experimental results
obtained based on load imbalance factor and movement
cost. It also discusses the pros and cons of the proposed
algorithm. Our conclusions are found in section 8.

2. RELATED WORK

Load balancing is done by migrating the virtual
servers from an overloaded to underloaded peer and
has been discussed in numerous studies (Godfrey and
Stoica, 2005; Ledlie and Seltzer, 2005; Wang et al.,
2004). There are three schemes for overloaded to
underloaded peer interaction: 1-1, 1-N and N-N. The
simplest is the 1-1 scheme, which involves less
computation and overheads but does not select the
best possible peer to host the virtual server (Rao et al.,
2003). In the 1-N scheme the overloaded peer can

select the best possible underloaded peer to host the
virtual server. The N-N scheme uses a directory to
share information. It reduces the load imbalance but
becomes similar to a centralized directory scheme. N-
N is very useful when the overloaded peers have
information about other overloaded peers in the
proximity. The overloaded peer can mutually
exchange the details of the underloaded peers that it
has interacted with in the past and present.

Wang and Vanninen (2006) and Zou et al. (2002)
focused on maximizing the throughput of the system
and reducing message overheads and considered the
CPU and memory capacities as load parameters. The
maximum number of socket connections possible per
unit time is considered to be a parameter. Although
they tried to maximize the throughput of the system,
they did not consider this parameter. In addition, they
did not try to balance the load over the whole system
so that every peer reached its threshold level.

Hsiao et al. (2011) tried to reduce the load
imbalance factor by transferring virtual servers from
overloaded to underloaded peers. They tried to reduce
the movement cost, but did not try to minimize the
load imbalance factor. Their method used the virtual
server concept for load balancing, by assigning load to
each object entering the system (Hsiao et al., 2011;
Godfrey et al., 2004). However, their method assumed
that there was only one bottleneck resource in the
system and left the multiple resources as future work.
Minimizing the load imbalance factor requires more
movement cost. Although better balancing can be
achieved by higher movement cost, the load
imbalance factor must not be too high compared with
the system’s bandwidth.

HiGLoB is a histogram-based global load balancing
framework (Vu et al., 2009). It uses a load-balancing
manager to redistribute the load among peers. However,
this load-balancing manager is centralized and cannot be
used in a fully decentralized P2P environment.

In “single ID per node” only one popular object can
be stored in a single node. It failed because of the
popularity of some objects in the destination node
(Karger and Ruhl, 2004; Serbu et al., 2007). “Multiple
ID per node” was then introduced, but it too ignored the
popularity of objects (Rao et al., 2003). Li and Shao
(2011) and Nehra et al. (2007) used MAs to collect,
analyze and locate peers. These MAs identify each peer
as overloaded or underloaded. The MAs walk through
the entire network and try to load balance each system by
migrating the virtual server. The MAs are not
lightweight, as they must perform a lot of processing.

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

950 Science Publications

JCS

They are responsible for coordinating the transfer of
workload between overloaded and underloaded peers.

Shen and Xu (2007) have considered proximity of
the peers in load balancing. There is a mismatch in the
proximity abstraction of logical and physical location
of peers. The mismatch makes load balancing
proposed by (Shen and Xu, 2007) suitable only for
specific topology. Hsiao et al. (2011) have pointed out
that the load balancing problem need not rely on
auxillary tree networks and should be independent of
the geometry of the P2P Substrate.

Local load information aggregation is done by
sending messages with a time to live TTL value,
which is decremented by one when it is received by
the adjacent peer (Li and Xie, 2006). The load per unit
capacity is calculated using this information. The
limitation of this approach is that it leads to larger
message overheads. As each peer collects information,
it forwards the message to the next peer. The same
peers can be visited multiple times and the calculated
load per unit capacity is not accurate because they are
counted many times. Therefore, a peer is covered
multiple times by different messages. When using the
local neighborhood method, only he bandwidth
involved is minimized. However, the problem of
reducing the load imbalance is not given importance.
Even if one tries to reduce the bandwidth latency, the
load imbalance factor must also be considered.

3. PROPOSED SYSTEM

We propose an innovative mechanism that uses
MAs to control virtual servers. The migration of the
virtual servers is used to balance the loads in
structured P2P systems.

Consider a P2P system, with a set of virtual servers V
and a set of peers, N, participating in the system. Let Lv

be the load of the virtual server v, where v is a subset of
V. The load of the peer Loadi is the sum of the loads of
all virtual servers hosted by the peer. Let Ci be the
capacity of the peer i. The load per unit capacity (Lpc) of
the system is defined as the sum of loads of all virtual
servers divided by the sum of the capacities of all the
peers. Some parameters used can be found in Table 1.

