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ABSTRACT 

Audio classification serves as the fundamental step towards the rapid growth in audio data volume. Due to 
the increasing size of the multimedia sources speech and music classification is one of the most important 
issues for multimedia information retrieval. In this work a speech/music discrimination system is developed 
which utilizes the Discrete Wavelet Transform (DWT) as the acoustic feature. Multi resolution analysis is 
the most significant statistical way to extract the features from the input signal and in this study, a method is 
deployed to model the extracted wavelet feature. Support Vector Machines (SVM) are based on the 
principle of structural risk minimization. SVM is applied to classify audio into their classes namely speech 
and music, by learning from training data. Then the proposed method extends the application of Gaussian 
Mixture Models (GMM) to estimate the probability density function using maximum likelihood decision 
methods. The system shows significant results with an accuracy of 94.5%. 
 
Keywords: Audio Classification, Feature Extraction, Wavelet Transform, Support Vector Machine (SVM), 

Gaussian Mixture Model (GMM) 

1. INTRODUCTION 

The term audio is used to indicate all kinds of audio 
signals, such as speech, music as well as more general 
sound signals and their combinations. Multimedia 
databases or file systems can easily have thousands of 
audio recordings. However, the audio is usually treated 
as an opaque collection of bytes with only the most 
primitive fields attached; namely, file format, name, 
sampling rate. Meaningful information can be extracted 
from digital audio waveforms in order to compare and 
classify the data efficiently. When such information is 
extracted, it can be stored as content description in a 
compact way. These compact descriptors are of great use 
not only in audio storage and retrieval applications, but 
also in efficient content-based segmentation, 
classification, recognition, indexing and browsing of data. 

The music signal is a special class in the signal 
category that has its own characteristics different from 
the speech signal in many ways. First of all, music 

normally has a wide range frequency distribution among 
the audible range of human, from 0 to 20k Hz. The 
bandwidth of the speech signal is usually limited into 50 
Hz to 7 k Hz and hence, the spectral centroids of music 
signal are higher than that of the speech. In addition, for 
considering time-domain characteristics, musical signal 
usually has a lower silence ratio except that it is sung by 
a singer or played on a solo instrument only. Compared 
to an ordinary speech signal, music has lower variability 
in zero-crossing rate [base]. Besides, music has normally 
more harmonic than other sound. Therefore, music has 
higher harmonic than speech. Music usually has regular 
beats that can be extracted to differentiate it from speech 
for the sake of the melody and background noise. 

The problem of distinguishing speech signals from 
other audio signals (e.g., music) has become increasingly 
important as automatic speech recognition systems are 
applied to more real-world multimedia domains, such as 
the automatic transcription of broadcast news, in which 
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speech is typically interspersed with segments of music 
and other background noise (Ghosal and Saha, 2011). 

These Speech/music mixtures appear quite often in 
radio and television programmes. Movies, infotainment 
productions and commercials contain speech, music, sound 
effects and background sounds. Especially in commercials 
these signal classes appear often in a mixed and fast 
changing manner (Kim et al., 2012). 

A variety of systems for audio segmentation or 
classification have been proposed in the past and 
many features such as Root Mean Square (RMS), Zero 
Crossing Rate (ZCR) (Khan et al., 2012), low 
frequency modulation (Golumbic et al., 2012), entropy 
and dynamism features (Krajewski et al., 2012) have 
been used. 

The wavelets are suitable the tools for Speech/Music 
classification because they have ability to deal with non-
stationary signals such as music and speech, analyze the 
signals in different scales and achieve variable time-
frequency localization (Sumithra et al., 2011). 

In this study, three different types of wavelet 
transform based features have been extracted. These 
characteristics are modeled using probability density 
function estimation which is called Gaussian Mixture 
Models (GMM). SVM is used to classify the audio signal 
into speech and music. 

