Journal of Computer Science 10 (3): 411-422, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.411.422 Published Onlin€3) @014 (http://www.thescipub.com/jcs.toc)

A CASE FOR HYBRID INSTRUCTION ENCODING FOR
REDUCING CODE SIZE IN EMBEDDED SYSTEM-ON-CHIPS
BASED ON RISC PROCESSOR CORES

'Govindar ajalu Bakthavatsalam and °K.M. Mehata

!Department of Computer Science and Engineering/&tkateswara College of Engineering, Irungattukpttalia
23chool of Information and Computer Sciences, B S Althhman University, Chennai, India

Received 2013-10-13; Revised 2013-11-12; Accepte8-20123
ABSTRACT

Embedded computing differs from general purpose prdimg in several aspects. In most embedded
systems, size, cost and power consumption are iertant than performance. In embedded System-on-
Chips (SoC), memory is a scarce resource and iespa®nstraints on chip space, cost and power
consumption. Whereas fixed instruction length feaf RISC architecture simplifies instruction deirmy

and pipeline implementation, its undesirable siffecé is code size increase caused by large number
unused bits. Code size reduction minimizes memiag, €hip space and power consumption all of which
are significant for low power portable embeddedteays. Though code size reduction has drawn the
attention of architects and developers, the saistiourrently used are more of cure than of prewanti
Considering the huge number of embedded applicstitimere is a need for a dedicated processor
optimized for low power and portable embedded swsteln the study, we propose a variation of
Hybrid Instruction Encoding (HIE) for the embeddprbcessors. Our scheme uses fixed number of
multiple instruction lengths with provision for hgi sizes for the offset and the immediate fields
thereby reducing the number of unused bits. We kited the HIE for the MIPS32 processors and
measured code sizes of various embedded applicatibkliBench and MediaBench benchmarks using
an offline tool developed newly. We noticed up 8% code reduction for large and medium sized
embedded applications respectively. This resultseiduction of on-chip memory capacity up to 1
mega bytes that is very significant for SoC basethedded applications. Considering the large market
share of embedded systems, it is worth investing imew architecture and development of dedicated
HIE-RISC processor cores for portable embeddedegysthased on SoCs.

Keywords: Chip Space, Code Size, Instruction Encoding, liasibn Set Architecture, SoC

1. INTRODUCTION (SoC). As applications become increasingly complex,
code memory consumes a large portion of the area in

An embedded system is not a general purposeSoC architectures. Apart from increased chip spexk
computer. Instead, it is a preprogrammed system tocost, the power consumption also increases due to
perform one or more dedicated functions. In mostlarger code memories. Hence minimizing code size is
embedded systems, size, cost and power consumptioan essential requirement in Battery Operated Plertab
are critical than performance (Hennessy and Patters Embedded Systems (BOPES). In the study, we deal
2012). A large number of embedded systems such agvith reduction of code size at processor Instructset
cellular phones, cameras, toys are portable anwrigat Architecture (ISA) level so that the code generdigd
operated and their design is based on System-ohi@-C the compiler is shorter.

Corresponding Author: Govindarajalu Bakthavatsalam, Department of Compsitégnce and Engineering,
Sri Venkateswara College of Engineering, Irungattta, India

,///4 Science Publications 411 JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

The RISC processors such as ARM and MIPS are

Five bits are unused in most R-type instructions as

widely used in the embedded SoCs, due to highillustrated inFig. 2 for the andnstruction.

performance offered by the RISC Architecture. Thedr
Instruction Encoding (FIE) of RISC processors halps
simpler instruction decoding and easy pipeline giesi
(Hennessy and Patterson, 2012). But the FIE inesetie
code size as some fields are either unused or utilided
in several instructions.
memory is integrated with the processor and theroth
system hardware on a single chip (Fistiea., 2005). This
limits the available space for the application mgnfor the
SoC architectures. Although embedded systems tiypica
cost far less than desktop computers, severalorbilli

In embedded SoCs, the code

In most immediate type instructions, 8 bits are
sufficient for the operand and the remaining 8 lits
redundantFigure 3-6 illustrate the four different cases
of immediate field patterns out of which only ineon
case, both bytes of immediate field are non-zero.

In branch instructions such as beq, the offsetl fisl
underutilized in those cases where the offset redusan
be specified in 8 bits.

1.2. Related Work

There have been significant efforts at system aesig

embedded SoCs are sold annually compared to a fevevel to compensate for the code size increaseedaig

hundred million desktop processors (Vahid and @igar
2006). Our paper proposes replacing the
instruction size’ feature by ‘hybrid instructioresi in the

the FIE., Several techniques (Heikkinenh al., 2009)

‘uniform have been implemented to minimize the object code.

