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ABSTRACT 

The recent improvement in Micro-Electro-Mechanical System (MEMS) technology has enabled the 
evolvement of Inertial Navigation Unit (INU) to be built on top of a low cost, small size Integrated Circuit 
(IC) chip. Due to the nature of the MEMS INU, its outputs are normally corrupted by the resided stochastic 
noise. A common practice to regulate its measurements into usable motion data is by fusing the Global 
Positioning System (GPS) measurement data with the MEMS INU measurement data through Kalman filter 
for position, velocity and orientation estimations. Such integrated system is known as GPS-aided Inertial 
Navigation System (INS). Note that the robustness of the GPS-aided INS relies heavily on the availability 
of the GPS signals. In the event of no GPS signals, the overall system will solely depend on the INU to 
predict the position, velocity and orientation. The prediction results will eventually drift from its true value 
due to the INU’s resided stochastic noise. In this study, a remedy system using Adaptive Neuro-Fuzzy 
Inference System (ANFIS) is developed to improve the performance of the GPS-aided INS during GPS 
outage condition. UAV motion sensing experiment was carried out and GPS outage conditions were 
imposed at several locations during the UAV navigation. The motion prediction dataduring GPS outages, 
with and without ANFIS implementation, were compared and the results clearly show that the GPS-aided 
INS with ANFIS implementation achieved better performance than the GPS-aided INS without ANFIS. 
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1. INTRODUCTION 

Inertial Navigation System (INS) is a type of dead-
reckoning system that utilized Inertial Navigation Unit 
(INU) for three dimensional position, velocity and 
orientation estimations (Titterton and Weston, 1997). 
With recent advancement in Micro-Electro-
Mechanical System (MEMS), the INU is able to be 
built on top of a small size, low cost Integrated Circuit 
(IC) chip (Nebot and Durrant, 1999). However, such 
INU configuration still fail to work as a standalone 
device for navigation applications due to its resided 
stochastic noise (El-Diasty and Spiros, 2008; Sheimy et al., 
2008; Lim et al., 2012a). A conventional approach to 
solve this issue is to fuse the Global Positioning System 
(GPS) data with the INU measurement using Kalman 

filter, where such configuration is commonly known as 
GPS-aided INS (Alison, 2005; David et al., 2006).  

One of the major issues of GPS-aided INS is that 
such system, when operates without GPS data, solely 
depends on INU measurements in which its predictions 
will eventually diverged from the true values (Sameh, 
2003). Temporal no GPS condition may occur due to signal 
blockage or intentional signal jamming (Adrian et al., 
2004). Under such condition the accuracy of position 
estimation will be degraded. Recent study by Lim et al. 
(2014) suggested that the Unmanned Aerial Vehicle 
(UAV) motion sensing, under no GPS condition, 
suffered significant drifts. Two different stochastic noise 
models, namely the Gauss-Markov (GM) model and the 
Autoregressive (AR) model, were implemented as the 
GPS-aided INS noise model. Although results indicated 
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that the GPS-aided INS with AR model operated better 
than system with GM model during no GPS condition, 
the accumulated errors for the system with AR model 
were still significant. 

This study presents a design that reduced the above 
mentioned accumulation errors by integrating the 
GPS-aided INS with an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) for UAV motion sensing. 
ANFIS was proposed by Jang (1993) as a new 
adaptive fuzzy system with self-learning and self-
tuning features. As reported by Jang (1993), ANFIS 
generates similar results as compared to conventional 
Neural Networks, with advantages such as less 
processing time and real-time realization over the 
Neural Network. In terms of operation, the ANFIS is 
trained during the present of GPS data using the GPS-
aided INS inputs and outputs information. During the 
absent of GPS data, the ANFIS is temporary replacing 
the GPS to aid the INU for motion sensing. 

