Journal of Computer Science 10 (5): 755-762, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.755.762 Published Onling5) @014 (http://www.thescipub.com/jcs.toc)

COMENTE+: A TOOL FOR IMPROVING SOURCE CODE
DOCUMENTATION USING INFORMATION RETRIEVAL

Julio Cezar Zanoni, *Milton Pires Ramos, “Cesar Augusto Tacla,
“Gilson Y ukio Sato, *Gregory Moro Puppi Wanderley and *Emer son Cabrera Paraiso

“TECPAR-Parana Institute of Technology, Curitiba, Brazi
2CPGEI, UTFPR-Technological Federal University ofder, Curitiba, Brazil
3PPGla, PUCPR-Pontificia Universidade Catdlica da®arCuritiba, Brazil

Received 2013-04-17; Revised 2013-05-23; Accepted-P014
ABSTRACT

Document source code is seen as a boring time ounguask by several developers. However, a well-
documented source code, allow developers to hdettar visibility into what was and is being dedd,
helping, for example, the reuse of the code. Thidyspresents a semi-automatic method for docurtienta

of source code from the existing artifacts in awafe project under development. The method aims to
reduce developer’s workload, allowing them to workother tasks of the project and/or ensure that th
project deadlines will be met. The method, impletadnin a tool, called Comente+, is capable of
creating or updating comments into a source coadm fyathered information recovered from the project
artifacts. To implement Comente+, we used an in&drom retrieval approach. We performed some
experiments with real data to validate this appho&®r that, we created a special measure thahates
how well documented a source code is.

Keywords: Information Retrieval, Source Code Documentat®mall Teams

1. INTRODUCTION developing codes to dedicate themselves to songethin
which they have difficulty in making or low intetes

The source code documentation is a valuable tool to The source code documentation is also important
detect and correct problems in software systemsh Wi since it can give visibility to what was and is rogi
the support of a well-structured and organized developed by the participants of the developmeotigr
documentation, a reduction in time spent to makelt may be used as a tool for source code reuseovide
changes or maintenance in a source code is expectedhformation about development state.
Paduelli and Sanchez (2006), argue that the diffiou In this research, we are interested in studying how
maintain legacy systems, due to its complexity sizd, code documentation may be increased, especially for
is aggravated by the staff turnover and also, by anprojects been developed by small teams (teams wpith
insufficient or nonexistent documentation. Theyoals to 10 members). In a small team, many times small
mentioned that in developing or modifying a source companies with small budgets, the task of code
code, the developers do not produce this documentat documentation may be one among several tasks that a
in an appropriate manner, writing only brief nofs team member must perform.
commentary without much meaning. Thus, it is helpful reduce the team members’

Indeed, the unwillingness of developers to documentworkload caused by documentation by making the
the source code exists and is probably relatetiddact process more automatized as possible. In smalkteghose
that this task requires the production of sevesgjgs of who are involved in programming also perform attsi
explanatory text. Write these texts lead them tmmpst such as company management, contact with costumers.
Corresponding Author: Julio Cezar Zanoni, TECPAR-Parana Institute ofifi@togy, Curitiba, Brazil

////A Science Publications 755 JCS

Julio Cezar Zanoni et al. / Journal of Computer SmetD (5): 755-762, 2014

In this study we present a semi-automatic method fo such as project and software documentation. Theceou
documentation of source code from the existing code documentation is a crucial task to facilitetase
artifactsin a software project under developmerte T and software maintenance.
method, implemented in a tool called Comente+, is The documentation process may be more demanding
capable of evaluating the degree of documentatfoa o if the project has to comply with standards suchS®
code and update it with information gathered from ggg1 or models of maturity like the Capability Mty
project artifacts as well as the source code itself Model (CMM) (Soomro and Hesson, 2012). Being in

This article is divided as follows. In section 2w compliance does not necessarily mean that the group
define the process of developing software in alsteam st be certified, but that it aims at ensuring doelity
and the process of documenting source code. IlPBELL of software through the definition and standardianf
we also present our approach for source codegeyelopment processes. All requirements imposed by
documentation. In section 3 we show some resultsyjes or models, have significant impact on smesints.
obtained from practical experiments. Section 4 W8S There are researchers such as Potica. (2004); Land
some djscussion. Finally, in section 5, we present 5.4 \Walz (2006) and Campagnoéb al. (2009) that
conclusions and suggestions for future work. propose approaches to minimize such an impact.