3.1. Calculating Load Per Unit Capacity

The sum of loads of all virtual servers is defined as:

n peers k virtual servers

i,vi 1 v 1
Sumof loads L

= =
=∑ ∑

The load per unit capacity is defined as:

ii 1

n peers

Sum of loads
Lpc

C
=

=
∑

The load imbalance factor of a particular:

k virtualserver

i i,vv 1
Peer Ti L

=
− −∑

The load imbalance factor for the whole system is

defined as:

n peers K virtual serversLoad imbalance Ti Lv 1i 1 i,v
 = −∑ ∑ ==  

MAs are used to monitor groups of several peers.

The MA obtains the total load contributed by all the
virtual servers hosted by a peer and the capacity of the
peer. The various MAs share this information and find
the total Load per unit capacity (Lpc) of the system.
The load per unit capacity is given to all the peers in
the system. Based on the Lpc, each peer calculates its
threshold load value Ti, which is proportional to the
capacity of the peer. The threshold load value, Ti and
the load of the peeri are compared. The peer is
overloaded if the load of the peeri is greater than the
threshold load value Ti. The status of the peer
(overloaded or underloaded) is communicated to the
MA. For each peeri, the MA stores the sum of loads,
capacity of each peer and status of the peer as
overloaded or underloaded. MAs periodically update
the load per unit capacity of the system.

The proposed algorithm is event based and the
following events takes place.

On receipt of load per unit capacity (Lpc) at Peeri
 Check status of the Peer
 If overloaded
 Send request message for load migration
On receiving request message by the under loaded peer
 Process the message and send response message
On receiving the response message by overloaded peer
 Add to message queue
 On time out at over loaded peer
 Process queue and send accept message
 On receiving accept message at under loaded peer
 Carry out exchange of virtual servers
The above algorithm is discussed in detail in this section.

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

951 Science Publications

JCS

Table 1. Notations frequently used
 Set of virtual servers to be returned
Ti Threshold of peeri Ri back from underloaded to overloaded peers
A Load per unit capacity Lv Load of virtual server v
Ci Capacity of peeri V Virtual server
LOAD i Load of peeri Lpc Load per unit capacity
MA Mobile agent

Module 1

On receipt of a load per unit capacity for peeri from
a MA.

When the peer finds that it is overloaded, some of the
virtual servers whose load Lv is minimal need to be
migrated until its load becomes less than the threshold
load value, Ti. Let ∆i be the difference between the new
load on peeri and Ti, after the required migration. That is,
peeri is now underloaded by ∆i. This peeri can now accept
a load value up to ∆i to become load balanced, thereby
reducing the load imbalance factor.When peers update
their sum of loads, the status is refreshed. So the
overloaded peer finds the underloaded peer through the
MAs. The overloaded peer sends Lv and ∆i to the
underloaded peers identified by the MA. After sending
the requests to the underloaded peer, the overloaded peer
waits for responses. The above process is illustrated by
the algorithm for an overloaded peer. This algorithm is
activated when a peer becomes overloaded.

{
 Ti = Lpc*Ci
 if loadi > Ti
 Status = overloaded
 else if loadi < Ti
 Status=underloaded
 if (peer is overloaded)
 while loadi >Ti
 Ui = min {L i, v}
 //V hosted in peeri
 ∆I = Ti-(Loadi-L i,v)
 Send (Ui, ∆i , peerids)
//Sends request to many underloaded peers. The peer ids
of the underloaded peer is given by MA
}

Module 2

On receiving a request message by the under
loaded peerj.

The underloaded peers can reply with a request to
accept virtual servers whose sum of load is less than ∆i.
This helps to load balance both the overloaded and
underloaded peers after the virtual servers have been
exchanged. The load imbalances of both are minimized
and both loads converge to their threshold.

The underloaded peer receives the request to accept
virtual servers, with a maximum return of ∆i. The
underloaded peer checks that it will not exceed the
threshold value if it accepts then sends a response
(C(response)) to the overloaded peer. It also attaches its
load imbalance, capacity and Rj value (set as null). The
Rj value is the set of virtual servers whose sum of load
value is less than or equal to ∆i. Let α be the difference
between the new load on the peerj and the threshold load
value Tj. If α of peerj is greater than ∆ of peeri, then the
request is rejected. Otherwise, the formload function is
called to find the combinational set of virtual servers that
can be sent from the underloaded peerj to the overloaded
peeri. If the formload function cannot find the
combinational set of virtual servers, then it will set Rj to
null. If Rj is null, then the request from the overloaded
peeri is rejected. If Rj is not null, then the request from
the overloaded peeri is accepted. The above process is
illustrated by the algorithm for the underloaded peer.
This algorithm is activated when a peer is underloaded.