The remaining of this study is outlined as follows. 
Section 2 describes the GPS-aided INS operational 
structure, with elaborations on the navigation 
equations (Titterton and Weston, 1997) and the 
Kalman filtering process. Section 3 discusses the 
ANFIS fundamentals and its implementation for 
temporal integration of GPS-aided INS. Section 4 
presents the UAV experiment and the produced 
results. Intentional no GPS conditions are 
implemented on several locations in the UAV’s flight 
path and the generated results are compared among 
the GPS-aided INS with and without ANFIS. Lastly, 
Section 5 concludes the findings. 

2. GPS-AIDED INS 

A typical GPS-aided INS consists of two important 
elements; the GPS that provides dead reckoning position 
measurements and the INU with three dimensional 
accelerometers, gyroscopes and magnetometers for 
position, velocity and orientation estimations (Lim et al., 
2012b). Kalman filter is implemented to fuse the data 
from these two elements for motion sensing. Note that 
Kalman filtering process has two important phases, 
namely the prediction phase that utilized the INU data 
and the measurement phase that utilized the GPS data.  

Figure 1 shows the operational block diagram of the 
GPS-aided INS. The MEMS inertial sensor consists of three 
dimensional accelerometers, gyroscopes and 
magnetometers. A pre-processing stage which involved 
wavelet denoising (Naser et al., 2004) is applied on the 
accelerometers and gyroscopes raw data. The pre-processed 

accelerometers and gyroscopes data is fed into the 
navigation equation to calculate the predicted position ˆn

kr , 

velocity ˆn
kv and orientation ,

ˆ n
b kC , as shown in Equation 1: 
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Where: 

n
inω  = The Earth’s coriolis rate (rad/s) 
b
ibω  = The gyros measurement in body frame (rad/s) 
b
inω  = The Earth’s rotational rate (rad/s) 
b
ibΩ  = The skew symmetry matrix of bibω  (rad/s) 
b
inΩ  = The skew symmetry matrix of binω  (rad/s) 

 ∆t = The discrete sampling time (s) 
 

Equation1 measurements are corrupted by 
deterministic errors and stochastic errors (Lim et al., 
2012a). Note that the deterministic errors can be 
removed through proper calibrations. Stochastic 
errors, on the other hand, are random errors that can 
be predicted through static experiments (Nebot and 
Durrant, 1999; Sameh, 2003). The influence of the 
stochastic errors in Equation 1 can be observed by 
performing dynamic perturbation on Equation 1 and 
its dynamic perturbed error Equation is shown in 
Equation 2 to 4: 
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Where: 
w.r.t. = Refer to “with respect to” 
φk-1 = The transition equation expressed in Equation 3 
Wk-1 = The stochastic errors of accelerometers (m/s2) 

and gyroscopes (rad/s) 
Arr,k-1 = The Jacobian of position w.r.t. position 
Arr,k-1 = The Jacobian of position w.r.t. velocity 
Avr,k-1 = The Jacobian of velocity w.r.t. position 
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Avv,k-1 = The Jacobian of velocity w.r.t. velocity 
Aer,k-1 = The Jacobian of orientation w.r.t. position 
Aev,k-1 = The Jacobian of orientation w.r.t. velocity 
I9×9 = A 9×9 identity matrix 
03×3 = A 3×3 zero matrix 
(*×) = The cross product 

 
Equation 2 denotes the dynamic error equations of 

Equation 1 in state space model. Such model is to be 
substituted into the Kalman filtering process for the 
prediction phase. On the other hand, the Kalman filter 
measurement phase consists of the measurement 
equations as shown in Equation 5 and 6: 
 

ˆk k k kz H xδ= + �  (5) 
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Where: 
zk = The measurement update 
Hk = The measurement Jacobian 
Qk  = The random measurement noise response 

kxδ %  = The observation errors 

,GPS
n

kr%  = The position measurements from GPS (m) 

,
ˆ

GPS
n
kv  = The velocity measurements from GPS (m/s) 

$
,MAG

n
kϑ  = The orientation measurements derived from 

magnetometers (rad) 
 

The Kalman filter fuses the dynamic error equations 
(Equation 2) with the measurement equations (Equation 
5) to calculate the best errors estimation in term of three 
dimensional position n

krδ % , velocity n
kvδ % and orientation 

,
n
b kε% . As referred to Fig. 1, these calculated errors are 

used to compensate the computation of motion data 
through the subsequent INU measurements in the 
navigation equations.   