These are classified into three types (¥ieal., 2006),

embedded RISC cores used in BOPES so as to raaice tOffline Code compression, Compiler techniques and

code memory space, for embedded programs.

The main contributions of this work can be sumneatiz
as follows. The study proposes replacement of Fife w
Hybrid Instruction Encoding (HIE) with two modifitans
to RISC Architecture: Multiple instruction sizesdamybrid
lengths for the offset and immediate fields. Weigtesd a
HIE-ISA for the MIPS processor as a modification to
MIPS32 ISA for evaluating the HIE-ISA and develoed
offline tool, that converts the object codes fronPR ISA
to HIE-ISA. This tool measures the code size saviiog

ISA modification. The first two techniques retaimet
original ISA but require software/hardware additson
by the system developers, whereas the third teckeniq
involves supporting a new instruction set that is a
subset of the original ISA.

In ISA modification cases, such as ARM Thumb
and MIPS16, the original ISA is modified with shert
instructions, limited instruction set, smaller opied
fields and fewer GPRs. This results in code size
reduction by 30 to 40%, but reduces performance by

embedded applications in MiBench and MediaBench15 to 20% (Bonny and Henkel, 2008) and also

benchmark suites.

1.1. RISC Ingtructions and Code Density

RISC processors generally have three types of

instructions: ALU, Load or store and Branch and gum
(Hennessy and Patterson, 201gure 1 summarizes the
basic formats of MIPS32 integer instructions (ottiean
floating-point instructions) with examples. All the
instructions are 32-bits and the most significanbi®
contains the opcode. In the I-type and J-type unsbtns,
the opcode itself indicates the exact operatiothérR-type
instructions, the op field identifies the instroctitype and
the fn field (least significant bits 0-5) indicatd® exact
operation. The R-type is for register-to-registperations.
The I-type is for data transfers, branches and idisie
operations. In load/store type instructions, tHeeatffield is
added to the contents of theregister, usually an address,
to form the effective address for one of the opdsaaither
the source or the destination. The major drawbatkRdSC
instruction formats causing increased code sizelistesl
below using MIPS32 as example.

////A Science Publications 412

requires a decoder and de-compressor inside the
processor to support both ISAs. The other drawback
of this approach (Beniniet al., 2004) is the
performance penalty caused by lack of several
instructions in the dense instruction set. Thisrapph
customizes the existing RISC instruction
architecture with narrow instructions supportingvde
operations, smaller operand fields and fewer regstA
variation of this approach is used by microMIPS
(ITGPLC, 2009; 2010) that is a recent addition ttPS
architecture. It offers a new ISA that supportshits-bit

and 32-bit instructions in a single program. Howeus

new instructions have restrictions on using certain
registers. Some of the 16-bit microMIPS instructi@an
access only 8 of 32 GPRs. RISC-V project at Unitaers

of Berkeley is somewhat similar to microMips
architecture permitting 32-bit base instructions di6-

bit extensions of compressed instructions. It hofmes
achieve up to 30% savings in static and dynamic
memory space. Though the researchers term it as
variable instruction decoding, it offers a two mstion
length feature similar to microMIPS.

set

JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

1 - Type (Immediate): addi, beq, Iw, Tui
| op(6) ‘ 13(5) 11(5)

op=opcode, rs=source register, rt=destination register

imm(16) / off3et(16) |

J - Type(Jump): j, jal

op(6)

tar=target instruction address

‘ tar(26) |

R - Type(Register): add, sll, jr, mult, rfe

| op(6)

s, rt=source registers, rd=destination register, sa=shift amount , fn=function (operation)
The lengths of the fields are indicated in bits inside brackets

‘ 18(5) t(5) rd(5) sa(s) fn(6) |

Fig. 1. MIPS32 basic instruction formats

0's rs rd 0's 100100
] 3 3 3]
Fig. 2. Format of and instruction in MIPS32 ISA
001001 rs 0's
6 3 3 16

Fig. 3. Format of addiu instruction with immediate fieldntaining zero value

001001

Is

0000000000101100

()

()

16

Fig. 4. Format of addiu instruction with only most sige#int byte of immediate field containing zero value

001001

Is

Q000001100000000

6

3

3

16

Fig. 5. Format ofaddiu instruction with only least significant byte ofinediate field containing zero value

001001

Is

0000000111100100

6

[

LA

16

Fig. 6. Format of addiu instruction with both bytes of irdiate field containing non-zero value

A mixed approach is also followed (Bonny and Huffman Coding algorithm. The compressed code and
Henkel, 2008) by re-encoding unused bits in thethe decoding table are stored in the code memory.
instruction format for a specific application, ugin During execution of the program, a hardware decoder