{
 if (loadj + Li,v ≤ Tj)
 Send (peerid, loadimbalance, capacity,
Rj = Null) // sending response
 else
 {
 α = loadj + Li,v – Tj
 if α > ∆i
 reject request
 else
 Rj = call formload function(α, ∆i)
 if (Rj = = Null)
 Reject request//unable to find a peer
 else

Send (peerid,loadimbalance,capacity,
 Rj) //sending response

 }
 }

Module 2a

Form the load and selecting virtual servers to be sent
from the underloaded peerj to the overloaded peeri in
case of swapping [Minimum α and maximum ∆i].

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

952 Science Publications

JCS

The formload function selects the set of virtual
servers which can be transferred on return from
underloaded peer to the overloaded peer on accepting the
virtual server from the overloaded peer. This helps to
reduce the load imbalance factor of both peers. The array
Ld contains all the loads of virtual servers that are hosted
by the underloaded peer whose load value is lesser than
or equal to delta and n is the number of virtual servers.
Initially, Rj is set to null. K is a two dimensional array
that tracks the maximum load value which can be
returned as a set of virtual servers. The best possible
combination of virtual servers whose sum is less than or
equal to delta is selected. Variables i and w points to the
virtual server and the load value for which the best
combination of virtual server is selected. K[n, ∆i] is the
sum of load for a set of virtual servers that can be sent to
the overloaded peer. If K[n,w] is greater than alpha, it is
rejected because the underloaded peer becomes
overloaded if the exchange process happens. If the load
to be formed is zero or no virtual server is considered,
K(i,w) is zero. The array is constructed in such a way
that if the load of the virtual server is greater than the
load to be formed (w), then the load of the previous
virtual server (i-1) is retained (i.e., K(i,w) = K(i-1,w)). If
the load of the virtual server is less than the load to be
formed (w), then K(i,w) is equal to the maximum of the
load formed in the previous virtual server (K(i-1,w)) and
the load of the current virtual server (ld[i-1]) plus the
load formed in K[i-1][w-ld[i-1]].

The above process is illustrated in the following
algorithm.
Formload:

 ld[] = For each Uj whose Lj,v ≤ ∆i
 Let n be size of array ld
 declare K[n+1][∆j +1], Rj = NULL
 for I = 0 to n
 for w = 0 to ∆j
 if I = = 0 || w = = 0
 K[i][w] = 0;
 else if ld[i-1] ≤ w
 K[i][w] = max(ld[i-1] + K[i-1][w-

ld[i-1]], K[i-1][w]);
 else
 K[i][w] = K[i-1][w];
 if(K[n][w] < α)
 return NULL;
 else
 size = ∆i
 while n>0
 if K[n][size]! = K[n-1][size])
 Rj = Rj U Vn-1 // Vn-1 has load ld[n-1]

 size - = ld[n-1];
 decrement n
 else
 decrement n
 return Rj

Thus, the overloaded peeri migrates its virtual server
with minimal load to an underloaded peerj. The
overloaded peer continuously tries to migrate its
minimal virtual server until it becomes load balanced,
or its overall load is less than the threshold. The
underloaded peer never becomes overloaded.

The set of virtual servers used to form the load is
tracked as discussed below. Initially, n is the number of
virtual servers on the peer. The variable “size” is set to
delta. If K(i, size)! = K(i-1, size), the present virtual
server has been involved in forming the load. So this virtual
server is added to the set R and size is decremented by the
load of the current virtual server. This process is executed in
a loop until the value of n becomes zero and R contains the
set of virtual servers that form the load K(n,w).

As an example, In underloaded peerj, say Tj = 50 and
Load (j) = 40. In overloaded peeri, say Ti = 50, Load (i) =
54 and minimal virtual server load Li,v = 15. The
overloaded peer tries to migrate this virtual server. ∆i =
Ti-(Loadi-L i,v) = 50-(54-15) = 9. The underloaded peerj
receives a request from overloaded peeri with <Li,v, ∆i>
as <15, 9> respectively. The underloaded peer cannot
accept V directly without return of virtual servers as
LOAD i + Li,v > Tj.

α = LOADj + Li,v – Tj, α = 5 units respectively. α is
not greater than ∆i. So formload function is called.

Module 3.

On receiving the response message by the overloaded peer
After the overloaded peer sends the minimum virtual

server’s load value and delta value to the underloaded
peers, the overloaded peer waits for a time out to occur.
While it is waiting, it saves the responses received from
underloaded peers.
On receiving a response message from the overloaded
peeri:
 // for each response
 Response[K] = recv(peerid, loadimbalance, capacity, Rj)
 Increment K.

Module 4.

On time out at over loaded peer.
Multiple request handling by an underloaded peer.
When requests arrive at an underloaded peer and it

responds positively, only some of the overloaded
peers can migrate their loads to it, or it will become
too overloaded.