3. ANFIS AND ITS IMPLEMENTATION 
IN GPS-AIDED INS 

This section outlines the introduction of ANFIS and 
the detail implementation of ANFIS to the GPS-aided 
INS during GPS outage conditions. 

3.1. Fundamental of ANFIS 

The Adaptive Neuro-Fuzzy Inference System, or 
ANFIS, was originally proposed by Jang (1993) as a new 
adaptive fuzzy system. It is a special fuzzy inference 
system that possesses self-learning and self-tuning 
abilities given with sufficient input-output data. Fig. 2 
shows a typical ANFIS network architecture of two 
inputs and one output with three fuzzy rules. Generally 
the overall ANFIS network can be separated into L 
distinct layers, with each layer holds a certain number of 
nodes with specific operation. Hence the k-th layer’s i-th 
node can be expressed as (k, i) and its corresponding 
node function as k

iO . Detailed descriptions of each layer 

can be found in Jang (1993) work. 

3.2. ANFIS Algorithm 

The ANFIS process involves fine-tuning and 
improving an initial fuzzy inference system model 
through iterative self-adaptive learning algorithms, 
where the initial fuzzy inference system model is 
normally defined by the ANFIS as an approximate fuzzy 
model. The self-adaptive training process consists of 
multiple iterations or epochs to improve and optimize the 
consequent and premise parameters (Jang, 1993). The 
purpose of training iteration is to reduce the measured 
error, where the error is defined as the sum of squared 
difference between the actual output and the desired 
output. The training iteration will be eventually halted 
with two conditions, either the number of iteration 
reaches a predefined number or the obtained error is 
lower or equal to the predefined error. 

ANFIS utilizes a hybrid learning rule that consists of 
gradient descent back propagation technique and the 
least mean square algorithm for the tuning of ANFIS 
premise parameters and consequent parameters to 
achieve optimal output predictions. Fig. 3 depicts the 
ANFIS block diagram incorporated with the gradient 
descent algorithm and the least mean square algorithm. 

3.3. ANFIS Implementation 

The GPS-aided INS shown in Fig. 1 provides 
accurate measurements only with the presence of GPS 
data. Despite the availability of GPS signals under most 
situations, there exist several extreme conditions where 
the GPS signals might be temporarily unavailable, such 
as signal blockage due to obstacle, intentional signal 
jamming or interference caused by unknown source. In 
terms of equation representation, the measurement 
Jacobian Hk in Equation 5 can be elaborated as: 
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Where: 
GPSexist = The flag signifies whether the GPS signal is 

available or absent 
D = The transformation matrix from Earth’s 

coordinate (Longitude, Latitude, Altitude) 
into Navigation coordinate (m) 

 
As refer to Equation 5 and 7, under no GPS 

condition, the measurement update zk will have no 
updates on the overall Kalman filter’s measurement 
phase. This will force the Kalman filter to solely depend 
on the prediction phase to estimate the predicted errors. 
The estimated outputs without GPS data will eventually 
diverged from the true value. Hence ANFIS is proposed 
to temporary replaced the GPS during no GPS data 
condition. Rather than taking over the GPS, the ANFIS 
merely act as a remedy system to aid the measurement 
phase of Kalman filter at GPS outage situation. 

