Journal of Computer Science 10 (11): 2349-2357, 2014

ISSN: 1549-3636

© 2014M. Sujithaet al., This open access article is distributed undéresative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2014.2349.2357 Published Onlih€ll) 2014 (http://www.thescipub.com/jcs.toc)

RTOSIMPLEMENTATION OF NON-LINEAR SYSTEM USING
MULTI TASKING, SCHEDULING AND CRITICAL SECTION

Sujitha, M., ?V. Kannan and 3S. Ravi

13Department of ECE, Dr. M.G.R. Educational and Reselastitute University, Chennai, India
2Jeppiaar Institute of Technology, Kanchipuram, &ndi

Received 2014-04-21; Revised 2014-07-19; Accepted-2@116
ABSTRACT

RTOS based embedded systems are designed wititypbiased multiple tasks. Inter task communicatod
data corruptions are major constraints in multkiag RTOS system. This study we describe about the
solution for these issues with an example Real-tirigriid level control system. Message queue and
Mail box are used to perform inter task communimatio improve the task execution time and
performance of the system. Critical section schiaduis used to eliminate the data corruption. lis th
application process value monitoring is consideasdcritical. In critical section the interrupt dida
time is the most important specification of a réiate kernel. RTOS is used to keep the interrupt
disable time to a minimum. The algorithm is studieith respect to task execution time and response
of the interrupts. The study also presents the @ratpve analysis of the system with critical seatio
and without critical section based on the perforogametrics.

Keywords: Critical Section, RTOS, Scheduling, Resource Sigaailbox, Message Queue

1. INTRODUCTION multitasking kernel for processors, written maimyC
programming language. RTOS design has been designed
Realtime Operating System (RTOS) is specially for very small embedded systems and implements
used to meet the real time constraint and to sugher egsential set of functions, easy to integrate srwll
sophisticated facilities required by an embeddedgmpneqded systems. RTOS services a very basic set of
system._ln this study a non rea_ltime Ii_quid Iev_ehtrol handling tasks and memory management, just sufficie
system is transformed to real_ time using mu_ltugiekls. API Synchronization, drivers for external hardwéoe)
In order to manage the various tasks, Priority dase : -
access to a file system. It also allows an unlichite

Preemptive Task Scheduling algorithm in RTOS is ber of task | Hard q
used. Each task in an application is assigned aify; number of tasks to run as long as Hardware and memo

with higher priority values representing the need f C€an handle it. Finally it implements queues, binang

quick response. In modern RTOS multitasking is a counting semaphores and mutex. (Liu, 2000).

technique used for enabling multiple tasks to st@re 11 Tk

single processor. It is simply the ability to rumot or

more independent tasks on one CPU (appears to be at A task is an independent thread of execution that c

the same time) and running concurrently. complete with other concurrent tasks for processor
A realtime kernel like (FreeRTOS) supports execution time. A task is schedulable. A task aamtone

multitasking. It is a priority based pre-emptivaltane of two simple states: “Running” or “not running”uigpose

Corresponding Author: Suijitha, M.,Department of Electronics and Communication Enginger
Dr. M.G.R. Educational and Research Institute Unitigr€hennai, India

////4 Science Publications 2349 ICS

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

there is only one core, at a time only one taskroanall 1.2. Scheduler

other tasks are in the "not running” task. A scheduler is the part of the kernel responsible f

Fig. 1 gives a simplified repre§entation of this life deciding which task should be executing at anyiqaar
cycle. When a task changes its state from “Notne Operating systems may be distinct to thees
running” to running, the “Not running” state can be pagsed on schedulers features, a long, a mediurstend
expanded as shown Fig. 2. A task can be preempted term scheduler. The long term scheduler selects a
because of a higher priority task (or) it has beenprocess from the job pool and loads them into mgmor
delayed (or) it waits for an event. When a task ean for execution. The short term scheduler or CPU
but is waiting for the processor to be availabig state scheduler selects from among the processes from
is said “Ready”. The features of RTOS system arememory and reduces the degree of multiprogramming
listed inTable 1. (Melot, 2014). results in the scheme of swapping. Swapping is the
scheme which is performed by dispatcher that gives
control of the CPU to the process selected by Huets
term scheduler. In the RTOS based embedded system

Running CPU scheduling plays an important role which always
has a time constraint on computation. The realtiss&
should be scheduled to be completed before their
deadlines because real time system is one whose
applications are mission critical. Most realtimestgms
control unpredictable environments, to handle umkmo
and changing tasks, it need operating systemsp(Raj
and Gupta, 2012).