1.1. Related Work 

During the recent years, there have been many 
studies on automatic audio classification and 
segmentation using several features and techniques. The 
most common problem in audio classification is 
speech/music classification, in which the highest 
accuracy has been achieved, especially when the 
segmentation information is known beforehand. An 
audio feature extraction and a multi-group classification 
scheme that focuses on identifying discriminatory time-
frequency subspaces using the Local Discriminate 
Bases (LDB) technique has been described in (Mishra 
and Agrawal, 2012). For pure music and vocal music, a 
num-ber of features such as LPC and LPCC are extracted 
in (Nagavi and Bhajantri, 2012) to characterize the music 
content. Based on calculated features, a clustering 
algorithm is applied to structure the music content. 

A new approach towards high performance 
speech/music discrimination on realistic tasks related to 
the automatic transcription of broadcast news is 
described in (Frikha and Hamida, 2012), in which an 
Artificial Neural Network (ANN) and HIDDEN Markov 
Model (HMM) are used. Subashini et al. (2012), a 

generic audio classification and segmentation approach 
for multimedia indexing and retrieval is described. A 
method is proposed in (Sporka et al., 2012) for 
speech/music discrimination based on root mean square 
and zero-crossings. The method proposed in (Jiang et al., 
2013), investigates the feasibility of an audio-based context 
recognition system where simplistic low dimensional 
feature vectors are evaluated against more standard 
spectral features. Using discriminative training, 
competitive recognition accuracies are achieved with 
very low-order Hidden Markov models. 

Feki et al. (2012) a speech/music discrimination system 
was proposed based on Mel-Frequency Cepstral Coefficient 
(MFCC) and GMM classifier. This system can be used to 
select the optimum coding scheme for the current frame of 
an input signal without knowing a priori whether it contains 
speech-like or music-like characteristics. 

The classification of continuous general audio data for 
content-based retrieval was addressed in (Liu, 2010). The 
DWT is computed by successive low pass and high pass 
filtering of the discrete time-domain signal which extracts 
features that characterize their spectral change over time. 

An approach given in (Theodorou et al., 2012) uses 
Support Vector Machine (SVM) for audio scene 
classification, which classifies audio clips into one of 
five classes: Pure speech, non-pure speech, music, 
environment sound and silence. 

Audio classification techniques for speech recognition 
and audio segmentation, for unsupervised multi speaker 
change detection are proposed in (Abdolali and Sameti, 
2012). Two new extended-time features: Variance of the 
Spectrum Flux (VSF) and Variance of the Zero-Crossing 
Rate (VZCR) are used to pre-classify the audio and 
supply weights to the output probabilities of the GMM 
networks. The classification is then implemented using 
weighted GMM networks. 

1.2. Outline of the Work 

In this study, automatic audio feature extraction and 
classification approaches are presented. In order to 
discriminate the speech and music features such as 
Discrete Wavelet Transform are extracted to 
characterize the audio content. Support Vector 
Machine (SVM) is applied to obtain the optimal class 
boundary between the classes by learning from 
training data. The performance of SVM is compared 
to GMM using maximum likelihood decision 
methods. Experimental results show that the 
classification accuracy of GMM with DWT features 
can provide a better result. Figure 1 illustrates the 
block diagram of Speech/Music classification system. 
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Fig. 1. Block Diagram for speech/music classification 
 

2. FEATURES FOR SPEECH/MUSIC 
DISCRIMINATION 

Acoustic feature extraction plays an important role in 
constructing an audio classification system. The aim is to 
select features which have large between-class and small 
within-class discriminative power. Discriminative power 
of features or feature sets tells how well they can 
discriminate different classes. Feature selection is 
usually done by examining the discriminative capability 
of the features. The performance of a set of features 
depends on the application. The design of descriptive 
features for a specific application is hence the main 
challenge in building audio classification systems. 

In section 2, the related theoretical background on the 
features used for music/speech discrimination systems 
will be given briefly. 