////J Science Publications 413 Jcs

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

external to the processor decodes the compressed The benchmarks mainly consist of multimedia
instructions. applications with the representative algorithms jfreg
The study presents an architectural solution that i encoding/decoding, image color format conversion,
application independent and recommends fixing theimage dithering, color palette reduction, MP3
length of various instructions to 1, 2, 3 or 4 Isytlestead encode/decoding and HTML typesetting. The typical
of uniform size of 4 bytes. Though compiler and examples of network devices are switches and reuter
processor modifications are required to existing®! The work done by the embedded processors in these
architectures, these are one time efforts by thegwsor devices involves shortest path calculations, trebtable
manufacturers/compiler developers and there is nopackups and data input/output.
burden on embedded system developers as required in The algorithms used in these benchmarks are finding
other approaches. Also, it is a program independenty shortest path in a graph and creating and searchi
solution for embedded applications. However, this patriciatrie data structure. There are some benchmarks
strategy does not prevent inclusion of other mesifod ~ common to network, security and telecommunication
achieving additional amount of code size reducfion classes. The Telecommunications benchmarks have
specific applications. algorithms for voice encoding/decoding, frequency
The organization of the study is as follows. Set analysis and checksum calculation. The Office
discusses the behavior of RISC processors for ed#laed applications are primarily text manipulation algonis.
applications and describes the HIE-ISA proposed byThe typical examples of office automation are @nist
us for BOPES as a modification to existing MIPS32 fax machines and word processors. The security
ISA. Section 3 describes the architecture of tHénef benchmarks have algorithms for data encryption,
tool developed by us for static simulation of HIEA decryption and hashing.
and details the experiments carried out with this! t The MediaBench suite (Leeal., 1997) is composed of
using MiBench and MediaBench applications for multimedia applications. MediaBench 1.0 contains 19
comparing the object code sizes for MIPS32 ISA andapplications collected ~ from image processing,
the proposed HIE-ISA. Section 4 discusses the tesul communications and DSP applications. Certain equfics

Section 5 presents conclusions. such as jpeg and gsm are common to MiBench and
MediaBench suites. A short note on the selected
2. MATERIALSAND METHODS applications in MediaBench suite is givenTiable 2.

_ o We cross-compiled the MiBench and MediaBench
2.1.Behavior of Embedded Applications on programs on Intel PC and analyzed the compiler ubutp
RISC Processors using our tool MIDACC, an offline code analyzer Itoo
In order to estimate the extent of wastage in RISCG|venaMIPS object code, this tool produces thtruistion

object codes, we analyzed the MIPS32 object code£Punt for each instruction type. It also analyzée t
(Patterson and Hennessy, 2008) for the embedde(&'t'l'zat'(?” of the .offset and immediate flglds imet
benchmark suits, MiBench and MediaBench. The instructions and lists extent of wastage in ternfs o
MiBench (Guthaust al., 2001) is a set of benchmark Percentage of total program size. Analysis of MtRfct
programs in C, for six embedded applications: codes using this tool reveals two interesting bigingv
Automotive and Industrial control, Consumer Devjces Four instructionsaddu, addiu, Iw and sw, dominate
Office Automation, Networking, Security and the embedded programs consuming as high as 60% of
Telecommunications. Table 1 lists the MiBench the code, as shown ffig. 7. Applying 80-20 rule, any
programs used by us for evaluating the HIE for MiRS technique to improve the density of these four
Typical applications of Automotive and Industrial instructions will reduce the code size.

Control are air bag controllers, engine performance The extent of wastage due to underutilization &f th
monitors and sensor systems. These benchmarksmperfo offset and immediate fields varies from 10 to 20Pthe
mathematical, calculations, bit counting, sortingda code sizeTable 3) for the embedded applications.
image recognition. The typical examples of consumer The largest program of Automotive applications of
devices are scanners, digital cameras and PersondfliBench suite is thesusan occupying 51,000 bytes of
Digital Assistants (PDAS). memory. It is an image recognition package usedafor

////A Science Publications 414 JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

vision based quality assurance applicatiéigure 8 respectively due to hybrid instruction length featand
shows that insusan, the immediate/offset field is fully hybrid length provision for the offset and immediat
used in 80% of the cases only. This amounts toagast fields. Though the HIE-ISA does not eliminate the
of 10,200 bytes, i.e., 20% of the code memory. Ourwastage totally, it minimizes the wastage to a majo
proposed HIE-ISA for MIPS processor gives overall extent. The extent of code size reduction achievitd
code reduction ofusan and mpeg2 by 27 and 21% HIE-ISA is also indicated i able 3.