To Land and Walz (2006), small development teams
2.MATERIALSAND METHODS have up to 20 participants, unlike Pollice and eadjues

The next paragraphs present some backgrouncf‘nd Campagnolo and colleagues that consider uto 1

needed to understand our approach. participants. As a basis for this work, a smallnielaas
) up to 10 participants.
2.1. Softwar e Development in Small Teams The method presented in section 2.6 is intended to

The software development comprises several stepgap some of the features previously mentioned. One
usually supported by tools designed for that puepas ~ Of them and perhaps the most important, sinceférse
general, it is produced collaboratively, with peigiation ~ t0 the main research problem is the participants’
of several specialists. Researches in Computer@tggh ~ excessive workload. The method aims to reduce this
Cooperative Work (CSCW) applied to software workload, allowing the developer to work on other
development are widespread. Several studies hesadgl tasks of the project and/or ensure that the project
been developed (Cook and Chumber, 2005; Testual., deadlines will be met.

2012; Jianget al., 2006; Duqueet al., 2012). However, It is important to highlight that this method arfee t
most of this work focuses two aspects: (1) tool associated to it are not intended to substitut
improvements to the infrastructure to support Programs to generate source code_ documentation I_|ke
Javadoc. The main idea is to provide developerf wit
indications on what is important to be documented,
promoting a quality increase on source code consnent

distributed development (integrated environments or

groupware) and (2) encourage the communication

among participants of the collaborative projectmed

at large teams of software development. 2.2. Sour ce Code Documentation
Software development small teams have some needs

and characteristics that should be taken into atdcou

(Campagnoloet al., 2009)'_ As in _general participants documents, called artifacts, used in various stagdise
work on a common physical environment, the face to process as a way to record its development (Shi.,
face communication is enough, which means thatyggs: Massoniet al.. 2003: OMG 2010). These
electronic messages systems are less importantyocyments are elaborated and refined during the

Participants are in charge of specific activitiest they project development until the delivery of the protiu
develop different activities during the projecelitycle, to customers.

The software development tools, such as UML
language and RUP process generate several

i.e., in practice a participant plays differenta®in spite In general, there are two types of software
of his formal function. For example, a developen ca documentation: Management documentation and user
play the role of analyst and tester. Such a midityl of documentation. The management documentation
roles can quickly lead to an excessive workloais; fitact includes all information about the project develemnt)

contributes to members neglecting important adtisit including the source code documentation. The user

////A Science Publications 756 JCS

Julio Cezar Zanoni et al. / Journal of Computer SmetD (5): 755-762, 2014

documentation is focused to the end user and norisal segment. The text segments that meet the spewficat
compounded by user’'s manuals. of the pattern are called “matched”. The pattearzge

The documentation of a source code is done bytinger from words to more complex structures. In order to
comments into it. A comment is a fraction of cogett recover those patterns one need well-formed ruiks (
identified by the compiler, but completely ignorbgl it ~ regular expressions).
since it does not represent a valid action in teofnsode The most common types of patterns are: Words,
Comp"ation_ Moreover' these Commerﬁm(1) should be preflxes and suffixes. The most basic patternS/\lﬂm{iS.
useful to the human reader and must contain at thes Matching these patterns means finding the exastgstr
exp|anation of the code as a whole. with the Word/pattern in the text been analyzed.

Figure 2 shows an example of a source code well Among the existent pattern matching types, Regular
documented, in which comments describe a part of aExpressions (RE or regex) are the most powerful.
class. In this example, the developer uses the atsn Regex provide a flexible and efficient mechanism fo
intensively, producing a source code easier to tain processing texts, which uses a formal method toifpe

The implementation of the method was possible thank & text pattern. Through an extensive and rather
some techniques related to information retrievell pattern ~ Complete notation, it is possible to analyze adasgt
matching. The next section briefly presents them. of texts looking for patterns.

))] A regular expression describes a set of strings,
2.3. Information Retrieval and Pattern Matching concisely, without having to list all elements bbtset.
For example, a set containing the strings “Handel”,
“Handel” and “Haendel” can be described by thegratt
H(alae?)ndel. These constructs can be combinentno f
2.4. Information Retrieval arbitrarily complex expressions as well as arithmet
expressions. In general, there are different regula

possible documents that match to the terms of ¢hech expressions to describe a set of strings. Manyhef

expression used to represent users’ needs (Badesa-Ya !ntegrated Development_ Env!ronments (IDEs)
and Ribeiro-Neto, 1999). IR can be used to searchMPlement regular expressions using syntaxes that a

information on unstructured or structured texts. Similar to the ones found in programming languagées:

This section briefly presents the techniques used i
the method implementation.