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

953 Science Publications

JCS

Two approaches to avoid this overloading are
possible. First, when there is a positive response to the
overloaded peeri, the load of the underloaded peerj is
temporarily increased to Li,v units. When another
overloaded peer sends a request, j projects its load as
Loadj + ∑ Li,v, even though it has not yet been selected
to host additional virtual servers. Then the underloaded
peerj cannot become overloaded. When this peer is not
selected to host a virtual peer by the overloaded peerk, it
decreases its load by Lk,v units. However, this is very
conservative approach, because not all the positive
responses will succeed and this peer will not be selected as
the best peer by the overloaded peers.

The second approach orders events (Lamport, 1978).
Suppose an overloaded_peer1 sends a request with L1v

and a positive response C(response1) is sent from the
underloaded peer. Then another overloaded_peer2 sends
a request (with L2v), it sends a positive response
C(response2). The ordering ensures that.
 C(response1) < C (response2),
i.e., C(responsei) < C (responsej) where j>i.

The overloaded_peer1 receives the response and
processes it. Suppose that overloaded_peer2 replies
before overloaded_peer1. The underloaded peer checks
whether C(response2) is less than C(response1). If it is
not, the reply is not in order. It does not host the virtual
server of overloaded_peer2 until it receives the response
from overloaded_peer1, unless it can host L1v and L2v
without exceeding its threshold.

3.2. Selection of Peer for Migration

The overloaded peer collects responses from the
underloaded peers, which contain load imbalance, capacity
and the set of virtual servers to be exchanged with the
underloaded peerj. The overloaded peer first checks through
the list for peers that do not need to exchange virtual servers
(Rj is null). Priority is given to underloaded peers that not
need to exchange any virtual servers with the overloaded
peer. The underloaded peer that has the maximum product
of load imbalance and capacity is selected. If there is no
underloaded peer that has null Rj, it checks the remaining
responses, which are from peers that need to exchange a set
of virtual servers to the overloaded peer. The overloaded
peer selects the underloaded peer from which is must take
the minimum number of virtual servers. Module 2 ensures
that the overloaded peer will not become overloaded once
again, because it will not accept any servers if its load after
exchanging is greater than its threshold. After the
overloaded peer has selected the appropriate underloaded
peer, it migrates the minimum set of virtual servers. It also
sends the responses that it received from the other
underloaded peers. It is possible for the underloaded

peer’s load to increase, because the loads of the virtual
servers change when they handle other requests. In this
case, responses from the other underloaded peers can be
used to transfer virtual servers. The above process is
illustrated by the following algorithm.

On a time out at the overloaded peer:
 Min = -1
 for each response[K] whose Rk is Null
 if (loadimbalance*capacity > min)
 Index = K
 Min = response[k].loadimbalance *

response[k].capacity
 if min != -1 // means a response is selected
 Select the peer(response[index].peer id) for transfer

of virtual server
 Loadi = Loadi - Lu,v
 V = V- Ui

 return
 for response[K] whose Rk is not Null
 max = delta
 sumk = ∑ response[k].Lj,v
 if sumk< max
 Index = k
 Max = sumk
Select the peer(response[index].peer id) for transfer of
virtual server
Loadi = Loadi + Rindex - Li,v

V = V- Ui
V = V U Rj

Module 5.

On receiving an accept message at an underloaded peer.
When the underloaded peer receives an accept

message from the overloaded peer, it accepts the
virtual server load. If the underloaded peer’s condition
has changed and it will become overloaded, the
alternate best choice is used.

If there are no alternate peers available, the
underloaded peer restarts the load-balancing algorithm:

Receive accept message
if (message = = accept message) {
 receive (peerid,Lu,v,reponse[])
 if(could not host v)
 Choose best underloaded peer from reponse[]

and transfer
 if could not find a peer from response[]
 Restart load balancing algorithm
 else
 V = (V-Ri) U Ui
 }

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

954 Science Publications

JCS

4. ARCHITECTURE DIAGRAM

Every peer in the P2P environment hosts a number of
virtual servers. Peer modules contain all the necessary
algorithms. The peers share their sum of loads and the
capacities. The virtual server hosted by the peer runs the
application, handles and processes the requests and
interacts with the peer. Each MA calculates the load per
unit capacity for the set of peers it is monitoring. The
load per unit capacity is shared and updated between
adjacent MAs, they calculate the global load per unit
capacity and inform the peer. The peer informs the MA
when there is a change in load on a virtual server. The
architecture diagram of the system is shown in Fig. 1.

4.1. MAs

A MA supervises a group of several peers. It
periodically obtains the sum of load for each virtual
server and the capacity of the peer.