1.3. Inter Task Communication

Not
running

v

Fig. 1. Simplified life cycle of a task

Not running

RTOS provides a variety of mechanisms for
TaskSusped communication _and synchronization _between Fasks.
called These mechan_lsms are necessary in a multi task
preemptive environment, since without them the sask
might corrupt information or otherwise interfere thvi
each other. Information can be communicated between
tasks in two ways:

Suspended

TaskSus- TaskResume()
pend() called
called ¥

e Through sharing global data
e Sending messages

Running
Message sending is the main mechanism which is
used for that purpose. Message sending methodsdmcl
Mailbox and Queue. Through kernel services message
can be sent to a task. A message mailbox alsodcalle
message exchange. It is typically a pointer sizéalte
through a service provided by the kernel. A tasl ém
ISR can deposit a message into the mail box. Thraug
service provided by the kernel, one or more tasis c
receive messages. Both the sending task and regeivi
task will agree as to what the pointer is actupthynting
to. Each mail box is associated with a waiting, list
case more than one task desires to receive message
through the mail box (Labrosse, 2002).
To send one (or) more messages to a task, Message
Queue is used. A message queue is an array of mail
Fig. 2. Life cycle of a task boxes through a service provided by the kernel.

Blocking API
function called

////4 Science Publications 2350 jcs

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

Table 1. RTOS Features
Features of RTOS

Realtime RTOS is a hard realtime operating system

Preemptive or cooperative operation Process pagsotdrom one task to another task by yieldingcooperative scheduling.
The scheduler interrupts at regular frequency sirtpincrement the tick count

Dynamic scheduling Scheduler decision points oetuegular clock frequency

Scheduling algorithm The highest priority process is scheduled firstsbizgeduler algorithm. Where more than
one task exists at the highest priority, taskseaeeuted in round robin fashion.

Double linked list Multiple tasks can exists withetsame priority assigned. Tasks of the same pyriare
organized in a double-linked list.

Inter-process communication Tasks within RTOS camroanicate with each other through the use of quguimail
box and synchronization mechanisms

Blocking and deadlock avoidance In RTOS, tasks @hermrblock with a fixed period of time or non-bldaag.

Critical section processing Critical section proaegstan be handled by semaphore or mutex or digphdin
interrupts.

scheduler suspension When exclusive access to theiCfequired without jeopardizing the operation ®Rs,
the scheduler can be suspended.

Memory allocation RTOS provides multiple heap modslpart of the distribution.

Table2. RTOS mail box and message queue function LCD are used. Data acquired from these interfases i

Typical OS functions Purpose tested usinguC/OS-1l based real time operating system.

OSMboxPend() Retrieving message from a mailbox Indersainet al. (2013) implemented porting of kernel

OSMboxPost() Posted message to a mail box in ARM powered microcontroller for the implementati

OSMboxcreate() Creating message of multitasking and time scheduling. Here the réake

OSMboxAccept() Accepting message kernel is the software that manages the time ofiom

OSMboxQuery() Information about mailbox controller to ensure that all time critical everagse

OSMboxDel() Deleting a mailbox

processed as efficiently as possible. Differentetyys

interface modules of ARM7 microcontroller like
. . . UART, ADC, DAC, KAYPAD, LCD, USB are used
A message pointer can be deposited into a messagg,y yata acquired from these interfaces is tessatju

queue by a task or an ISR. Through a service peavid | c/0s-|| based real time operating system. The steps
by the kernel one (or) more tasks can receive rgessa jnyolved in porting the RTOS and final

Both the sending and receiving task will agreecashat implementation details are provided.
the pointer is actually pointing to. Generally FirsFirst Rajput and Gupta (2012) implemented priority based
out methodology is used to extract a message fiegn& round robin CPU scheduling Algorithm for realtime
(Abt and Thomas, 2012J.able 2 shows the mailbox and systems where there is more than one task with same
message related functions. priority to share CPU time, so the burden is onuker

In this article, section 2 gives related work. &st8 to proxy out the time slicing code to a high level
describes hardware implementation, section 4 desstri mechanism of their own design. Allowing multipleska
the performance metrics and section 5 describesitabo to have the same priority by adding a level ofgnégion

OSMboxPostOpt() Message is posted in mailbox

real time implementation of critical section. implies a fundamental redesign of the ready listl an
scheduling Algorithms and probably the adoption of
2. RELATED WORK gueue based Scheduler. In its state uC/OS-Il is an

)) ~optimal solution of embedded real time software
Kolhari and Bhopale (2012) implemented the porting engineering problems.

of MicroC/OS-Il kernel in LPC 2148 microcontrolléar

the implementation of features like multitaskingne 3. HARDWARE IMPLEMENTATION
scheduling, mailbox and, mutex. Here a real timendle

is the software that manages the time of a micro Realtime liquid level system consists of a conical
controller to ensure that all time critical everdse tank, Host controller and zigbee module. Conicalkta
processed as efficiently as possible. Differenerfiaice has a liquid level sensor, inflow and outflow rgtar
modules of ARM7 microcontroller like UART, ADC and sensor. These sensor outputs are connected tabentr

////4 Science Publications 2351 jcs

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.22874

in host. Host has controller and a ZigBee module.
ZigBee module is used to communicate with server.