Table 1. MiBench benchmarks used for evaluation of FIE
Auto/Industrial applications

Program Functions

basicmath Simple mathematical calculations suahubg function solving, integer square root andl@mgnversions
from degrees to radians

bitcount Tests the bit manipulation abilities gfracessor by counting the number of bits in anyasfantegers

gsort Sorts a large array of strings into ascendndgr using the quick sort algorithms

susan An image recognition package for recognizorgers and edges and typically used for a visaset quality

assurance application
Consumer applications

Program Functions

ipeg An algorithm for image compression and dec@sgipon; used to view images embedded in documents
lame An MP3 encoder that supports constant, avemadevariable bit-rate encoding

typeset A general typesetting tool with a front-@ndcessor for HTML,; representative of a core congmt of a web

browser that might be used in a consumer device
Office applications

Program Functions

stringsearch Searches for given words using ainasasitive comparison algorithm

ispell A spelling checker supporting contextuallspleecking, correction suggestions and non Endésiguages

rsynth A text to speech synthesis program thagnates several pieces of public domain code irdimgle program

Network applications

Program Functions

dijkstra Constructs a large graph in an adjacendyixm@presentation and calculates the shortest ipetween every
pair of nodes using dijksra’s algorithm

patricia Creates and searches a patricia trie streict

CRC32 Same as CRC32 in telecom

sha Same as sha in security

blowfish Same as blowfish in security

Security applications

Program Functions

blowfish A symmetric block cipher with a variabknpth key.

sha A secure hash algorithm that produces a 16fdstage digest for a given input; used in thersezxchange
of cryptographic keys and for generating digitghsitures

rjindael A block cipher with the option of 128-,2:9and 256-bt keys and blocks.

Telecommunications applications

Program Functions

CRC32 Perform a 32-bit Cyclic Redundancy Check (CRC) de.dfseful to detect errors in data transmission

FFT Performs a fast fourier transform and its isedransform on an array of data; useful in digitghal
processing to find the frequencies contained iivarginput signal

ADPCM Adaptive differential pulse code modulatioakes 16-bit linear PCM samples and converts theondiiit
samples, yielding a compression rate of 4:1

GSM Global standard for mobile communications. A staddar voice encoding/decoding data streams

////J Science Publications 415 Jcs

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

Table 2. MediaBench benchmarks used for evaluation of FIE
Program Functions

jpeg A standardized compression method for fulbaobnd gray-scale images. JPEG is lossless, ngedmnhthe output
image is not exactly identical to the input imageo applications are derived from the JPEG souodke; cjpeg does
image compression and djpeg does decompression

MPEG A dominant standard for high quality digitédeo transmission. The important computing kerael discrete cosine
transform for coding and the inverse transformdiecoding. The two applications used are mpeg2edargpeg2dec
for encoding and decoding respectively

GSM European GSM 06.10 provisional standard fdrrate speech transcending, pry-ETS 300 036, whses residual
pulse excitation/long term prediction coding atkl8t/s. GSM 06.10 compresses frames of 160 13ditples (8 kHz
sampling rate, i.e., a frame rate of 50 Hz) ird6 Bits.

G.721 Voice compressioReference implementations of the CCITT (Internatidreégraph and Telephone
Consultative Committee) G.711, G.721 and G.723 voirapressions

PEGWIT A program for public key encryption and arttication

EPIC An experimental image compression utility. Thenpression algorithms are based on a bi-orthdgwitigally

sampled dyadic wavelet decomposition and a cordbine-length/Huffman entropy coder. The filters édeen

designed to allow extremely fast decoding withftadating-point hardware

ADPCM Adaptive differential pulse code modulatioroige of the simplest and oldest forms of audio rgdi
20 Population of four major instructions in embedded applications
L, 60
5 50
:::u 40 -
§ 30
5 20 -
10
& N ¥ o . & W " X
F&EFEFHSS S
\O& Q‘o(\ %& c)é’ ;\a Q &
=
Embedded applications

Fig. 7. Distribution of four frequent instructions in MiBeim and MediaBench benchmarks

Immediate/offsets in susan

1001 =
E Il | [il
E)D 80 1 u i + i'
g 707 | P
5 S0T 1 1
sn SO . Il i T
= 40 il i | | [il
g 30 | | | | | [il ® Both bytes non 0's
5 20T | - ——
= 10 il I 1 ! i i m8mshsQ's
4 addiu Iw sw all 8 lsbs 0's
|Both bytes non 0's 438 45 6 ‘ 936 = All bits 0's
8mshs 0's 686 3652 1284 6475
8lshs0's 4 1 0 12
All bits 0's 1 185 20 1974

Instruction type

Fig. 8. Usage of immediate/offset fields in susan

% Science Publications 416 JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

Table 3. Impact of four major instructions and offset/imrizd fields in Embedded object codes for MIPS32

