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ABSTRACT

Bayesian Network (BN) is a classification technigqudely used in Artificial Intelligence. Its struge is a

Direct Acyclic Graph (DAG) used to model the asation of categorical variables. However, in casasre

the variables are numerical, a previous discrétizas necessary. Discretization methods are usbaed on
a statistical approach using the data distributguch as division by quartiles. In this article present a
discretization using a heuristic that identifieemg called peak and valley. Genetic Algorithm waed to

identify these events having the minimization @& émror between the estimated average for BN anddtual

value of the numeric variable output as the obyectiinction. The BN has been modeled from a databés
Bit's Rate of Penetration of the Brazilian pre-éajter with 5 numerical variables and one categbxiariable,

using the proposed discretization and the divisibrihe data by the quartiles. The results show that
proposed heuristic discretization has higher acguttzan the quartiles discretization.

Keywords: Bayesian Network, Discretization, Global Optimiaat Genetic Algorithm, Heuristic

1. INTRODUCTION according to some metric or specific criteria.
Discretization approaches are wusually made by
A Bayesian Network (BN) allows modeling the probability distribution or using statistic paramest like
knowledge of a domain through a set of usuallygrateal the frequency in each class.
qualitative) variables and representing relatiqushand The discretization can also be made by the experts
effects among them due to causality and conditionalon the field in a manual way. However, it can be a
independence. The BN is a Directed Acyclic GrapA@  complex task: There are cases where the data dies n
where the nodes are the variables and the arcesegpr [0llow any visible pattern and when it does, théstprn
relation strength expressed in a table of condition may ch_ange in different occasions. 3o, it IS NeAYSD
. . discretize the data based on the data itself, tsecau
probabilities. Thus, knowledge in a standardized BN

. . there is no previous knowledge of its behavior.
expressed as the ratio structure and the estimation Although there are several algorithms for discegiim

probabilities. Knowledge can be built from domaxperts, (Mohammed and Shamsuddin, 2011; Alfred, 2009;

a data table, or from a hybrid form between both. Ding et al., 2010), the majority of them have the ultimate
However, there is no guarantee that all variabf@®o  goal of data classification and not the constructimd
application domain will be categorical, since thend knowledge discovery in a BN. To perform discretizat

be situations where numerical variables participatefor this domain, it is necessary to consider theditmnal
directly in the domain context. For these situagioa distributions of each variable of the process amd they
previous discretization of the variables is recomdez, influence the network as a whole.
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An important aspect regarding the BNs are on their5 introduces the optimization problem associateth wi
property inference: The probability distribution ohe  the method, proposing an approach by GA. Section 6
variable directly influences another. Thus, itécessary  shows the experimental results of this approachti@e
to have global optimization to reduce BN error and 7 shows the discussion about the results and inaill

increase its accuracy. S _ Section 8 we conclude the study.
In this study, we present a heuristic discretizafiar

Bayesian Networks that seeks to find data pattanss ~ 1.1. Bayesian Networks

_ocljvid_ef_ t:le l;jata set accor.ding t(k) the(;n. TITiS paﬁt_eahme A Bayesian Network (BN) (Pearl, 1988) is a model of
! etf“'.'e d by two evehnts.-PeaG ant_ \,/:ll ey.ﬂ\:v |C_Ehare representation and reasoning of uncertainty thes tise
optimized by a search using L>enetic Algorithm. ENes . i 5 probability between variables of a sfiec
two events change according to the data set makimg . . X

: N . ", domain, expressed by Directed Acyclic Graphs (DAG).
proposed discretization more flexible to deal with It hical struct tack] lati
different application domains. s graphical structure can tackle c_orrealonswbeh

variables effectively, with appropriate languaged an

Although the BN is generally used to estimate the "< '© . N
probability vector of the output variable, we shawase eff|C|-ent. resources to represent the -Jomt prombll
distribution over a set of random variables (Friadm

of a real application for finding the estimation thie ]
Bit's Rate of Penetration (ROP) on the pre-saliaeg 2and Goldszmidt, 1996). _
Defining formally, a BN is a pair (G,P), where G =

offshore Brazil. It's a complex domain and depends _ _ _

different variables, which can be either controltsdthe (V.E) ISa DAG in which the nodes V =4v..,vi} repres_ent