2.1. Discrete Wavelet Transform  

The Discrete Wavelet Transform (DWT), which is 
based on sub-band coding, is found to yield a fast 
computation of Wavelet Transform. It is easy to 
implement and reduces the computation time and 
resources required. The foundations of DWT go back to 
1976 when techniques to decompose discrete time 
signals were devised (Liu, 2010). Similar work was done 
in speech signal coding which was named as sub-band 
coding. In 1983, a technique similar to sub-band coding 
was developed which was named pyramidal coding. 
Later many improvements were made to these coding 
schemes which resulted in efficient multi-resolution 
analysis schemes. In DWT, a time-scale representation 
of the digital signal is obtained using digital filtering 
techniques. The signal to be analyzed is passed through 
filters with different cutoff frequencies at different 

scales. Filters are one of the most widely used signal 
processing functions.  

The wavelet analysis process is to implement a 
wavelet prototype function, known as analyzing wavelet 
or mother wavelet. Coefficients in a linear combination 
of the wavelet function can be used in order to represent 
the development of the original signal in terms of a 
wavelet, data operations can be performed with the 
appropriate wavelet coefficients. Choose the best 
wavelets adapted to represent your data, also truncate the 
coefficients below a threshold (Rekik et al., 2012). 

Wavelets can be realized by iteration of filters with 
rescaling. The resolution of the signal, which is a 
measure of the amount of detail information in the 
signal, is determined by the filtering operations and the 
scale is determined by up sampling and down sampling 
(sub sampling) operations (Patil and Ruikar, 2012). The 
DWT is computed by successive low pass and high pass 
filtering of the discrete time-domain signal as shown in 
Fig. 2. This is called the Mallat algorithm or Mallat-tree 
decomposition. Its significance is in the manner it connects 
the continuous-time multi resolution to discrete-time filters. 
In the figure, the signal is denoted by the sequence x[n], 
where n is an integer. The low pass filter is denoted by G0 

while the high pass filter is denoted by H0. 
At each level, the high pass filter produces detail 

information d[n], while the low pass filter associated with 
scaling function produces coarse approximations, a[n]. 

The Discrete Wavelet Transform (DWT) is a 
special case of the WT that provides a compact 
representation of a signal in time and frequency that 
can be computed efficiently. 

The DWT is defined by the following Equation (1): 
 

j
j2W(j,k) x(k)e (2 n k)

− −= Ψ −∑∑  (1) 
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Fig. 2. Two level wavelet decomposition technique 
 
where, Ψ(t) is a time function with finite energy and 
fast decay called the mother wavelet. The DWT 
analysis can be performed using a fast, pyramidal 
algorithm related to multi rate filter banks. 

As a multi rate filter bank the DWT can be viewed as 
a constant Q filter bank with octave spacing between the 
centers of the filters. Each sub band contains half the 
samples of the neighboring higher frequency sub band. 
In the pyramidal algorithm the signal is analyzed at 
different frequency bands with different resolution by 
decomposing the signal into a coarse approximation and 
detail information. The coarse approximation is then 
further decomposed using the same wavelet 
decomposition step. This is achieved by successive high 
pass and low pass filtering of the time domain signal and 
is defined by the following Equation (2 and 3): 
 

high n
y [k] x[n]g[2k n]= −∑  (2) 

 

low n
y [k] x[n]h[2k n]= −∑  (3) 

 
where, yhigh [k], ylow[k] are the outputs of the high pass (g) 
and low pass (h) filters, respectively after sub sampling by 
2. Because of the down sampling the number of resulting 
wavelet coefficients is exactly the same as the number of 
input points. A variety of different wavelet families have 
been proposed in the literature. In our implementation, the 
4 coefficient wavelet family (DAUB4) proposed by 
Daubechies is used. 

3. CLASSIFICATION MODEL 

3.1. Support Vector Machine 

SVM have the potential to handle very large feature 
spaces, because the training of SVM is carried out so that 
the dimension of classified vectors does not have as a 
distinct influence on the performance of SVM as it has in 
the conventional classifier (Lazouni et al., 2013). This 
will also benefit in classification of transient phenomena 

in power transformer, because the number of features to 
be the basis for classification of transient events may not 
have to be limited. Also SVM based classifiers are 
claimed to have good generalization properties compared 
to conventional classifiers, because in training the SVM 
classifier, the structural miscellaneous risk is to be 
minimized, whereas traditional classifiers are usually 
trained so that the empirical risk is minimized. 