MiBench/MediaBench Percentage usage of Percentageutitidation Percentage reduction
Program four major instructions of offset/immedifiédds of code size in HIE
basicmath 33 10 21

bitcnts 58 16 27

gsort 57 13 24

susan 65 21 27

ipeg 63 20 26

typeset 62 19 21

lame 45 16 18

dijkstra 59 16 22

patricia 59 16 22

rijndael 59 16 22

blowfish 59 16 22

sha 42 18 23

adpcm 59 16 22

CRC32 59 16 22

FFT 56 16 21

gsm 58 16 21

ispell 53 14 19

rsynth 47 13 22

stringsearch 59 16 22

pegwit 58 16 22

mpeg2 56 15 21

G721 59 16 22

epic 59 16 21

8-bit: nop/syscall/rfe of the offset and immediate fields. Based on our
pr 'f analysis of all the 66 integer instructions of MB2S

16-hit: mfcz/mtcz
‘ op | iid ‘ rt | rd ‘

5] 1 4 5
16-hit: mfhi/mflo/mthi/mtlo/jr
‘ op | rd/rs | fn ‘
6 4 (5]

R-Type 1l e.g. addu
‘ op | rs ‘ rt | rd ‘ fn |

6 4 4 4 6

R-Type 2 e.g.sll

‘ op | rt ‘ rd | sa ‘ fn |
(5} 4 4 4 6

R-Type 3 e.g. mult, jalr

‘ op | rs ‘ rt | O's ‘ fn |
6 4 4 4 6

| - Type(lmmediate)/branch/load

‘ op | hl ‘ rs | rt ‘ imm/off |
6 2 4 4 0/8/16

1 - Type(Jump):j, jal

‘ op | target |
6 26

Fig. 9. HIE-RISC instruction formats

2.2. HIE-Methodology For M1PS32

Our goal for the HIE-ISA is minimizing unused

fields within instructions and improving the ut#ition

////A Science Publications

417

ISA, we finalized on 8 different types of instrumtis
for the HIE-MIPS ISA.

2.2.1. HIE-MIPS I nstructions

For the HIE-ISA, we decided on four sizes for the
integer instructions: Three 8-bit, seven 16-bitemty
one 24-bit, three 32-bit and thirty two with three
options: 16/24/32 bitsFigure 9 shows the proposed
instruction formats for HIE-MIPS. To evaluate the
effectiveness of our proposed HIE-ISA, we modeled i
for the MIPS32 ISA. Basically, for every integer
instruction of MIPS32 ISA, we provide an equivalent
HIE-ISA instruction. Out of 66 integer instructignjs
jal and break, are retained as 32 bits as in MIPS32
ISA. The remaining instructions are translated into
one of the 8 types. In several ALU instructionsgréh
are five zeroes. If three more bits are made fileese
instructions can be reduced to 24 bits. Hence we
reduced the register fields by 1 bit each. Thisriets
the number of GPRs to 16; however, it will not Btra
the compiler as graph coloring technique for resgist
allocation works satisfactorily for 16 GPRs, (Hessye
and Patterson, 2012). Popular RISC Processorsasich

JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

ARM and SH4 have only 16 registers. In addition to
reducing the length of register fields, the shiftcant
(sa) field (used in the shift instructions) is redd by 1-
bit. The nop, rfe and syscall are 8-bit instrucsianith a
common opcode and a 2-bit iid field to identify the
instruction. The 16-bit instructions are jr, mftmflo,
mthi, mtlo, mfcz and mtcz. In mfcz and mtcz, thdiedd
is retained as 5 bits since it refers to coproaesso
registers. The iid bit differentiates between mfozd
mtcz. The mthi, mflo, mthi and mtlo have a common
format and the register field is shared betweeand rs.
In mfhi/mflo/mthi/mtlo format, the rd/rs field detes rd
for mfhi and mflo. For mthi and mtlo, it denotes rs

The 24-bit instructions that form three differert R
types, are add, addu and div, divu, mult, multur, no
or, sll, sllv, sra, srav, srl, srlv, sub, subu, xslit, sltu
and jalr. In typel, there is no sa field. In typd®re is
no rs field. In type3, there are four zeroes tontzn
byte alignment. The remaining 32 instructions have
three length options: 16, 24, or 32 bits. The dftsed

immediate fields are encoded in a unique way in our

proposal. If the value of the offset/immediate ev,
these fields are omitted. When one of the bytethen
offset/immediate is zero, that byte is omitted dhd
hybrid length identifier hl is formedl'able 4 shows a
typical example using hexadecimal notation. All the
four cases have a common opcode.