drilling operator or from the geology. The avaikllata the van_ables and edges E :1'{_e’en} repre_sent a direct

comes from previously perforations and maybe niy fu correlatlon_bgtween each nodeinVandP is dem set

represent the new perforation and, besides thagutd of pro_bablhstlc parameters g)_(pressed thr(_)_ugh$a§}e/e_n
a particular variable, a conditional probabilitgtdbution is

have outliers or wrong values from sensor failures. _ L
A Bayesian Network approach for the ROP's made for each of their classes/values X 5.{xX.} joining

problem is relatively recent and publications foars ~ €ach classes/value of their parents. _

how to determine a good topology for the network. With that configuration, the network establishestth
Rajaieyamchee and Bratvold (2009) shows the use of variable is independent of all other variablesegt
Influence Diagrams (ID), also known as Bayesianifl@e  their descendants in the graph, given the statésof
Networks, to have a good quality when faced withl re parents. The inference inside the network is donthe
situations involving drilling in the North Sea. Geeand  Bayes theorem Equation (1):

Bratvold (2011) uses ID and interviews with expéartthe

field to make a topology of a Bayesian network thiat P(X = X|V = V).P(V = V)

assist in decision making for engineers when desigthe P(V=vX=x)= P = %) 1)
treatment of drilling fluids in Saudi Arabia. Al-¥vfa and

Schubert (2012) presents a topology to aid thdirgil . . _

fluids practice in Saudi Arabia and also shows the 1h€ joint probability is determined by the called
Bayesian network as an efficient alternative of flogv chain rule and assumes the conditional independence

charts, since it's not necessary to constantly teptem. between the variables Equation (2):

The ROP is a quantitative variable, measured on m/s
So, in this problem the objective is not the simple _r arent (V 2
classification of data but finding the knowledgéiel it (Vl""'v”) D F( vle b )) @

and be able to estimate the numeric value of thpubu
To accomplish that, we used the result probability
distribution of BN to proper inform the expectedane
value of the variable.

This study is organized as follows: Section 2 pdesi
necessary background about BN knowledge and
terminology. Section 3 presents a brief overviewthsf
optimization technique known as Genetic Algorithms {
(GA). Section 4 describes the proposed method.idect

where, parent(Yy determines the set of parent nodes
from V..

The BN reasoning is established in two distinct
scenarios:

if input, then outpu
if output, then inpu
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1.2. Learning the Conditional Probability set into four equal parts where each one contdiiis 2

L ... of the data. The first quartile ;Qs called the lower
To represent a BN, it is necessary to establish its

- quartile, the third quartile Qis called the upper
structure asb well as theblprobﬁbllltyhta;]blels (Smngf guartile and the second quartile is the medianifitse
association between variables) through the ea'""“m?"” The interquartile range is known as the distance
to be worked on. There are three ways to accomiiiesth

By d v (data b by d X I between the first and the third quartile.
y data only (data base), by domain experts onlygyoa A possible way to discretize the data comes froen th
hybrid form between data and experts.

The naive Bayes topology is therefore a set 0f_EFD method in combination with the concept of the

mutually independent variables that works as input'mecr)?ﬁart'tle rr?n.ge'I(abIte) 2):dherethcallgggs leth D
which collectively has a single parent (output no@ne er techniques, besides the an e QD are

example of naive Bayes topology can be seeRignl. also applied in the literature, SEJCh as .Lazy .Dﬁ;mﬂ"’”
In this case, the node A is the output one anchtiues (LD) (Hsuet al., 2003), Proportional Discretization (PD)
B, C and D are the inputs. (Moore and Neal, 2005) and Fixed Frequency

In addition to BN topology, it is necessary to spec  Discretization (FFD) (Yang and Webb, 2009).
the_ Co_nditional Probability Table (CPT) of each @od 1 4 Basic Refence on Genetic Algorithms
which lists the probability that the node takeseaich of
its different values in combination of its parentalues. Genetic Algorithms (GAs) are function optimizers,
An example of CPT for this BN is shownTable 1 i.e., methods for seeking extreme of a given olyject
function f(x) based on principles of natural seiect
and population genetics (Goldberg, 1989; Cantu-Paz,