Controller calculates final action values and driee
valve control inputs in conical tank.

The hardware implementation of the realtime control a

system is shown iRig. 3to 5.

Fig. 3. Host system and conical tank setup 1. Conical Tank
Host controller

Fig. 5. Server ZigBee Interfack.Server ZigBee Module

4. PERFORMANCE METRICS
4.1. Throughput

Throughput refers to the number of task execute in
unit of time. The higher number Throughput
indicates more work done by the system.

4.2. Context Switch

A context switch is the process of storing antbresy
state of a preempted process, so that executionbean
resumed from same point at a later time. Conteitthking
is usually resource intensive, so the design ofaije
system is to optimize only these switches. More loemof
context switch lead to wastage of time and memaehych
in turn deccreases the system performance (Rajmlit a
Gupta, 2012).

4.3. Turnaround Time

Turnaround time refers to the amount of time taticen
complete the process and is how long it takesithe to
execute that process.

Turnaround time = Time of process completion-time
of process submission

Total turnaround time is the sum of the periods
spent waiting to get into memory, waiting time het
ready queue, execution time on the CPU and doing
I/0 (Rajput and Gupta, 2012).

4.4, Waiting Time

Waiting time is the total time a process has been
waiting in ready queue.

Waiting time = Time of process scheduled-time of
process ready to executes

The CPU scheduling algorithm does not affect the
amount of time during which a process executesoesd
input-output; it affects only the amount of timeatha
process spends waiting in ready queue (Rajput and
Gupta, 2012).

4.5. Response Time

In an interactive system, turnaround time may ret b
best measure. Often, a process can produce sommet out
fairly early and can continue computing new results
while previous results are being produced to ttes.us

Response time = Time of response received-time task
submitted (Kamal, 2008).

So we can conclude that a good scheduling algorithm
for real time and time sharing system must possess
following characteristics (Rajput and Gupta, 2012).

% Science Publications 2352 JCS

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

* less context switches
e high throughput

* low turnaround time

* low waiting time

* low response time

5. REALTIME IMPLEMENTATION

The following tasks are identified:

e Tracking input to Controller (Task1)
e ZigBee Communication (Task?2)

» Error handling (Task3)

* Monitor process value (Task4)

In this study four tasks are created, namely Taskl
(uctsk_setpoint), Task2 (uctsk_zighee), Task3 kuetsor)
and Task4 (uctsk_display). The system initializatftow
chart is shown irFig. 6. The function of Taskl is getting
the setpoint values from server and writes thesa idéo
controller. Taskl flowchart is given kig. 7.

Task2 access the process status values namelwijnflo
level and outflow. The collected process statuseshre
send to the server through Zigbee communicatioekd a
flowchart is given irFig. 8.

The function of Task3 is processing the error and
deciding the control output for action. When ttask is
started it gets the process value such as level §&rver
then it wait for an interrupt from server. Oncedteives
an interrupt from the server, reads the processeviabm
plant for final action. Task3 flowchart is givenhig. 9.

Task 4 is used to display the different data in
monitor. When this task is started it will wait ferror
signal interrupt. Once it receives the interruptwitl
display process status data. Task4 job is congldere
critical as it should not be preempted, when iteigding
and displaying process value. . A critical sectidrtode
is called a critical region. This section of codewd
treat indivisibly. The section of code must not be
interrupted once it starts executing. To ensurss, thi
interrupts are typically disabled before the cadticode
is executed and enabled when the critical code is
finished. Disabling the interrupts before a critica
section starts executing and enabling interruptsa is
powerful option for solving shared resource protdem
For critical section implementation RTOS has inietr
disabling and enabling functions that execute at
entering and exiting section respectively
(OS_ENTER_CRITICAL and OS_EXIT_CRITICAL).

////4 Science Publications 2353

Initialize hardware and RTOS
ARM TargetInit() OSInit()

Y

Allocate Resource
OSMemCreate() OSMboxCreate()

Y

Create at least one tasks
OSTaskCreate()

Y

Start Schedule
OSStart()

Fig. 6. Flowchart for iinitialization

> Wait for interrupt from server

v

Access tracking input

Y

Write tracing input values to

controller

Fig. 7. Flowchart for set point tracking

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

uctsk zigbee

y

» Wait for interrupt from server

Y

Access inflow, level, outflow
values

Y

Transmit status values to
server

Y
End

Fig. 8. Flowchart for Zighee communication in Task2

To achieve significant enhancement in the task @@t
and prevention of other task to run in betweensg¢he
application programming interfaces are incorporated
RTOS under critical environment that provides the
interface between the application software andesyst
software. Task4 without critical implementation
flowchart is given irFig. 10.