Information Retrieval (IR) provides to users a skt

Unstructured texts are usually those free of amctire, ~ €xact syntax of a regular expression and the alaila
like a user review, a letter (Barathi and Valli,12p. Operators vary according to the adopted implemiemtat
Structured or semi-structured texts follow a stadda ~ The regular expressions were used to extract the ma
format or pattern, as is the case of source code. elements from the code, such as: Class definition,

Another way of using IR is recovering passageserath method signature and variables declaration. Alse, w
than full texts (Callan, 1996). Passages are gmeiks of ~ used them to find existing comments in the souociec
a text. These pieces of texts could be indexedrbjRa The next section present the method for semi-
system. The users’ searches will return as respsmsie ~ automatic source code documentation, based on
small portions of text that are more significantdan pattern matching and IR.
sometimes gould answer directly to the user neelzds.. 26. A Method for a Semi-Automatic Source

Concerning our approach, the use of IR is directly .

> . . Code Documentation
related to retrieving passages information fromtthes
written in natural language. Such information wbk In this section we describe the proposed method for
used to complete comments in the source code. source code documentation. It performs the exwacti
. and analysis of information from source code aranfr

2.5. Pattern Matching the management documentation related to a specific

Analyzing the source code shown Fig. 2, some Software project. _ _
interesting information can be retrieved with thee wf The proposed method gathers information from the
pattern matching techniques. source code comparing it with comments and desmnipt
Pattern matching is another research domaincontained in every artifact related to the proj@bose
concerned with the formulation of queries and dessc written in natural language). In doing so, it issgible to
based on a pattern. It allows the retrieval of wsood check what can be automatically documented.
parts of a text that have certain properties. Aepatis a Figure 3 shows a diagram identifying the three main
set of syntactic features that must occur in a textmodules of the method.

////A Science Publications 757 JCS

Julio Cezar Zanoni et al. / Journal of Computer Smet0 (5): 755-762, 2014

[
/

* Registers the text to display in a tool tip. The text
* displays when the cursor

* lingers over the component.

¥ (@param text the string to display.

x
x

xS
V

If the text is null, the tool tip is
turned off for this component.

public void setToolTipText({String text)

i

Fig. 1. A fragment of Java code with some comments indiawv#ormat (Javadoc, 2013)

package java.lang: e

import java.util .ArrayList;

CharSequence |
/** The offse

private int count;

= index. ...
-/

char v[] = val

if (fromIndex < Q) {
EromIndex = 0;

} else if (fromIndex >= count) |
£/ Wote: fromIndex might be near -Llasx»l.

1

1f (v[i] == ch} {
return i - offser;
¥

i

return -1;

#** The <code>Btringe/code> class represents Cnorw r—=trrmgr—hit Impart information
* gtring literals in Java programs, such as <code>"abc"</code>, are
* implemented as instances of this class. G
* @wuthor Lee Boynton e | BavaDoc docurentation (for the cluss):
* @version 7.152, 02/01/03 e hedes HTML tags and JavaDoc tags (e.g.
+ @see jawa.lang.StringBuffer iaauthor)
* @since JDK1 .0
*f Class signature

public final class String implements java.ic.Serializable, Comparable,

s the firse index of the storage that is used. =/ g—1 | havaboc documentation (for the attnbute)

f/#* Tha spunt iz the mumber of charactarz in the String. +/

f/#* Returns the index within this string of the first occurrence of
* the aspecified character, starting the search at the specified

public int indexOfiint ch, int fromIndex) |
int max = offsgs + count; *‘““-—______

Package information

Aitribuie {si

K—- JavaDoc docurmentation (for the method)

Method sig

for (int i - offset + fromIndex ; i < max ;

| Identifier internal attribute (here: max*) ‘

¥_ = |

144) |

Fig. 2. Java Code (String.java from standard Java libr@gkh, 2005)

Information ' Information
retrieval analysis

<:I Information
SOtpit update

Fig. 3. The main method modules

% Science Publications

The corpus is a predefined set of files to be read
updated. The corpus contains all the existing saorftw
documentation for a particular development project.
Thus, it contains the project description files ahe
source code files written in Java (Java-Net, 2010).