Load per unit capacity is the sum of the load of each
virtual server of every peer divided by the sum of the
capacity of all peers. This Lpc is shared between
MAs.Sum of loads of all virtual servers and capacities of
peers which are shared among mobile agents are
organized in the following manner:

struct load_cap {
double sum_load_vs,sum_cap;
int ma_id;
} mobile_agents[N];

Every MA maintains this and calculates the load per
unit capacity after the information is globally shared.
Instead of each agent adding all the values, it can get the
sum of the loads and capacities from adjacent MAs.
Therefore, this MA can add the remaining MA’s
collected load and capacity, find the load per unit
capacity for its monitored peers and also share the sum
of loads and capacities with the MA so that is
communicated to other MAs. This is the only function of
MAs when they are not participating in any load
balancing or when the virtual servers are being moved.

4.2. MA Management

The MAs can be deleted or created. A MA failure is
detected in the following way. First, the mobile agents
periodically share their load per unit capacity. When
none of the MAs receive a message from a particular
MA, it is said to have failed. Peers that were tracked by
that MA should then be monitored. Therefore, every peer
maintains a status to show that it is being monitored by
some MA. Secondly, if some peer’s status is null, an MA

has failed. Peers that are monitored by the same MA
know each other’s address. When an MA fails, these
peers communicate among themselves and create a new
MA using an established mechanism.

5. EXPERIMENTAL SETUP

Systems were connected through local area network
with capacities of random access memory varying from 1
to 8 GB and processors of Intel Pentium 4 or core or core
2 duo or atom or i3 or i5. Every system runs with Ubuntu
12.04 OS and simulation was done in Java and Netbeans
IDE was used. Virtual servers were dynamically set up
by embedded glassfish server instances in each peer.
Each instance runs the application in WAR file. In this
simulation, ticket booking application runs on each
instance. User request from html webpage on arriving
are mapped to a random virtual server instance of a peer.
In JSP, the request was mapped to the peer which hosts
the virtual server through its ip address. First, the peer
module handles the incoming request. It allocates the
task to the virtual server which was selected in
random. Suppose the virtual server was not found in
the peer in which it was located, peer allocates the
task to one of its virtual servers at random. The
application on the virtual server handles the request,
books the ticket, and updates in database. During this
process, virtual server in the peer may not be found in
the peer as it could have been migrated by the load
balancing algorithm which was running concurrently.

Mobile agent was implemented in Java aglets
which exchanges loads of virtual servers and peers
with other mobile agents and calculated load per unit
capacity. It also helps overloaded peers to identify
underloaded peers for sending requests. One MA was
allocated per two peers. Load balancing algorithm is
implemented in a Java file which captures the load of
each virtual server and shares the load and capacity
with the mobile agent. On receiving load per unit
capacity from mobile agent, the event based load
balancing algorithm runs in the system.

6. EXPERIMENTAL ANALYSIS

6.1. Capturing the Load of the System

The load of the virtual server was calculated by:

• Obtaining the pid’s of the virtual server
• Determining the memory and CPU utilization in the

Linux environment using all the pid’s
• Finding the ports used by the particular pid’s

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

955 Science Publications

JCS

Fig. 1. Architecture diagram

Thus, we defined the load by using the above

parameters. The capacity of the peer is the memory, CPU
capacity, bandwidth and available open ports. We
determined the load of a virtual server using its CPU
consumption, memory usage and the TCP/IP connections
used by the virtual server at that particular second. First,
the system captured the process ids being used by the
virtual server. We obtained the CPU usage of these
process id’s using the command %cpu, the memory usage
using %mem. We determined the number of TCP/IP
connections used by the virtual server and then the number
ports using "/proc/pid’s/". These values were periodically
obtained and stored. The peer periodically updated the
loads of its virtual servers. Define c1 to be the CPU
consumption, c2 to be the memory usage and c3 to be the
ports and TCP/IP connections. In our experiments, these
were given equal weight and set to 0.33, so c1+c2+c3 = 1.

Similarly, the capacity of the system was
determined using the CPU capacity, memory capacity
and maximum number of TCP/IP connections. The
CPU and memory capacity were static. At each
period, we determined the used and free TCP/IP
connections. Therefore, the load and capacity of the

peer changed periodically and was monitored by a
MA that calculated the new load per unit capacity and
informed each peer that it monitored.

6.2. Considering Maximum TCP/IP Connections

In this simulation, we have assumed that systems
have considerable CPU and memory capacities. Then the
maximum possible number of socket connections, or that
can be guaranteed per unit time, becomes important.

The load is dramatically increased in a system with
less available TCP connections, or where there are more
connections used per unit time and where there are
many connections used by the virtual servers.
Similarly, when fewer connections are used and more
connections are available to the peer, the load
decreases. The change in load helps us to better
categorize the peers as overloaded or underloaded.

A system that is classified as underloaded without
considering TCP/IP connections, but which has less free
connections, will performance worse in terms of the
number of requests handled in unit time. However, if we
consider the TCP/IP connections the load of each virtual
server is increased and system’s overall load is
increased.