2.2.2. Mapping M1PS32 1SA to HIE-MIPS

MIPS Instructions are converted into new HIE
instructions of 8 different types and the conversio
depends on the opcode and immediate/offset figldsle
5 indicates the length of each converted instructidih
unconverted instructions are retained as 32 bits.

3.RESULTS
3.1. HIE-Simulator Tool-MIDACC

We developed a standalone software tool for
simulating the HIE for MIPS32 and measuring the
code size reduction. Since we need to simulateva ne

Table 4. Encoding Offset/Immediate field in HIE-MIPS

ISA, it will be a complex process if we were to use
any existing simulator for the HIE-MIPS. Our
objective is not executing any program, but measgri
static code sizes of HIE-MIPS, for various embedded
applications and comparing with static code sizés o
MIPS32 for the same applications. Hence we decided
develop a simple offline tool that can convert thgect
codes of MIPS32 into object codes of HIE-MIPS. We
built the tool, MIPS Instruction Distribution Anadgr
And Code Converter (MIDACC), in C#, with twin
functions: Code analysis and code compression. The
first module performs analysis of given MIPS32 albje
code and identifies the distribution of 66 integer
instructions in the object code. This module also
provides details on utilization of the immediatedan
offset fields by different instructions in the ajgaltion
programs (able 3 and Fig. 8). The second module is a
code converter that converts each instruction i@ th
object code, from MIPS32 ISA to HIE-MIPS ISA, as
per the HIE-MIPS methodology. The integer
instructions of MIPS32 are converted into nine gou
in HIE-ISA (Table 5). The software tool was developed
under Windows XP on Intel PC and occupies 2 MB
memory and runs in. NET Framework 3.5.

3.2. Estimating WAST 1 O Per centage

WASTIO refers to wastage due to unused
(underutilized) bits in immediate and offset fieldsthe
MIPS32 code. The wastages are classified into tigqes
A, B, C and D based on the number of immediatedoffs
bytes that are redundant in the code; type A: 2dyt
wastage; type B: 1 byte wastage of,least signifitate;
type C: 1 byte wastage of,most significant byte] type
D: no wastage. WASTIO percentage is calculatedgusin
the formula below:

WASTIO percentage = 100(WASTIO/code size)

We observed varying extent of reduction for
embedded programs as shownFig. 10. Since certain
applications contain multiple benchmarks, the figur
use geometric means for the reduction percentages.

MIPS32 encoding HIE-MIPS encoding hl bits Instrantsize in HIE (bits)
0000 - 00 16

000F OF 01 24

O0F00 OF 10 24

OFOF OFOF 11 32

////J Science Publications 418 JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

Table5. MIPS32 ISA Vs HIE-ISA mapping

HIE No. of HIE

group instructions size (bits) Instructions MIPS@2e Remarks

A 3 8 rfe, syscall, nop Exception and interrupt ghenon OP field with two-bit
iid field to differentiate

B 2 16 mfcz, mtcz Data movement A common OP fidles pne-bit iid. The

with coprocessor rt denotes the CPU registdrte rd
(5 bits) the coprocessor register
C 5 16 jr, mfhi, mflo, mthi, mtlo jris jump regés instruction; The OP and fn fields are simitar t
others are data movement type MIPS32. The redister field is rs for jr,
mthi and mtlo. For mfhi and mflo, the
register field is rd.

D 13 24 add, addu and, nor, or, sllv, R-typeast slu are HIE R-typel. All fields are similar to
srav, srlv,sub, subu, xor,slt, comparison ircdtons; MIPS32 except that unused zeroes are
sltu others are arithmetic deleted and the tegfields are 4 bits

and logical instructions l1=0]

E 3 24 sll, sra, srl R- type; shift instructions BHR-type2. All fields are similar to
MIPS32 except that the unused rs field is
deleted and the register fields are 4 bits in
HIE.

F 5 24 jalr, div, divu, mult, multu R-type; aritletic HIE R-type3. All fields are similar to

instructions MIPS32 except that 6 unused zeaoes
deleted and the register fields are 4 bits in
HIE; 4 zeroes maintain byte alignment.
In jalr, the register fields are rs and rd; in
other instructions, these are rs and rt.