Support Vector Machine (SVM) is very effective 
method for general purpose pattern recognition. Given a 
set of points which belong to either of two classes, a 
SVM finds the hyperplane leaving the largest possible 
fraction of points of the same class on the same side, 
while maximizing the distance of either class from the 
hyper plane. SVMs perform pattern recognition between 
two classes by finding a decision surface that has 
maximum distance to the closest points in the training set 
which are termed support vectors. Principle of SVM is, 
where there are many possible linear classifiers that can 
separate the data, there is only one that maximizes the 
difference between. SVMs are particular classifiers that are 
based on the margin-maximization principle (Kapp et al., 
2012). A powerful machine learning technique for data 
classification, SVM performs an implicit mapping of 
data into a higher (maybe infinite) dimensional feature 
space and then finds a linear separating hyper plane with 
the maximal margin to separate data in this higher 
dimensional space (Bhavsar and Panchal, 2012). 

A SVM constructs a hyper plane or set of hyper 
planes in a high or infinite-dimensional space, which are 
used for classification, regression, or other tasks. 
Intuitively, a good separation is achieved by the hyper 
plane that has the largest distance to the nearest training 
data point of any class (Lim et al., 2012). To keep the 
computational load reasonable, the mappings used by SVM 
schemes are designed to ensure that dot products may be 
computed easily in terms of the variables in the original 
space, by defining them in terms of a kernel function 
selected to suit the problem (Suresha et al., 2012). 
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SVM constructs a linear model to estimate the decision 
function using non-linear class boundaries based on support 
vectors. If the data are linearly separated, SVM trains linear 
machines for an optimal hyper plane that separates the data 
without error and into the maximum distance between the 
hyper plane and the closest training points. The training 
points that are closest to the optimal separating hyper plane 
are called support vectors. 

Figure 3 shows the architecture of the SVM. SVM 
maps the input patterns into a higher dimensional 
feature space through some nonlinear mapping chosen a 
priori. A linear decision surface is then constructed in 
this high dimensional feature space. Thus, SVM is a 
linear classifier in the parameter space, but it becomes a 
non-linear classifier as a result of the non-linear 
mapping of the space of the input patterns into the high 
dimensional feature space. 

For linearly separable data, SVM finds a separating 
hyper plane which separates the data with the largest 
margin. For linearly inseparable data, it maps the data in 
the input space into a high dimension space x∈RI → ∅ (x) 
∈ RH with kernel function ∅(x), to find the separating hyper 
plane. An example for SVM kernel function ∅(x) maps 2-
Dimensional input space to higher 3-Dimensional feature 
space as shown in Fig. 3. SVM was originally developed 
for two class classification problems. The N class 
classification problem can be solved using N SVMs. Each 
SVM separates a single class from all the remaining classes 
(Lim and Lim, 2012). 

SVM generally applies to linear boundaries. In the 
case where a linear boundary is in appropriate SVM can 
map the input vector into a high dimensional feature space. 
By choosing a non-linear mapping, the SVM constructs an 
optimal separating hyper plane in this higher dimensional 
space, as shown in Fig. 4. The function K is defined as the 
kernel function for generating the inner products to 
construct machines with different types of non-linear 
decision surfaces in the input space Equation (4): 
 

i iK(x,x ) (x). (x)= ∅ ∅  (4) 

 
The kernel function may be any of the symmetric 

functions that satisfy the Mercer’s conditions 
(Brunner et al., 2012). There are several SVM kernel 
functions are. 

3.1.1. Gaussian Kernel 

The Gaussian kernel is an example of radial basis 
function kernel Equation (5): 

2

i

i 2

x x
K(x,x ) exp

2

 −
 = −
 σ
 

 (5) 

 
Alternatively, it could also be implemented using 

Equation (6): 
 

2
i iK(x,x ) exp( | x x | )= −γ −  (6) 

 
The adjustable parameter sigma plays a major role in 

the performance of the kernel and should be carefully 
tuned to the problem at hand. If overestimated, the 
exponential will behave almost linearly and the higher-
dimensional projection will start to lose its non-linear 
power. In the other hand, if underestimated, the function 
will lack regularization and the decision boundary will 
be highly sensitive to noise in training data. 