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

956 Science Publications

JCS

Now the peer has a higher chance of becoming
overloaded or load balanced. The same applies to an
overloaded peer. It may have abundant free TCP/IP
connections, so it can host more virtual servers and
can handle more requests per second. In addition, if a
peer is classified as underloaded without considering
TCP/IP connections and has more available
connections, it can become more underloaded with a
higher load imbalance. The converse is also true. All
these four cases are possible.

Loads of the peers are calculated using CPU and
memory usage as load parameters and CPU, memory
usage and TCP IP as load parameters simultaneously.
Then the mobile agents calculate and send load per unit
capacity to the peer for each of the load calculation. Of
all the underloaded peers under CPU and memory usage
as load parameters, 70% remain as underloaded, 18%
become load balanced and 12% become overloaded
when TCP IP parameter is included along with CPU and
memory usage as load parameters. Similarly of all the
overloaded peers when CPU and memory usage were
used as load parameters, 63% remain overloaded, 24%
become overloaded and 13% become load balanced
when TCP IP parameter is included.

The changes to the classification of peers shown in Fig.
2 would result in a different virtual server migration by the
proposed load-balancing algorithm. More requests would be
handled per unit time. We obtained the range of available
open ports using the command sysctl
net.ipv4.ip_local_port_range and the minimum lifetime for
a TCP/IP connection using sysctl net.ipv4.tcp_fin_timeout
stackoverflow.com/questions/410616/increasing-the-
maximum-number-of-tcp-ip-connections-in-linux. The
maximum connection that a system can guarantee per
unit time is the range of open ports divided by minimum
lifetime. The range in our experimental system was
32768-61000 and the minimum lifetime was 60.
Therefore, it could guarantee 470 socket connections per
unit time. So the maximum possible connections was
considered as a load parameter, which we set to 470, 766
and 1530. The maximum possible connection was
increased to 766 by increasing the open ports range to
15000-61000 and 1530 connections were made possible
by reducing the minimum lifetime to 30.

We ran the proposed load-balancing algorithm,
considering only the CPU, memory and the list of ports
used by the system. When we did not consider the TCP
connections as a parameter, the average number of
possible connections for a load-balanced system was

390. It was considered load balanced because the load of
the peers equaled their thresholds, although more socket
connections could be used. When we did consider the
TCP connections, additional virtual servers were hosted
if the peer was underloaded (considering CPU, memory
and available free TCP connections). The average
number of connections used in a load-balanced system
was then 425. We carried out the same experiment on
systems with 766 and 1530 maximum possible
connections. The results are shown in Fig. 3 and
demonstrate that more socket connections are used per
unit of time when TCP is considered as a parameter.

6.3. Migration of Virtual Servers

Each peer’s module receives requests to execute
tasks. They randomly select a virtual server and assign
it the task. When the task is completed, the peer
module sends a reply. When a virtual server is moved
from an overloaded to an underloaded peer, the
application file that is running on the server and the
embedded glassfish server instance creation file is
transferred to the underloaded peer. The underloaded
peer deploys the instance and the application is
launched on the server instance. The overloaded
peer’s module checks all the requests or tasks that
have been allocated but not successfully completed
and these tasks are moved to the selected underloaded
peer’s module. The underloaded peer’s module
allocates these tasks after the virtual server has been
successfully deployed.

6.4. Local Vs. Global Load Per Unit Capacity
and Load Balancing by MAs

We ran two types of simulations using MAs. In the
first, each MA monitored N peers. It calculates the
load per unit capacity of the peers it is monitoring and
informs its peers. An overloaded peer tries to migrate
its virtual servers to the underloaded peers in this
MA’s coverage. This reduced the bandwidth latency
needed to transfer the virtual server. After this initial
process, the adjacent MAs share their load per unit
capacity and inform the peers about the new load per unit
capacity. Now, the overloaded peer first attempts to
migrate the virtual server to the underloaded peer in the
same MA’s coverage. If this is not possible, it tries to
find the nearest underloaded peer in the adjacent MA’s
coverage. This process repeats. By using this scheme, the
required overheads and bandwidth are reduced.

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

957 Science Publications

JCS

Fig. 2. Classification of peers

Fig. 3. Number of connections used when load balancing

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

958 Science Publications

JCS

However, the disadvantage is that the derived load per
unit capacity is inaccurate, because it is first calculated
locally and then shared with adjacent peers. An
alternative scheme is to have the MAs monitoring the
peers. All MAs share the sum of loads and capacities of
all peers. The MAs calculate the overall load per unit
capacity of the entire network using this shared
information and inform the peers. This involves more
overheads, but the classifications are more accurate
because they use almost perfect information to
calculate the load per unit capacity. When the peers and
virtual servers join and leave, each MA updates the sum
of loads of peers and capacities in its monitoring range.