2.7. Information Retrieval Module

The Information Retrieval module processes the
files into the corpus. It first analyzes the soucoele
files. This is due to the fact that in these fitee code
lines (except the comments) are used as queries whe
searching into documents written in natural languag

758 JCS

Julio Cezar Zanoni et al. / Journal of Computer SmetD (5): 755-762, 2014

It means that the code lines written by develo@ges written in natural language (i.e., software requiests,

the main source for retrieving information, contam software architecture,).

all the relevant information that we wish being | the case a comment exists and its information is
documented by means of comments. For instance: Apcomplete, in terms of source code informatiorny(e.
class name or a method signature (argumentsyethod parameters and method return type) a new

V'S.'F'“ty') IIS uged tﬁ seac;ch Ireleva_nt p;ssagem N comment is created instead of deleting the existing
artifacts relate tto thetco el. Tzef;'onff' Vt‘{&:’p': one. This new comment is intended to show the
some experiments that evajuate € eftectiveness 0missing information to the developer, that should

this approach. : . validate de new one, deleting the old one (if heeag
The process to extract information from the source_ .)
. . with the new one):
code uses pattern matching by applying regular
expressions taking into account that the sourcedésed <« Finally, in the case a comment exists and it isgleta,
a well-structured document and its domain is well just the recovered passages are attached to it
known. The programming language (Java in this casey In all cases, the comment is created using the
has a grammar and a set of reserved words (or Javadoc's format
keywords according to the Java specification * It is important to highlight that a source code may
(Gosling, 2000) that can be used by the regex silyea have more them a comment for each element
match with its structures (language syntax) andaext
information from them.
Files written in natural language (no matter what This last module finally updates the documentation,
language is used) need to be preprocessed, in twder writing the comments into the source code.
split them into passages. A passage in this case is
sentence. Figures, tables and diagrams are notrusieel
actual version of the system. After preprocessihg, The method just described was implemented in Java,
passages are indexed by the IR system, writtengusin generating a tool called Comente+. The Comente# too
(Lucene, 2011). Lucene provides all tools to indgxhe analyses every Java file of a project before ater dfie
passages and recovering them, using informatiom fro method application. In order to estimate how
source codes as search terms. documented a source code is, we defined a C (for
Once the relevant information was found, it isetbr Comments) measure, according to the Equation (1):
in a MySQL database.

2.9. Information Update M odule

2.10. The Comente+l mplementation

_ totalof comments
#of classes #of methdods #of variab

2.8. Information Analysis M odule (1)

The information obtained in the previous process is
confronted in order to check which element (class,where, total of comments is the sum of existing
methods and variables) of the code is documented. | comments in the source code, # of classes is timeasu
such a process, three cases may occur: classes found by Comente+, # of methods is the (flum

* The element of the source code is not documented methods found by Comente+ and #\afriablesis the

e The element is partially documented. In this case,sum of variables found by Comente+.

there is an associated comment to the source code " the actual version of the system, every Jaeaisil
structure, but it not contains all the possible copied in an auxiliary folder before Comente+ start

relevant information processing them. At the end, we have a set of nealdif
« The element is well documented. in terms of Java files, enriched with new or updated comments.
information just gathered from the source coddfitse It is important to highlight that the existence @f

large number of comments does not mean that their
In the first case, if there is no comment, therewn quality is good enough to adequately document the
one is created, including all the relevant inforiowat source code. In section 3, we present some qnaditat
founded in the source code itself (e.g., method evaluation of this point.
parameters and method return type) and, if exists, In the next section we present the results of some
incremented with passages found in the documentspractical experimentation we performed.

////A Science Publications 759 JCS

Julio Cezar Zanoni et al. / Journal of Computer SmetD (5): 755-762, 2014

3.RESULTS shows the C measure calculated before and after
Comente+ processing.

To evaluate Comente+ (and consequently the We also performed a qualitative study, asking
approach) a few experiments were carried out,developers to evaluate the passages recoveredtéxm
intended to demonstrate its effectiveness. Thefiles and, consequently, the comments produced with
experiments were performed using three differentthem. Developers should classify each passagedingor
software projects. In each corpus there were sourcgo these three possibilities:
code files written in Java and text files written i
Portuguese describing the system.