3.1.2. Sigmoidal Kernel 

Sigmoidal kernel functions which aren’t strictly 
positive definite also have been shown to perform very 
well in practice. Despite its wide use, it is not positive 
semi-definite for certain values of its parameters 
Equation (7): 
 

T
0 i 1tanh ( x x )β + β   (7) 

 
where, xi is support vectors, β0, β1 are constant values. 

3.1.3. Polynomial KERNEL 

The Polynomial kernel is a non-stationary kernel. 
Polynomial kernels are well suited for problems where 
all the training data is normalized Equation (8): 
 

T d
i iK(x,x ) ( x x c)= α +  (8) 

 
Adjustable parameters are the slope alpha, the 

constant term c and the polynomial degree d.  
The dimension of the feature space vector ∅(x) for 

the polynomial kernel of degree p and for the input 
pattern dimension of d is given by Equation (9):  
 
(p d)!

p!d!

+
 (9) 

 
For sigmoidal kernel and Gaussian kernel, the 

dimension of feature space vectors is shown to be infinite. 
Finding a suitable kernel for a given task is an open 
research problem. Given a set of audio corresponding to N 
categories for training, N SVMs are trained.  
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Fig. 3. Architecture of the SVM (Ns is the number of support vectors) 
 

 
 (a) (b) 
 
Fig. 4. An example for SVM kernel function Φ(x) maps 2-dimensional input space to higher 3-dimensional feature space. (a) 

Nonlinear problem. (b) Linear problem 
 

 
 

Fig. 5. Gaussian mixture models 
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Each SVM is trained to distinguish between one category 
and all other categories in the training set. During 
testing, the class label l of an audio x can be determined 
using Equation (10): 
 

n

n

n, if d (x) t 0
l

0, if d (x) t 0

 + >= 
+ ≤

 (10) 

 
where, N

n i i 1d (x) max{d (x)} ==  and di(x) is the distance from 

x to the SVM hyper plane corresponding to category i. 
The classification threshold is t and the class label l = 0 
stands for unknown. 

3.2. Gaussian Mixture Model 

The Gaussian Mixture Model (GMM) is used in 
classifying different audio classes. The Gaussian 
classifier is an example of a parametric classifier. It is an 
intuitive approach when the model consists of several 
Gaussian components, which can be seen to model 
acoustic features. In classification, each class is 
represented by a GMM and refers to its model. Once the 
GMM is trained, it can be used to predict which class a 
new sample probably belongs to (Xing et al., 2012).  

 The probability distribution of feature vectors is 
modeled by parametric or non-parametric methods. 
Models which assume the shape of probability density 
function are termed parametric. In non-parametric 
modeling, minimal or no assumptions are made 
regarding the probability distribution of feature vectors. 
The potential of Gaussian mixture models to represent an 
underlying set of acoustic classes by individual Gaussian 
components, in which the spectral shape of the acoustic 
class is parameterized by the mean vector and the 
covariance matrix, is significant. 

Also, these models have the ability to form a smooth 
approximation to the arbitrarily-shaped observation 
densities in the absence of other information 
(Nidhyananthan and Kumari, 2013). With Gaussian 
mixture models, each sound is modeled as a mixture of 
several Gaussian clusters in the feature space. The basis 
for using GMM is that the distribution of feature vectors 
extracted from a class can be modeled by a mixture of 
Gaussian densities as shown in Fig. 5. 