G 32 3 options; addi, addiu andi, ori, xori, I-type /branch/load/store. A HIE I- type. All fiis are similar

16/24/32 lui, slti, sltiu, bczt,bczf,beq, mixturkarithmetic/logical, to MIPS32 except that themediaté
bgez, bgezal, bgtz,blez, constant manipulatompare, offsefield can take three different lengths;
bltzal, bltz, bne, Ib,Ibu,lh, branch, load amokre type 0/8/16 bits as indicated by the hifikl lui,
lhu, Iw, lwez, Iwl, lwr,sb,sh, instructions. Mioare of I-type the rs field contains 4 zeroesl rédjister
sw, swcz, swl, swr with 16-bit immediate fieldd fields are 4-bits.

branch / load/store instructions
have 16-bit offset field.
H 2 32 j,jal jump type. Exactly similar to MIPS.
| 1 32 break break is interrupt and exception Hyasstmilar to MIPS.
type.
HIE-MIPS codesize reducation
i)
=)
=
]
=]
=]
w2
g
5
8
=]
>
2
Z
T T T T T T T T
= = > = ! — 2]
s 2 2 % 8 £ B % % g i
= > E = 5 3 P & & “
3 2 5 o S > ¥ =
= 3 Z w =
< o .
Embedded applications

Fig. 10. Extent of code size reduction with HIE for miberastd mediabench

% Science Publications 419

JCS

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

70
60

50

n
=
2

40

30

mediate, ofl:

] 23,22 22222222 232222 5y 94229522 71

24

20 21 P24 50 B7
16/ \‘>--"i§“£‘-“~-1s 9-16-16-T0 10-16—16-16-16-15 819 16
A o ©-16.15 o & 1618

1structions, code size reducation with HIE

10 1@ 10

bitents
qsort
susan
jpeg
lame
typeset
dijkstra .
patricia
ispell
rsynth
blowfish
rijndael
sha
adpem
CRC32
FFT
gsm
pegwit
mpeg2
g721 .
epic

basicmath
stringsearch

Top graph gives usage of four instructions, bottom graph show underutilization of
immediate and offset field: middle graph indicates code reduction with HIE

Percentage ol four

Fig. 11. Impact of instruction mix and immediate/offsetdi® on code size

Table 6. Typical code size reduction of embedded applicatior HIE-MIPS

% Reduction Smalk@8KB) Medium (8KB-32KB) Largex32KB)
Below 20 - - Lame, ispell
20-25 basicmath, rsynth typeset, fft, CRC 32, dijkqiedricia,
gsort, sha blowfish, rijndael, adpcm, gsm,
stringsearch , pegwit, rnpeg2, g721, epic
Above 25 bitcount - jpeg, susan
4. DISCUSSION equal extent of reduction. In the office automation

benchmarks, thesynth andstringsearch programs get

It is observed that the Automotive and Consumerthe maximum reduction and thepell the least. The
applications gain maximum with HIE-ISA; thrapeg2 security benchmarks get medium reduction. The
and the office applications gain least. The other MediaBench programs also get medium reduction.
applications get medium reduction. The Automotive There is a wide variation in the sizes of the bematik
and Industrial Control benchmarks show reduction programs. Out of the 23 embedded applications, éoer
varying from 21 to 27%. The image recognition small & 8KB), one is medium (8KB-32KB) and eighteen
program,susan, gets best reduction and thasicmath are large ¥ 32KB). Table 6 summarizes the extent of
program gets the least reduction. Though 65% ofcode size reduction by HIE for the 23 benchmark
susan code consists of the four major instructions, the programs classified according to their sizes. blisious
poor result for the Automotive group is due to that HIE offers satisfactory extent of code redurctior
basicmath in which the four major instructions form majority of the embedded applications. A relatiopsik
only 33% of the code. The consumer benchmarks, gefound between the code size reduction in HIE-MIP8 a
reasonably good reduction. Thpeg gets maximum two properties of MIPS32 object codes: One is quant
reduction whereas thdame gets the least. The of four major instructions and the other is peraget
network benchmarkggijkstra and patricia, get equal underutilization of immediate and offset fields. il
amount of reduction. In both benchmarks, 59% of thevisible fromFig. 11.
code is made up of the four common instructions. Al It is noticed fromFig. 11 that code size reduction is
the Telecommunications benchmarks undergo almostigher for those programs that have higher amodint o

////4 Science Publications 420 Jics

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

four major instructions and higher amount of under MediaBench suites, using an offline static simulato
utilization of immediate and offset fields. Thishaeior developed by us. We noticed that except for two
forms the backbone of our HIE methodology. However, programs all others got reduced by more than 20%.
there are marginal exceptional behaviors by somewhereas two large programs got reduced by more
programs. For instance, tisha has only 42% of four than 25%, only two large programs got reduced by
major instructions and only 18% of the code is @dst |ess than 20% in HIE code and the remaining 14elarg
due to under utilization of immediate and offsetids. programs got reduced between 20-25%. Considering
However, there are marginal exceptional behavigrs b e ‘significant extent of savings in code memord an
some programs. For instance, & has only 42% of chip space in SoCs, we recommend development of

four major instructions and only 18% of the code is : _
wasted due to under utilization of immediate ant$edf dedicated = HIE-RISC processor cores for the
embedded market.