The first project, called SE Telecom, is focused on
telecommunications and was developed by a small,
team of a Brazilian company. The other two projects
(Emotion and MODUS-SD) are related to Human
Computer Interaction and were developed by a small
research team at Pontificia Universidade Catolioa d |
Parana (PUCPR) in BrazilTable 1 shows the main
features of the corpora.

Table 2 shows the number of comments found
before Comente+ processing and the number of new The results of this qualitative evaluation, for jeat
ones added or updated to source code files. It als$SE Telecom, are presentedTiable 3 and 4.

* No relation: The passage has no relation with the
element been documented

Some relation: The passage has some relation with
the element been documented. This could happen if
a passage has, for instance, information related to
more than one element in the code

Total relation: The passage is definitively related
the element been documented

/* The public class Attendant was implemented
* to model an attendant.

* Attendant implements the interface

* Runnable.

*

* List of methods:

* Attendant

* login

* run

%/

public class Attendant implements Runnable({
private Socket s; // This is a class attribute;

/* This public method is the class constructor.
* [@param (Socket) s
*

public Attendant (Socket s)

{

this.s = s;

}

Fig. 4. An excerpt of a source code example from SE Tefeco

Table 1. The corpora used in the experiments

of source # of # of # of # of documentation
Project code files classes methods variables p@dfes preprocessing)
SE telecom 24 24 142 335 7
Emotion 1 1 4 21 53
MODUS-SD 7 7 15 328 11

///// Science Publications 760 JCS

Julio Cezar Zanoni et al. / Journal of Computer SmetD (5): 755-762, 2014

Table 2. Comente+ quantitative results

C

of comments # of comments created
Corpus written by developers (or updated) by Comente+ Before Comente+ After Comente+
SE Telecom 341 501 0,681 1,681
Emotion 85 25 3,269 4,231
MODUS-SD 327 350 0,934 1,934
Table 3. Qualitative evaluation: Retrieved passages usiag\iD operator
Project: SE Telecom No relation Some relation Todkdtion
of recovered passages = 48 7 19 22
% comparing with total recovered results 15% 39% %46
Table 4. Qualitative evaluation: Retrieved passages usiagéarch terms
Project: SE Telecom No relation Some relation Tokdtion
of recovered passages = 143 72 11 60
% comparing with total recovered results 50% 8% 42%

Figure 4 shows an extract of source code “total relation” we have 85% of passages relatedhto
commented by Comente+. In this case, theelement been documented. Almost 50% of the total
information needed to compose the comments waspassages recovered were classified as been colyplete
mainly found in the source code itself. related to the element been documented.

4. DISCUSSION 5. CONCLUSION

Table 2 shows the number of comments found before This study presents a method for documenting source
Comente+ processing and the number of new onesladdecode based on information recovered in the arsfact
or updated to source code files. It also shows Ghe produced during software development. The results
measure calculated before and after Comente+showed that the Comerteis a promising tool in
processing. The number of comments is dramaticallydocumenting source code. Comments in the source cod
augmented for some projects. This is due to thetfet are created or updated according to passages fiound
Comente+ retrieves passages and creates or upalatesnatural language texts.
comment for each one. We are planning to apply Comente+ since the

The project Emotion has the best score in terms ofheginning of a real project in order to collect gom
comments. Only 25 new comments were added. Thisjata to evaluate if, or not, the workload over

project has the highest C, before and after Comente jevelopers was reduced.

processing. This is due the fact that the sourde tas a We also planned to create an instigator agenth@s t
few number of code elements if compared to the mimb presented in (Boet al., 2011)) that will help

of comments. We remind again that each elemerttan t developers to better document their code, givirsigits
code may have more than one comment. ~and suggestion during codification time.
We tested two different approaches for recovering

passages using Lucene. The first one uses the AND 6. REFERENCES

operator among the search elements when recovering

passages Ti@ble 3). The second approach used every Barathi, M. and S. Valli, 2011. Context disambigpmt
element in the query to search a passage, producing based semantic web search for effective information
greater number of recovered passag€able 4). As retrieval. J. Comput. Sci., 7: 548-553. DOI:
expected, the first approach produced better mesult 10.3844/jcssp.2011.548.553

(reducing the number of false positives-no reldtisimce Baeza-Yates, R. and B. Ribeiro-Neto, 1999. Modern
recovered passages have in their content informatiout Information Retrieval. 1st Edn., Addison-Wesley,
all elements of the query. Adding “some relatiomida ISBN-10: 020139829X, pp: 544.