The MAs periodically share their information and the
new load per unit capacity is calculated.

7. RESULT AND DISCUSSION

Our proposed algorithm was specially designed to
make use of heterogeneity in the load of virtual
servers and capacity of peers to reduce the load
imbalance factor through exchange mechanism when
direct transfer from overloaded to underloaded peer is
not possible. Due to this load imbalance factor is kept
minimum which is one of the highlight of the
proposed algorithm. But in homogenous system
suppose every virtual server or task to be transferred
is considered as only one unit of load, this algorithm
degenerates to 1-N scheme (sender initiated)-shortest
selection policy with polling only the under loaded
peers indicated by the mobile agent. This happens
because when there is no heterogeneity formload
function will not be used. In underloaded peer j when
a request arrives, if loadj + Li,v ≤ Tj succeeds a
response is sent back and if it fails the else part
always rejects request in homogenous systems.
Though sender initiated scheme suffers during high
loads as it can’t find underloaded peers thereby
increasing the polling activity, our algorithm avoids
unnecessary requests during high loads because the
mobile agent only gives the details of underloaded
peers and so one can classify our scheme stable sender
initiated algorithm due to its above feature.

To our knowledge compared to all the existing load
balancing algorithms, our proposed work minimizes the
load imbalance factor to the greatest extent in
heterogeneous systems. This is mainly due to the
exchange scheme which is used when one way transfer
of virtual server from overloaded to underloaded peer is
not possible. When the overloaded peer does not

receive any response for one way transfer, it chooses
the response from underloaded peer which returns
minimum load. When a transfer is not possible, by
exchanging the load imbalance factor is reduced for
both the overloaded and underloaded peer. Before the
exchange of the virtual server, the load balance factor

of the overloaded peer is i v 1

k virtualservers

i,v| T L
=

−∑ . The set

of virtual servers returned back will always be less than
the virtual server moved from overloaded to underloaded
peer, i.e., Ri < Li,v Infact the response with minimal Ri is
chosen. After the exchange it is reduced to

i i iv 1

k virtualservers

i,v| T L R L |
=

− + −∑ . Similarly the overall load

of the system is increased in receiver peer and thereby
decreasing the negative magnitude of

j v 1

k virtualservers

i,v| T L
=

−∑ of the underloaded peer j. Thus it

contributes in minimizing the magnitude of load
imbalance factor of the underloaded peer.

Figure 4 shows the load imbalance of the system.
We determined the number of virtual servers moved
for 10 and 100 peers using the simulation discussed in
the experimental setup. The proposed load balancing
algorithm decides when to migrate a virtual server.
We determined the number of virtual servers moved
for thousand and ten thousand peers by running the
load balancing algorithm in a single program with a P-
P distribution. Our proposed schemes of local and
global sharing scheme (with inbuilt exchange scheme)
has slightly higher load imbalance factor than
centralized directory because it uses 1-N scheme. If
the same algorithm is implemented as N-N scheme or
as centralized directory with exchange mechanism it
will do better than existing central directory due to its
additional exchange mechanism which will allow
more load sharing and thereby minimizing the load
imbalance further.

Movement cost includes both the virtual servers
which are moved from overloaded peer to underloaded
peer and some of the virtual servers which are returned
back by underloaded peer from its set of servers. The
movement cost is given by:

i,V moved i returned backMovementcos t L R+=∑ ∑

The number of virtual servers transferred moved in

P-P distribution is shown in Fig. 5. Although the
movement cost and the number of virtual servers
moved is high, the load imbalance of the system is
significantly reduced

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

959 Science Publications

JCS

Fig. 4. Load balancing in a P-P distribution

Fig. 5. Number of virtual servers moved in a P-P distribution

8. CONCLUSION

We have presented and discussed a novel load-
balancing algorithm that reduces the load imbalance
factor. The movement cost due to the transfer of virtual

servers is slightly increased, because we have considered
reducing the load imbalance to be the primary issue. The
method uses mobile agents to calculate the load per unit
capacity. Local and global sharing techniques are used
by MAs to calculate the load per unit capacity. We

VijayaKumar G. Dhas et al. / Journal of Computer Science 10 (6): 948-960, 2014

960 Science Publications

JCS

included the maximum possible number of socket
connections per unit time as one of the load parameters.
Our analysis shows how this improves the classification
of the peers into overloaded and underloaded.

If every virtual server or task which is to be
transferred is considered as one unit load, the exchange
scheme doesn’t work at all. Our proposed scheme
degenerates to stable sender initiated algorithm with
shortest selection policy in this case.