In quantitative cases, the probability of a patéicualue 1995; Weile andMichielssen, 1997). The objective
X; given a variable in V can be infinitely small. function of the problem is typically used to exmes
Discretization can circumvent this problem, coriagreach  the fitness function in GA.
original quantitative value {xinto a qualitative value (}

under some pre-defined criteria, but informatiosslonay  Table 1. Conditional Probability Table (CPT) example

1.3. Discretization Based on Frequency

become an issue (Yang and Webb, 2009). A P(B = state0)  P(B = statel) P(B = state2)
One of the most common approach for ge0 0.2 030 050

discretization of the existing data of quantitative state1 0.1 050 040

variables is the Equal Frequency Discretization@EF  state2 0.1 0.05 0.85

(Catlett, 1991; Kerber, 1992; Dougheslyal., 1995),
that sorts the values on X and divides them into Ktapje 2. Quartile based discretization
intervals (user-defined) so that each interval aors

. . Condition Result discretization
approximately the same number of instances. The —
Algorithm onFig. 2 is used for the EFD method. X=Qu low”
In Descriptive Statistics, a widely used measure fo Q=X=Qs medium
data separation is the quartile. Quartiles sepatata ~ X>Qs “high”
A

stated  25.0 jmm E :
state1 50.0 :
state? 250 B .

B [ D
stateD 21.0 i

state0 125 W o stated  34.5 jumm !
state1 338 - state1 225 1 state1 245 -
state2  53.8 e | state2  56.5 N | state2  41.0 .

Fig. 1. Algorithm for EFD method
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Equal Frequency Discretization Method phanglng its value. The percentage defined fordpesator
v = quantitative variable vector; is usually much smaller than the crossover operator
v' = v sorted in an ascending order; The GA starts with a current population and then
n = size of v; selection is applied to create an intermediate |ation.
k := number of intervals (user-defined); Recombination (mutation and crossover) is then dsed
range :=n/k: create the next population. The process between the
?q“f;\j;lfﬁl?:l. current population to the next population is called
{;ng S generation in the execution of GA (Whitley, 1994).
T for(mti=0;i<n i) The GA convergence tends to evolve through
if(i<(range*j) or equal==true) successive generations until the fithess of thet bes
discretize vT[i] into class j: individual and the average fithess of a population
else approach the global optimal (Beasley al., 1993).
_1FEiTh Genetic Algorithms do not guarantee finding theiropt
endif solution and its effectiveness is determined bysike of
i};&%ﬂ]&; .:_:‘p[lg;;ious) the population n. The time required for a GA toenge
//case where v[i+1]==nnot treated for is O(nlogn) function evaluations (Goldberg, 1989).
simp licity
equal = true; PR 2. MATERIALS AND METHODS
else
equal = false; The proposed method for discretization in Bayesian
end-if Networks, Peak-Valley Discretization method (PVD),
end-for assumes that numeric variables V have a range where
retum discretized vector: intermediate values are inserted and in a complemnen
end. way, analyzing this range of intermediate valuekesat

possible to obtain the range of extreme values and
Fig. 2. Algorithm for EFD method establish their conditional probabilities, as wa# the
relations of cause and effect: “What caused this
An important aspect of the fithness function is its behavior? What does it entail?”

responsibility to measure the performance of tHetiem Observing the behavior of the variable, is posgibkell
(objective function) as a way to generate an atloneof where a value; is out of a given range, positively (high) or
resources to reproduction (Whitley, 1994). negatively (low). The delimitation of range uses tout

An individual is defined as a valid candidate points expressed in percentile: The peak one isatesl to
solution in GA, expressed by either a binary strimg  the area where values are considered “high™ aed¢zond
a vector of float numbers (Janikow and Michalewicz, one, valley, covers the area where the data isidees
1991; Wright, 1991), where a set of individuals is “low”. The range of intermediate values is defirgdthe
considered a population. Three operators are corlymon interval between two cuts. The use of percentilecats
used: Selection, crossover and mutation. point’'s measures incorporates the frequency digioib of

The selection operator uses the fithess of eachvariables on the method (following the line of EFD)
individual to choose the most adapted ones of tineent However, the behavior of a numeric variable is
population to result in a new generation. There areUnknown and it is not possible to assume that & ha
several ways to accomplish this selection of irdlials,  higher values as well as lower ones. Considering th
but it always ensures that the better adapted ithatvs prerogative, it is p0§5|ble to charactenze datéwio or
(best fitness) have a higher probability to bectelé: three behaviors-defined as classes in a BN. Inrothe