ANFIS needs to be trained before any utilization can 
be taken place. The operation of ANFIS is separated into 
three distinct functions, namely the startup operation, the 
training operation and the prediction operation. The 
startup operation involves setting up an initial ANFIS 
fuzzy set model, while the training operation trains the 
ANFIS fuzzy set’s premise parameters and consequent 
parameters through the input-output pairs of data and the 
prediction operation is utilized only at GPS outage 
condition. Fig. 4 shows block diagram of ANFIS 
implementation in the GPS-aided INS. In the beginning 
the ANFIS model is initialized through an initial model, 
normally a Takagi-Sugeno model. Next the ANFIS 
model is trained by utilizing the input-output data pairs. 
Here the training input is selected to be the estimated 
position derived during the present of GPS signal and the 
training output is the estimated position error. The training 
will continued until reaching a predefined number of epochs 
or achieving certain minimum RSME. Notice that the 
training process will continue as long as the GPS signal is 
present. Lastly, the training operation will halt during GPS 
outage condition and the prediction operation will be 
handled by the latest updated ANFIS model. 

3.4. ANFIS Setup and Considerations 

The computational power of ANFIS training process 
should be taking into account for real-time system 
implementation. Several key parameters have to be 
considered for efficient ANFIS training: 

• The sliding window size 
• Number of epochs (or training iteration) 
• The Root-Mean-Square-Error (or RMSE) 
• The training step size 
 

In common practice, a sliding window together with 
the cross-validation technique is adopted to ensure real-
time system’s robustness (Amari et al., 1997). The cross-
validation technique is a process of partitioning a 
relatively large sample of data into small groups of 
subsample such that the analysis is focused in one 
subsample while further subsamples are assumed to be 
temporarily absent. As such, the size of the sliding 
window emerged as a crucial parameter in data 
partitioning. A large window size offers sufficient 
sample size for ANFIS training which improves the 
module performance, but in return it consumes a large 
computational power which could potentially influence 
the real-time processing. On the other hand, a small 
window size requires less processing power in ANFIS 
training, thus ensuring smooth operation of real-time 
processing. However, small window size may degrade 
system performance during prediction operation.  

The number of epochs refers to the ANFIS training 
repetition towards a set of input-output pairs. Each 
training epoch generates a RMSE, computed from the 
difference between the trained outputs with the actual 
outputs data. The smaller the RMSE the better the trained 
ANFIS is. Theoretically more training epochs will result 
in producing better RMSE. In practice, however, the 
training iteration is a finite number and its value should be 
a logical number after taking into consideration on the 
computational time requirement. In general, both the 
RMSE and the number of epochs should be determined 
accordingly, with the number of epochs is set to 100 and 
the RMSE is set to 10−4 (Rashad et al., 2007). 

The ANFIS step size emerged as an important factor 
that influence the performance of the ANFIS training. 
The parameters that influence the ANFIS training 
process are the initial step size, the increase rate and 
decrease rate of step size. The step size is commonly 
used to represent the length of each gradient transition, 
with its initial value being modified by either the 
increase rate or the decrease rate during the ANFIS 
training. Fig. 5 outlines the RMSE plots with respect to 
20 s window size (Rashad et al., 2007) for x-position 
component for eight different initial step sizes of 0.001, 
0.005, 0.01, 0.5, 1, 5, 10 and 25, respectively. Note that 
20 s of training window size is chosen since this 
window size possess adequate training samples for 
ANFIS while in the same time small enough to ensure 
smooth real-time processing (Ahmed et al., 2009).
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Fig. 1. GPS-Aided INS block diagram 
 

 
 

Fig. 2. A typical ANFIS network architecture 
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Fig. 3. Block diagram of ANFIS with feedback learning algorithms 
 

 
 

Fig. 4. Block diagram of ANFIS implementation in the GPS-aided INS  
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Fig. 5. Block diagram of ANFIS implementation in the GPS-aided INS 
 
Results shown in Fig. 5 indicate that the selection of 
initial step size will greatly influence the achievable 
RMSE of the ANFIS training. It is also shown in Fig. 
5 that the initial step size of 0.01 acquires the best 
training RMSE among the eight initial step sizes. 

4. RESULTS AND DISCUSSION 

This section outlines the implementation of the 
proposed ANFIS in the GPS-aided INS for short term 
GPS outage condition. The motion data from the UAV 
experiment, as shown in Fig. 6 using Google Earth, is 
being utilized for the no GPS condition implementation. 
The experiment was conducted in Kampung Seri Pantai, 

Mersing, Malaysia. The duration of the experiments was 
approximately 50 min. The average UAV velocity is 130 
km/h and the average number of satellites availability is 
10 for the experiment.   