fields. In spite of this, there is 23% code sizéution
with HIE for the sha. This could be due to increased

number of R-type instructions in the MIPS32 code fo 6. REFERENCES

the sha. These instructions have been reduced to 24 bitSBenini L. E. Menichelli and M. Olivieri. 2004. Alass

in the HI!E—MIPS_code.) of code compression schemes for reducing power
The instruction fetch and decode logics need o ., mption in embedded microprocessor systems.
manage hybrid instruction lengths and multiple size IEEE Trans. Comput, 53: 467-482. DOI:
of offset and immediate fields. These hardware 10.1109/TC.2004.1268405
changes do not need much additional space in thegonny, T. and J. Henkel, 2008. Instruction re-
processor. However, reduced number of registers in encoding facilitating dense embedded code.
HIE-RISC saves chip space. The processor itself Proceedings of the Conference on Design,
occupies lesser area than the on-chip memory in Automation and Test, Mar. 10-14, IEEE Xplore
embedded SoCs and hence the HIE reduces the overall Press, Munich, pp: 770-775. DOI:

chip area for SoCs. The study has estimated thix sta 10.1109/DATE.2008.4484772

code size reduction for HIE based ISA and dynamicFisher, J.A., P. Faraboschi and C. Young, 2005.
simulation is to be done for evaluating performance Embedded Computing: A VLIW Approach to
and power consumption. Marginal performance Architecture, Compilers and Tools. 1st Edn,
reduction can be tolerated for BOPES in view of Elsevier, ISBN-10: 1558607668, pp: 671.

savings in chip space and power consumption. Guthaus, M.R., J.S. Ringenberg, D. Ernst, T.M.
Austin and T. Mudgeet al., 2001. MiBench: A
5. CONCLUSION free, commercially representative embedded

benchmark suite. Proceedings of the 4th Annual
In The study, we have proposed a modified Hybrid Workshop on Workload Characterization, Dec. 2-
Instruction Encoding in place of Fixed Instruction 2, |EEE Xplore Press, pp: 3-14. DOl
Encoding so as to reduce the code memory size @550 10.1109/WWC.2001.990739
We have established that four major instructions Heikkinen, J., J. Takala and H. Corporaal, 2009.
dominate the embedded applications occupying up to Dictionary-based program compression on
65% of the code and up to 20% of the code size is customizable processor architectures. Microproc.

wasted due to underutilization of the offset and Microsyst., 33: 139-153. DOI:

immediate fields. This is in addition to wastagee do 10.1016/j.micpro.2008.10.001

unused bits in other fields of the instructions. Hennessy, J.L. and D.A. Patterson, 2012. Computer
An HIE-ISA has been proposed for RISC Architecture: A Quantitative Approach. 1st Edn.,

processors supporting multiple instruction sizesl an Elsevier, San Francisco CA., ISBN-10:

four options for immediate and offset fields. We 012383872X, pp: 493.

simulated HIE with four instruction sizes for MIPE3 ITGPLC, 2009. microMIPS instruction set architeetu
processor and the results show code size reduagon 32-bit performance. Minimum System Cost.

to 27%. We experimented with twenty three ITGPLC, 2010. Beyond the Hype: MIPS-the Processor
benchmark programs collected from MiBench and for MCUs.

////J Science Publications 421 Jcs

Govindarajalu Bakthavatsalam and K.M. Mehata / JalushComputer Science 10 (3): 411-422, 2014

Lee, C., M. Potkonjak and W.H. Mangione-Smith, 1997 Vahid, F. and T. Givargis, 2006. Embedded System
MediaBench: A tool for evaluating and synthesizing Design: A Unified Hardware/Software Introduction.
multimedia and communications systems. Proceedings ~ 1St Edn., Wiley India Pvt. Limited, New Delhi,
of the 13th Annual IEEE/ACM International ISBN-10: 812650837, pp: 348.

: . : Xie, Y., W. Wolf and H. Lekatsas, 2006. Code
Symposium on Microarchitecture, Dec. 1-3, IEEE compression for embedded VLIW processors using

;(3p|50rg OFI,'rel?)S’l 5)%7&6;22 (;I' ngglz gg;ké NC, pp: 330- variable-to-fixed coding. Proceedings of the 15th

: D :) International Symposium on System Synthesis, Oct.

Patterson, D.A. and J.A. Hennessy, 2008. Computer 2-4, IEEE Xplore Press, USA., pp: 525-536. DOI:

Organization and DeSign. 4th Edn., Morgan 10 EI.lOQ/TVLSI 2006 87é105 v ' ' '
Kaufmann, Amsterdam, ISBN-10: 0080922813, pp: ' ' '

912.

////A Science Publications 422 Jcs