One can consider TCP connections as a significant
parameter when there is a considerable CPU and
memory capacity. However, we need to address the
problem when these resources are scarce. In the future,
this 1-N scheme should be converted to a N-N scheme
by sharing the responses that are sent by the underloaded
peer. After the overloaded peer has selected the best
response, the remaining responses can be shared with the
other overloaded peers that are monitored by the same
MA. This can further reduce the message overheads.

9. REFERENCES

Godfrey, B., K. Lakshminarayanan S. Surana and R.
Karp, 2004. Load balancing in dynamic structured
P2P systems. Proceedings of the 23rd Annual Joint
Conference of the IEEE Computer and
Communications Societies, Mar. 7-11, IEEE
Xplore Press, pp: 2253-2262. DOI:
10.1109/INFCOM.2004.1354648

Godfrey, P.B. and I. Stoica, 2005. Heterogeneity and
load balance in distributed hash tables. Proceedings
of the IEEE 24th Annual Joint Conference of the
IEEE Computer and Communications Societies,
Mar. 13-17, IEEE Xplore Press, pp: 596-606. DOI:
10.1109/INFCOM.2005.1497926

Hsiao, H.C., H. Liao, S.T. Chen and K.C. Huang,
2011. Load balance with imperfect information in
structured peer-to-peer systems. Parallel Distrib.
Syst. IEEE Trans., 22: 634-649. DOI:
10.1109/TPDS.2010.105

Karger, D. and M. Ruhl, 2004. Simple efficient load
balancing algorithms for peer-to-peer systems.
Proceedings of the 16th ACM Symp. Parallelism in
Algorithms and Architectures, (AA ‘04), ACM New
York, NY, USA, pp: 36-43. DOI:
10.1145/1007912.1007919

Lamport, L., 1978. Time, clocks and the ordering of
events in a distributed system. Commun. ACM,.
21: 558-564. DOI: 10.1145/359545.359563

Ledlie, J. and M. Seltzer, 2005. Distributed, secure load
balancing with skew, heterogeneity and churn.

Li, H. and F. Shao, 2011. An improved load balancing
algorithm for P2P system based on mobile agent.
Proceedings of the 2nd International Conference on
Artificial Intelligence, Management Science and
Electronic Commerce, Aug. 8-10, IEEE Xplore Press,
Deng Leng, pp: 2791-2794. DOI:
10.1109/AIMSEC.2011.6010282

Li, Z. and G. Xie, 2006. A distributed load balancing
algorithm for structured P2P systems. Proceedings
of the 11th IEEE Symposium on Computers and
Communications, Jun. 26-29, IEEE Xplore Press,
pp: 417-422. DOI: 10.1109/ISCC.2006.8

Rao, A., K. Lakshminarayanan, S. Surana, R. Karp and I.
Stoica, 2003. Load balancing in structured P2P
systems.

Serbu, S., S. Bianchi, P. Kropf and P. Felber, 2007.
Dynamic load sharing in peer-to-peer systems. IEEE
Int. Comput. Published omput Society, pp: 53-56.

Shen, H. and C.Z Xu, 2007. Locality-aware and churn-
resilient load-balancing algorithms in structured peer-
to-peer networks. IEEE Trans. Parallel Distributed
Syst., 18: 849-862. DOI: 10.1109/TPDS.2007.1040

Vu, Q.H., B.C. Ooi, M. Rinard and K.L. Tan, 2009.
Histogram-based global load balancing in structured
peer-to-peer systems. Knowl. Data Eng. IEEE
Trans., 21: 595-608. DOI: 10.1109/TKDE.2008.182

Wang, J. and M. Vanninen, 2006. Self-configuration
protocols for P2P networks. Web Intell. Agent Syst.,
4: 61-76.

Wang, X., Y. Zhang, X. Li and D. Loguinov, 2004. On
zone-balancing of peer-to-peer networks: Analysis
of random node join. Proceedings of the Joint
International Conference on Measurement and
Modeling of Computer Systems, Jun. 12-16, ACM
New York, NY, USA., pp: 211-222. DOI:
10.1145/1005686.1005713

Zhu, Y. and Y. Hu, 2005. Efficient proximity-aware load
balancing for DHT based P2P systems. IEEE Trans.
Parallel Distributed Syst., 16: 349-361. DOI:

10.1109/TPDS.2005.46
Zou, L., E.W. Zegura and M.H. Ammar, 2002. The effect

of peer selection and buffering strategies on the
performance of peer-to-peer file sharing systems.
Proceedings of the l0th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Oct. 16-16, IEEE
Xplore Press, pp: 63-70. DOI:
10.1109/MASCOT.2002.1167061

Nehra, N., R.B. Patel and V.K. Bhat, 2007. A framework
for distributed dynamic load balancing in
heterogeneous cluster. J. Comput. Sci., 3: 14-24.
DOI: 10.3844/jcssp.2005.323.331