The reproduction is made by operators of crossoverVOrds, a variable can have a negligible valley eakpcut

and mutation. The first one is the primary expliomat value, or these points can be so close to each giae

mechanism of GA: It randomly chooses a pair of & intermediate range is irrelevant.

preselected individuals and exchanges information2 1. PVD Properties

(substring in a binary representation) between ttiem

create new individuals. To elucidate the properties of PVD, the following
The mutation operator is generally considered as aconcepts are defined in the context of a variaple v

secondary operator and is used to prevent thaa@olinbm

becoming stagnant at some local minima. Mutatiaoise ~ *  P(X) as a function that takes a value x as inpak a

by selecting a random substring in an individuatl an returns the percentile in which it is located

////A Science Publications 872 JCS
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p (y) as the inverse function of p(x): Takes a peiiteen

y as input and returns the value x that it repitssen

valley as the percentile expressed by the vallepaint
peak as the percentile expressed by the peak iciit po
p(xmin) as the percentile that represent the lowest
value ¥nin in V;

P(Xmay) a@s the percentile that represent the highest
value ¥paxin Vv

X" = {x4,....%, } as the discretized vector of classes
from node v (X = {%... X;})

It is possible to merge or despise cut pointséfytare
not relevant to the solution. The relevance ofcthtepoints
and its proximity to the boundary values are exggddy
the coefficient of relevance (O<a<1) defined by user,
that determines how close these values are.

It is necessary, however, to apply a correction to
ensure that the cuts always have a range of vatubs
considered relevant independent of the proximityf
to Xmax The adjusted coefficient goes by Equation (3):
a'=((1-3)m@m)+3 (3)
where, s is the boundary coefficient betweep;xand
Xmax defined by:

X

min

X

5= 4)

max

Which implies that the limit of Equation (4) when
6—0 is as follow Equation (5):

5" o((1-8) ) +5=a (5)
The relevance of cuts through the proximity of each

with Xmin and .. is determined bya’. The lowest
relevant value of valley is given by:

Xmin

p_l(va”eymin) = ' (6)
And the highest relevant value of peak is:
P (peak,,) = X0 (7)

Through the Equation (6 and 7) and considering that
both cuts have different definitions, it is possiko
define the following hierarchy Equation (8):

Pe 8)

< valley< y < peaks
min ysysp E?max
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where Equation (9):

— Va”eymin + pealﬁmx

) ©

Represents the limit between peak and valley. The
following criteria are used to despise or mergs:cut

it p*(valley)
p " (peak)
if p " (peak)

max

valley+ peak
y—

>a',then merge b >

> a'then ignor the peak cut
If _1Xmin (10)
p~(valley)
if ignor both the peak and the valley cuts, theenge
valley+ peak
2

> a'then ignor the peak cut

by

The BN feature of explicitly representing knowledge
creates a concern regarding class names, iwb{ch should
be intuitive and express their features. To sujfimlysuch
requirement, class names were chosen based onidfquat
10 and expressed by the Algorithm expresseeigrs.

Peak-Valley Discretization Method ()
v = quantitative variable vector:
o = coefficient of relevance (user-defined):
o= correction (alpha):
valley = valley percentile:
peak = peak percentile:
casel = p l(valley)/ p~ (peak)
case2 = p ! (peak) (peak)/ x,,:
case3 = x, / pl(valley):
begin
if(casel> o' or (case2> o' and case3> o))
/(2 classes)
discretize using "low" and "high";
else if case2> o
/(2 classes)
discretize using "low" and "medium";
else if case3> o'
/(2 classes)
discretize using "medium" and "high";
else
/(3 classes)
discretize using "lo

o

w', "medium" and"
high";

end-if’

return discretized vector:;

end.

Fig. 3. Algorithm for PVD method
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2.2. The Optimization Problem for Quantitative
Output

The following concepts are defined as:

e vout as the output variable in V

« V' ={v/,.. W} as the vector of all discretized
variables in V: Pre-discretized or by PVD

« vout as the output variable in'V

* X=%,,....,%, as the predicted values gf, by BN

When the output variable is quantitative the attoni
goal goes beyond the classification: It is necgsteat the
mean estimated by the probability vector refledie t
behavior of the variable. The follow function retsirthe
expected quantitative value of the, node in BN, based

on current beliefs and a list of real numbers thptesent
each class irv, , Equation (11):

out

ev(x)= Zn: belief Omidpoint (12)

i=1

where the list of real numbers is handled as thpegtive
midpoints of each class i, in relation to v

Discretization of a variable;\yin PVD depends on
two cut points: Peak and valley and a pre-defined
coefficient of relevanceoa. However, probability
distribution of v influences the inference process of
the entire BN Equation (1).