For a D dimensional feature vector x, the mixture 
density function for category s is defined as Equation (11): 
 

M
s s
i is

i 1

x
P f (x)

=

  = α λ 
∑  (11) 

 
The mixture density function is a weighted linear 

combination of m component uni-modal Gaussian 

densities S
if (.). Each Gaussian density functionS

if  (.) is 

parameterized by the mean vector is parameterized by 
the mean vectorS

iµ  and the covariance matrix siΣ using 

Equation 12: 
 

( ) ( ) ( )

s
i

d s
i

T 1s s s
i i i

1
f (x) exp

(2 )

1
x x

2

−

=
π Σ

 − − µ Σ − µ 
 

 (12) 

 
where, S 1

i( )−Σ  and S
iΣ  denote the inverse and 

determinant of the covariance matrixsiΣ , respectively. 

The mixture weights ( )s s s
1 2 M, ,... ,α α α  satisfy the constraint 

M s
ii 1

1
=

α =∑ . Collectively, the parameters of the model λs 

are denoted ass s s s
i i i{ , , }λ = α µ Σ , i = 1,2,…M. The number 

of mixture components is chosen empirically for a given 
data set. The parameters of GMM are estimated using the 
iterative expectation-maximization algorithm. 

The motivation for using Gaussian densities as the 
representation of audio features is the potential of GMMs 
to represent an underlying set of acoustic classes by 
individual Gaussian components in which the spectral 
shape of the acoustic class is parameterized by the mean 
vector and the covariance matrix. Also, GMMs have the 
ability to form a smooth approximation to the arbitrarily 
shaped observation densities in the absence of other 
information. With GMMs, each sound is modeled as a 
mixture of several Gaussian clusters in the feature space. 

GMMs model the distribution of feature vectors. 
For each class, assume the existence of a probability 
density function expressible as a mixture of a number 
of multidimensional Gaussian distributions. The 
iterative Expectation Maximization (EM) algorithm is 
usually used to estimate the parameters for each 
Gaussian component and the mixture weights 
(Jothilakshmi and Kathiresan, 2012). 

A variety of approaches to the problem of mixture 
decomposition have been proposed, many of which focus 
on maximum likelihood methods such as Expectation 
Maximization (EM) or Maximum A Posterior Estimation 
(MAP). Generally these methods consider separately the 
question of parameter estimation and system 
identification, that is to say a distinction is made between 
the determination of the number and functional form of 
components within a mixture and the estimation of the 
corresponding parameter values (Watanabe et al., 2010). 
The E-step and M-step are repeated till the convergence 
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of the parameters. In most of the cases, number of 
iterations taken by the EM algorithm for convergence 
(Yangn et al., 2012). The parameters obtained after 
convergence are called optimal parameters. Bayesian 
classifier utilizes these optimal parameters for 
constructing the segmentation map. For every pixel it 
calculates posterior probabilities of classes. 

3.2.1. Expectation Maximization (EM) 

Expectation Maximization (EM) is seemingly the 
most popular technique used to determine the parameters 
of a mixture with an a priori given number of 
components. This is a particular way of implementing 
maximum likelihood estimation for this problem. EM is 
of particular appeal for finite normal mixtures where 
closed-form expressions are possible such as in the 
following iterative algorithm. The Expectation-
maximization algorithm can be used to compute the 
parameters of a parametric mixture model distribution. It 
is an iterative algorithm with two steps: an expectation 
step and a maximization step (Watanabe et al., 2010). 
The expectation step with initial guesses for the 
parameters of our mixture model, ”partial membership” 
of each data point in each constituent distribution is 
computed by calculating expectation values for the 
membership variables of each data point. 

That is, for each data point xi and distribution Yi , the 
membership value yi, j is Equation (13): 
 

( )i, j i y j i jy f x ; / fx(x )= α θ  (13) 

 
The maximization step with expectation values in 

hand for group membership, plug in estimates are 
recomputed for the distribution parameters. The mixing 
coefficients ai are the means of the membership values 
over the N data points Equation (14): 
 

N

i i, jj 1
1 / N y

=
α = ∑  (14) 

 
The component model parameters θi are also 

calculated by expectation maximization using data points 
xj that have been weighted using the membership values. 
For example, if θ is a mean µ Equation (15): 
 

i j i, j j j i, jy x / yµ = Σ Σ  (15) 

 
with new estimates for the θis, the expectation step is 
repeated to recompute new membership values. The entire 
procedure is repeated until model parameters converge. 