Fig. 7 illustrates the ideal UAV’s navigation path 
computed from the GPS-aided INS. Short durations of 
GPS outage are imposed in eight locations, as indicated 
by numerical numbers from 1 to 8, as shown in Fig. 7. 
These eight locations are carefully chosen to cover 
different UAV dynamics. The estimated position errors 
at all eight locations using the GPS-aided INS with and 
without ANFIS for short term GPS outage of 15 s, 20 s, 
25 s and 30 s are shown in Table 1. It could be observed 
from Table 1 that the estimated errors from the GPS-
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aided INS with ANFIS achieved better position 
estimation than the GPS-aided INS without ANFIS 
during short term no GPS conditions. 

Fig. 8 illustrates the estimated position plots of the 
GPS-aided INS, with and without ANFIS, for short term 
GPS outage of 30 sec. The errors were computed with 
reference to the navigation path generated from the GPS-
aided INS without GPS outage. The errors were shown 

in Table 1, under the “30 s GPS Outage” row. It could 
be observed from Table 1 that the estimated errors 
from the GPS-aided INS with ANFIS implementation 
reduced significantly as compared to the GPS-aided 
INS without ANFIS at all the selected eight locations. 
Such result indicates that the GPS-aided INS with 
ANFIS implementation achieved better performance 
during GPS outage conditions.

 

 
 

Fig. 6. UAV’s navigation path using google earth 
 

 
 

Fig. 7. UAV’s navigation path with locations of intentionally introduced GPS outages 
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Fig. 8. Locations with 30 seconds of intentionally introduced GPS outages 
 
Table 1. Estimated position errors with different GPS outage duration at different location 
  Position errors estimation (m) 
  -------------------------------------------------------------------------------------------------------------------- 
Locations  1 2 3 4 5 6 7 8 
15 s GPS outage No ANFIS 30.712 8.788 40.266 15.517 48.605 40.367 24.884 20.766 
 With ANFIS 26.223 6.944 27.066 11.492 32.829 39.294 22.302 9.847 
 % Diff 14.62% 20.98% 32.78% 25.94% 32.46% 2.66% 10.38% 52.58% 
20 s GPS outage No ANFIS 58.697 20.884 111.575 51.02 66.144 85.856 63.619 49.136 
 With ANFIS 46.53 15.426 79.796 29.13 38.769 76.073 33.336 28.589 
 % Diff 20.73% 26.13% 27.5% 42.9% 41.39% 11.39% 47.6% 41.82 
25 s GPS outage No ANFIS 106.514 56.011 240.029 150.953 117.466 156.602 145.097 112.496 
 With ANFIS 77.574 36.139 174.294 82.631 38.842 131.1 76.492 66.519 
 % Diff 27.17% 35.48% 27.39% 45.26% 66.93% 16.28% 47.28% 40.87% 
30 s GPS outage No ANFIS 182.077 127.714 464.564 351.076 258.194 269.027 296.766 252.611 
 With ANFIS 122.04 77.839 331.151 211.797 79.901 213.248 171.383 145.064 
 % Diff 32.97% 39.05% 28.72% 39.67% 69.05% 20.73% 42.25% 42.57% 

 
5. CONCLUSION 

This study presented the fundamental study of GPS-
aided INS and its limitation during short term GPS 
outage conditions. The ANFIS was proposed as a sub-
remedy system to temporary replaces the GPS for 
motion sensing. Result signified that the GPS-aided 
INS with ANFIS implementation achieved better 
performance than the GPS-aided INS without ANFIS 
during short term GPS outage. For future work, the 

developed system will be implemented on an UAV 
Synthetic Aperture Radar (SAR) (Koo et al., 2012) for 
environmental monitoring applications. It is expected 
that the developed system is able to assist in the motion 
compensation of SAR image processing. 
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