Thus, it is required to discretize all variables
simultaneously, which generates a Global Optimizati
problem (Horset al., 2002), that is, finding the best set
of acceptable conditions to achieve an objective
formulated in mathematical terms.

The objective of such optimization problem
consists in choosing an output variable in BN and
discretizing all the other quantitative variablesthat
the Bayesian classification of the output valuesss
close to the actual value as possible. Assuming tha
Vout IS quantitative, the objective function is given b
the minimization of the Normalized Root Mean
Square Error (NRMSE) between the estimated mean
value and the actual value of the variable:

find V' = min NRMSE{ v,,) (12)

GA Approach for Seeking cut points in PVD ()
V = vector of variables (qualitative and quantitative):
Vout= output variable in V;
U= coefficient of relevance (user-defined):

begin
while (solutionnot found) do
//fitness caleulation
for all ind [1] n P

(naive Bayes topology):
fitness[i] == NRM SE(Vout):
end-for
if(i<(range*j) or equal==true)
diseretize v'[i] into class j:
else
j=j+L
end-if
previous == v'[i];
if(v[i+1] == previous)

equal = true;
else

equal = false:
end-1f
selection();
crossover():
mutation():

end-while

end.

P := the population of random individuals containing peak and valley cuts for each quantitative variable in V;

diseretize all quantitate variables using PVD:
BNTi] = generated BN with the PVD discretized wvariables and the qualitative ones

/lcase where v'[1+1]==nnot treated for simplicity

return best ind[1] in P (the one with the best fitness) and the BN[1] created by this individual

///// Science Publications
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Where:

oIy o

NRMSE( v,,) (13)

Xmax -X min

The algorithm expressed &tg. 4 shows the workflow
that satisfies the objective function (Equation,1By
utilizing the technigue of Genetic Algorithm (GA).

3. RESULTS

However, each operation has unique properties that
make this task highly difficult. Many propertiesrya
such as rock type, rock porosity, gas presencespre,
drill bit wear rate, among others. All these prajesr
affect the ROP, as well as many other parametershwh
are controlled by a drilling operator.

There are 277 data points listed in the data sed us
about a specific type of drilling bit, using thelua of
ROP in a quantitative way (m/s). The input paramsete
have quantitative values, named: Revolutions Peukéi
(RPM), Weight on Bit (WOB), HSI (bit hydraulic
horsepower per square inch) and accumulated meters.

The first three variables are intrinsic to the lérg

The proposed method was tested in a data set of Bit ocess, the last one (accumulated meters) haearli

Rate of Penetration Problem (Section 6.1), whicts wa
randomly separated so that (0.7n) of the data beltnthe
training set and (0.3n) to the test set. The outpritible is
the “ROP” and (coefficient of relevance) adopted is 0.8.

3.1. Bit's Rate of Penetration Problem

Environments of high complexity and risk, such lzes t
pre-salt region of Brazil, aim to optimize the costrilling
wells. The minimization of these costs is directiated to
the maximization of Rate of Penetration (ROP).

and accumulative behavior bringing information atou
the bit wear.

There is also a qualitative parameter, discretizgd
domain experts: Unconfined Compressive Strength
(UCS) related to soil geology.

3.2. Generated Bayesian Networks

The training set were discretized according to each
one of the methods (PVD and QD) and then created th
Bayesian networks{g. 5 and §.