4. IMPLEMENTATION 

4.1. Dataset 

The broadcast audio data are recorded using a TV 
tuner card from various TV channels which comprise 
different 200 clips of speech, 360 clips of music. Each 
clip consists of audio data ranging from one second to 
about ten seconds, with a sampling rate of 8 kHz, 16-bits 
per sample, monophonic and 128 kbps audio bit rate. 
The waveform audio format is converted into raw values 
(conversion from binary to ASCII) i.e., 8000 sample 
values per second. Silence segments are removed from 
the audio sequence for further processing.  

4.2. Signal Pre-Processing 

Audio signal has to be pre processed before 
extracting features. There is no added information in the 
difference of two channels that can be used for 
classification or segmentation. Therefore it is desirable to 
have a mono signal to simplify later processes. The 
algorithm checks the number of channels of the audio. If 
the signal has more than one channel, it is mixed down to 
mono. The amplitude of the signal is then normalized to 
the maximum amplitude of the whole file to remove any 
effects the overall amplitude level might have on the 
feature extraction (Mitra et al., 2012). 

4.3. Feature Extraction 

The feature is extracted from each frame of the 
audio by using the feature extraction techniques. Here 
the DWT features are taken. An input wav file is given 
to the feature extraction techniques. The feature values 
will be calculated for the given wav file. The above 
process is continued for 560 number of wav files. The 
feature values for all the wav files will be stored 
separately for speech and music. 

4.4. Classification 

When the feature extraction process is done the audio 
should be classified either as speech or music. In a more 
complex system more classes can be defined, such as 
silence or speech over music. The latter is often classed 
as speech in systems with only two basic classes. The 
extracted feature vector is used to classify whether the 
audio is speech or music. A method where the 
classification is based on the output of many frames 
together is proposed. In this method, based on the output 
the feature values are extracted from the speech/music 
wav file and it is appended with two categories. One 
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category is appended for speech wav and the other 
category is appended for the music wav. By using the 
feature values with appended value SVM training is 
carried out. As a result of the training data two model 
files will be created one for speech and the other for 
music. For testing the feature extraction is done on 
different speech and music wav files other than the 
speech and music wav files used in the training set. All 
the values would be used for testing, the SVM tests the 
features based on models created during the training. 
Each second consists of 100 frames and each frame is 
assigned a class by a SVM classifier. Then, a global 
decision is made based on the most frequently 
appearing class within that second. 

4.5. Evaluation using SVM and GMM 

A non-linear support vector classifier is used to 
discriminate the various categories. The N class 
classification problem can be solved using N SVMs. 
Each SVM separates a single class from all the 
remaining classes (one-vs-rest approach). 

4.5.1. Training 

For classification, the audio files other than the files 
used for training are tested. The extracted feature vector 
is used to classify whether the audio is speech or music. 
A method where the classification is based on the output 
of many frames together is proposed. Support vector 
machine is trained to distinguish acoustic features of a 
category from all other categories. Two SVMs are 
created for each acoustic feature for each category. For 
training, 100 feature vectors are extracted from all the 
two categories, for 1 second duration each. The same 
process is repeated for 4 secs, 6 secs and 8 secs. The 
training process analyzes audio training data to find an 
optimal way to classify audio frames into their respective 
classes. The derived support vectors are used to classify 
audio data. The training samples are loaded and two classes 
are created, for each category. The two categories will be 
trained with two class 0 and class 1 with 560 examples.  

4.5.2. Testing 

For testing, 100 acoustic feature vectors (1 sec of an 
audio file) are given as input to SVM model and the 
distance between each of the feature vectors and the 
SVM hyperplane is obtained. The average distance is 
calculated for each model. The average distance gives 
better performance than using distance for each 
feature vector. The category of the audio is decided 

based on the maximum distance. The same process is 
repeated for different features and the performance is 
studied. The testing sample is tested using the trained 
model and create a result. The result will show 
whether the audio is speech or music. 