///// Science Publications 761 JCS

Julio Cezar Zanoni et al. / Journal of Computer SmetD (5): 755-762, 2014

Boz, J.G., M.P. Ramos, G.Y. Sato, C.A. Tacla a@ J. Land, S.K. and J.W. Walz, 2006. Practical Suppart
Nievola et al.,, 2011. A virtual catalyst in the ISO 9001 Software Project Documentation. 1st
knowledge acquisition process. Proceedings of the Edn., IEEE Computer Society, New Jersey, ISBN-
23rd International Conference on Software 10: 0471768677, pp: 418.

Engineering and Knowledge Engineering, (EKE’ Lucene, 2011. Welcome to apache lucene.

11), Miami, EUA., pp: 149-152. Massoni, T., A. Sampaio, P. Borba and A.L. Freire,
Callan, J.P., 1996. Passage-level evidence inrdent 2003. A RUP-Based Software Process Supporting
retrieval. Proceedings of the 17th Annual Progressive Implementation. 1st Edn., Gl

International ACM SIGIR Conference on Research Publishing, Hershey, EUAap: 13.
and Development in Information Retrieval, Jul. 3-6, OMG, 2010. Unified Modeling Language (UML),
ACM Press, Dublin, Ireland, pp: 302-310. version 2.0.

Campagnolo, B., C.A. Tacla, E.C. Paraiso, G. Satb a Paduelli, M.M. and R. Sanches, 2006. Maintenance

M.P. Ramos, 2009. An architecture for supporting
small collocated teams in cooperative software
development. Proceedigns of the 13th International
Conference on Computer Supported Cooperative

problems: Characterization and evolution. Procegdin
of the 3rd Workshop on Modern Software
Maintenance, V Brazilian Symposium on Software
Quality, (SQ ‘06), Vila Velha, Brazil, pp: 1-13.

Work in Design,Apr. 22-24, |IEEE Xplore Press, pg|lice, G., L. Augustine, C. Lowe and J. Madh02.

Santiago, pp: 264-269. DOI:

Software Development for Small Teams: A RUP-

10.1109/CSCWD.2009.4968069] Centric Approach. 1st Edn., Addison-Wesley,
Cook, C. and N. Churcher, 2005. Modelling and ISBN-10: 0321199502, pp: 272.

measuring collaborative software engineering. pech 3. 2005. Preprocessing of object-orientedcso
Proceedings of the 28th Australasian Computer code for code retrieval. Citeseer.
Science Conference, Research and Practice iPShiki, N., Y. Ohno, A. Fuji, T. Murata and V.
Information Technology, (PIT’ 05), Australia, pp:
267-276.

Duque, R., M.L. Rodriguez, M.V. Hurtado, C. Bravula
C. Rodriguez-Dominguez, 2012. Integration of PMID: 19256778
collaboration and interaction analysis mechanisms i i . .

. Soomro, T.R. and Hesson, 2012. Mihyar. Supporting

ac_oncern-based architecture for groupware systems:. best practices and standards for information
Scl. Comput. Programm., 77: 29-45. DOL technology infrastructure library. J. Comput. S8i.,

10.1016/j.scic0.2010.05.003) i .
Gosling, J., 2000. The Java Language Specificaish. 272-276. DOI: DOI: 10.3844/jcssp.2012.272.276
Teruel, M. A., E. Navarro, V. Lopez-Jaquero, F.

Edn., Addison-Wesley Profession8lpston, ISBN- \

10: 0201310082, pp: 505. Montero and._]. Jaest al., 2012. Analyzmg thg
Javadoc, 2013. The java API documentation generator understandability of requirements engineering
Java-Net, 2010. A brief history of the green projec languages for CSCW systems: A family of
Jiang, T., J. Ying, M. Wu and M. Fang, 2006. An experiments. Inform._ Softw. Technol., 54: 1215-

architecture of process-centered context-aware 1228. DOI: 10.1016/j.infsof.2012.06.001

software development environment. Proceedings of

the 10th International Conference on Computer

Supported Cooperative Work in Design, May 3-5,

IEEE Xplore Press,Nanjing, pp: 1-5. DOI:

10.1109/CSCWD.2006.253193

Matsumura, 2004. Unified Modeling Language
(UML) for hospital-based cancer registration
processes. Asian Pac. J. Cancer Prev., 9: 789-96.

////A Science Publications 762 JCS