ROP ucs
T T T T
Hs| e low 55.8 : medium hard 551 '
low  80.0 1[4 medium 223 @M . —®| medium 35.7 ]
high 400 L high 218 mm . soft medium 3.38 \
461+42 hard 5.87 '
/ " \

RPM wos ac_meteres

L o 520 ! low 357 P

:f:h ;g': r T high  48.0 : : medium 138 @i | |

M= high 50.5 '

Fig. 5. Trained BN by PVD for Bit's ROP
ROP
HSI —r— uce .
T low 254 il mediumhard 549 :
low 33.0 i le— medium 492 ! medium 259 :
;’i‘e:'”"‘ :g'g s high 254 pul | soft medium 339 '
g L 499+43 hard 5.83 :
4_/ v \
RPM woB ac_meters

low 31.0 pm ¢ low 261 mm ¢! low 256 pmm !

medium 493 : medium 483 i medium 48.8 ]

high 19.7 pmi 1 | high 256 | | high 256 1 |

Fig. 6. Trained BN by QD for Bit's ROP
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—estimated value by PVD
estimated value by QD
---actual value

Fig. 7. Actual and estimated values of the Bit's ROP firaj set)

20

A\ A 0
AN

0

4

Table 3.Classification matrix for Bit's ROP Problem (traigi set)

—estimated value by PYD
estimated value by QD
- - -actual value

Fig. 8. Actual and estimated values of the Bit's ROP @ett

Table 5. Obtained NRMSE of Bit's ROP Problem

Predicted NRMSE
Approach Actual Low Medium High Total Accuracy Approach Training (%) Test (%)
QD Low 20 27 2 49 51.03% QD 15.46 29.69
Medium 19 53 24 126 PVD 10.66 18.44
High 5 18 26 49
VD b‘l"’é. 123 f; ‘; 13% 63.91%  Each class of the ROP output node had its midpoint
High'um 57 5 10 42 value calculated in this process (Equation 11).
The test set were then discretized using the sarne ¢

Table 4. Classification matrix for Bit's ROP Problem (te&t)

Predicted
Approach Actual Low Medium High Total Accuracy
QD Low 0 34 15 49
Medium 0 17 17 34 20.48%
High 0 0 0 0
Low 38 2 3 43
PVD Medium 18 6 1 25 59.03%
High 8 2 5 15

///// Science Publications
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points found in the training set. Classificationtrizes of
the training and test set are shownTable 3 and 4

3.3. Estimated Mean Values

The probability distribution of the output node was
used to estimate the values of the variable. Wi t
estimated mean values and the actual value the NRMS
was calculated for each one of the methd@le 5).

The actual and estimated values of the methods are
shown inFig. 6 (training set) andrig. 7 (test set).
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4. DISCUSSION events (“high”) and intermediate events (“mediuraid
was applied in a real domain of Bit's Rate of Peat@in.

The PVD method uses a heuristic that aims to The PVD method makes discretization independent
minimize the NRMSE of the training set through the from the frequency distribution of each variabley B
search for two cut points (peak and valley) by Giene observing the generated BN, it is possible to irfeat
Algorithm. An experiment was conducted using a realthe class probability distribution (“low”, “medium”
data set of Bit's ROP in order to estimate the meanand “high”) can either tend towards symmetry or
values of the output variable in two different nmth: ~ asymmetry. The frequency distribution of the classe
The PVD proposed method and the QD method. variables found by the PVD reinforces the idea that

The data set is derived from a drilling processaund Symmetrical  distribution of the classes on
the influence of various factors, such as equipmentmscretlzatlon does not necessarily lead to a bette
operators, geology and sensors measure. Therdfare, Performance of the network. o
data is not always reliable and the application aionis The estimated mean from probability distribution of
considered a complex domain. the BN generated by PVD reflected the data behavior

In the training set there is a greater accuracynvihe ~ Well, although it was not able to accurately repicelthe
PVD method is usedréble 3). The division between the actual extreme values of the variable, but doegerats
classes of the output variable is not the samevin Bnd to overestimate like the QD method. The PVD alsd &a
QD methods, since the QD divides the data in abetter accuracy in classification, lower NRMSE be t
proportional way and PVD shows an asymmetric estimated values and a better generalization of the
division in this experiment. problem when compared with the QD.

The proportional behavior of the frequency distitu With the presented results, we conclude that the
is kept for the entire training set when using@i@ method  proposed discretization method is more effective an
(Fig. 6), however in the PVD method each variable get ahas a better knowledge representation of the proble
particular distributionig. 5). than a conventional approach for discretizatiore lik

In relation to the NRMSE on the Bit's ROP 1o oD that uses a proportional division of theadat
problem, the PVD method shows a lower error in both based on the quartiles

training and test sets which reinforces its

generalization capacityT@ble 5. When looking at
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