When Table 1 is taken into consideration, it can be seen 
that wavelet based parameters have higher classification 
results than traditional features. The best performance has 
been obtained with Daubechies8 wavelet.  

The choice of a Kernel depends on the problem at 
hand because it depends on what we are trying to model. 
The motivation behind the choice of a particular kernel 
can be very intuitive and straightforward depending on 
what kind of information we are expecting to extract 
about the data. The Table 2 shows that the Gaussian 
kernel classification performance is greater than the 
other two kernels. 

Gaussian mixtures for the two classes are modeled 
for the features extracted. For classification the feature 
vectors are extracted and each of the feature vector is 
given as input to the GMM model. The distribution of 
the acoustic features is captured using GMM. We 
have chosen a mixture of 2, 4, 5, 10 mixture models. 
The class to which the audio sample belongs is 
decided based on the highest output. Audio classification 
using GMM gives an accuracy of 95.9%. The 
performance of GMM for different mixtures as shown in 
Fig. 6 shows that when the mixtures were increased from 
5 to 10 there was no considerable increase in the 
performance. With GMM, the best performance was 
achieved with 10 Gaussian mixtures. 

The performance of the system for 2, 5 and 10 
Gaussian mixtures is shown in Table 3. The distribution 
of the acoustic features is captured using GMM. The 
class to which the speech and music sample belongs is 
decided based on the highest output. Table 3 shows the 
performance of GMM for speech and music 
classification based on the number of mixtures. 

The performance of the system using SVM and GMM 
for Speech/Music classification is given in Table 4. 

Experiments were conducted to test the 
performance of SVM using gaussian, sigmoidal and 
polynomial kernel functions. SVM performs well with 
a lesser number of feature vectors. Using GMM, a 
better performance is achieved even if the size of 
feature vector is larger. 

GMM best performance than SVM systems give 
equivalent results for each kind of category in Fig. 6.  
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Fig. 6. Performance of speech/music classification using SVM 

and GMM 
 
Table 1. Performance of classification for different Wavelet 

Transforms 
Mother wavelet Speech (%) Music (%) Overall (%) 
Haar 94.3 90.4 91.8 
Symlets2 93.7 88.5 90.6 
Daubechies8 96.7 94.6 95.2 

 
Table 2. Classification performance for different kernel function 
Kernel function Speech (%) Music (%) 
Gaussian 85.3 88.4 
Sigmoidal 82.4 84.6 
Polynomial 83.4 80.7 
 
Table 3. Performance of GMM for different mixtures 
GMM 2 mixtures (%) 5 mixtures (%) 10 mixtures (%) 
Speech 92.4 92.5 93.4 
Music 88.7 87.7 86.8 
 
Table 4. Speech/Music classification performance using SVM 

and GMM 

SVM (%) GMM (%) 
93.65 95.4 
 

5. CONCLUSION 

In this study a system for classifying the audio into 
speech and music using Discrete Wavelet Transform is 
presented. A nonlinear support vector machine learning 
algorithm is applied to obtain the optimal class boundary 
between the various classes namely speech and music by 
learning from training data using different kernel 
function and performance is studied. Experimental 
results show that the proposed audio classification 
scheme is very effective and the accuracy rate is 93.65%. 
The performance was compared to Gaussian Mixture 

Model which showed an accuracy of 95.4%. GMM using 
EM algorithm is used to estimate the parameters. The 
performance of GMM for different mixtures shows 
satisfactory results. The proposed feature extraction and 
classification models results in better accuracy overall 
94.5% in speech/music classification. This work indicates 
that Support Vector Machines and Gaussian Mixture Model 
can be effectively used for audio classification. In future 
study other acoustic features namely Linear Prediction 
Coefficients, Linear Prediction Cepstral Coefficients can be 
extracted and the performance can be analysed and 
compared with the performance of Discrete Wavelet 
Transform features. Other pattern classification technique 
can also be studied to compare the performance with SVM 
and GMM. Even though by now some progress has been 
achieved, there are still remaining challenges and directions 
for further research, such as, extracting different features 
and developing better classification algorithms and 
integration of classifiers to reduce the classification errors. 
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