Task4 with critical implementation flowchart is giv
in Fig. 11. Table 3 shows the related OS functions used
for this implementation.

Task2 and Task4 has highest and equal priority task
and Taskl has low priority. Task3 has medium level
priority. A mailbox is created using OSMboxCreate()
function to communicate process status values skZ'a
and Task4. In Task3 read inflow, level and outflow
values from sensors in plant and post a message to
mailbox using OSMboxPost() function. Task2 and Bask
are in waiting state for message. Once mailboxivece
message from Task2, OSMboxPend() resume execution
immediately after call OS_Sched(). Now Task2 and
Task4 moved to ready state from blocked state. Arask
will execute first because Task4 has critical secti
which will block all tasks by disabling interrupbnce

uctsk error

Y

Get Process value level from server

Y

Wait for interrupt from server

Y

Read process values

Y

Process the level

Y
End

Fig. 9. Flowchart for error tracking

Wait for error signal interrupt

'

Display status data in monitor

Task4 is completed then Task2 will execute. Fig. 10. Flowchart for display parameters without criticattion

////4 Science Publications 2354

JCS

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

6. RESULT

Table 4 shows the arrival and burst time for various
tasks. For Analysis the Time quantum is taken as.

Figure 13 and 14 shows Gantt chat (Matarneh,
2009) for system without critical section and with
critical section. System without critical section
average response time and average waiting time are
¢ calculated below:

—| Wait for error signal interrupt

* Average Response Time = (0+0+2+0) = 2/4 = 0.5
Enter critical section « Average Waiting Time = (0+0+2+6)/4 =2
* Number of Context switch: 8

i System with critical section average response time
and average waiting time are calculated below:

Display status data in monitor * Average Response Time = (0+2+2+0) = 4/4 =1

e Average Waiting Time = (0+2+2+0)/4 =1
l ¢ Number of Context switch: 6

. . Table 5 andFig. 15 show performance comparison
Exit critical section between system with critical section and without
critical section.

Table 3. Critical Function of RTOS

Typical uC/OS functions Purpose
OS_ENTER_CRITICAL Enter to Critical
OS_EXIT_CRITICAL Exit From Critical
OS OS_FLAG_CONSUME Consume the Arguments
.) . .) OS_Task_Create() Create a Task
Fig. 11. Flowchart for display parameters with critical thec 0S_Task_delete() Delete a Task
OS_Task_Suspend() Suspend a particular Task
OS_Task_Resume() Resume the Task
OS_FLAG_PEND Arguments are Waiting
Mailbox Task2 OS_FLAG_Wait SETALL Set all Values While pending
OS_Task_Name_EN() Enable the Task
OS_Task_Name_SET Set Task Name
Task3 ——p Table4. CPU Burst time for tasks
Task Arrival time (ms) Burst time (ms)
Taskl 2.0 2.0
Task2 7.0 3.0
Task4d Task3 3.0 2.0
Task4 6.0 2.0

Table5. Performance comparison

Fig. 12. Relationship between Mailbox and Tasks AWT ART No. context
(ms) (ms) switch

Communication from Task3 to Task2 and Task4 usingCritical secton 1 1.0 6

mailbox is shown irFig. 12 (Inamet al., 2011). Without critical section 2 0.5 8

////4 Science Publications 2355 jcs

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

0 2 4 6 8 100 12 14 16 18 20

Fig. 13. Gantt chart for RTOS operation without criticattsen

T T T T T T2 Tl T T T2
2 / /

0 2 4 6 8 100 12 14 16 18 20

Fig. 14. Gantt chart for RTOS operation with critical senti

B Critical section From the given results it is observed that nonlinea

Non critical section system is protected from the tasks entering
simultaneously from multiple tasks or ISR. Tasks
synchronization is handled very well by preemptive
based task scheduling and the overall system
performance is improved.

8. CONCLUSION

N~ 00 O

In this study scheduling multiple tasks along with
critical section and the realtime performance was
J - analyzed. From the results it is concluded that BTO
based embedded system can manage any criticabrsecti
containing multiple tasks. Event based and timesthas
planning, scheduling can be implemented by RTO&ksta
and timer management, for quick and efficient
functioning of a Control System.
7. DISCUSSION For future scope, by properly redesigning the saleed
to improve average response time enhancing feabfres
From the results given, it is observed that theaye Scheduler, controllability over the execution candasily
waiting time is reduced in system with critical e. achieved.

But response time is increased little due to desabl

interrupt during execution of critical section. &n 9. ACKNOWLEDGEMET

critical section designed with minimum burst tirtteyill

not affect overall performance of system. Number The researcher are grateful to Dr. S. Ravi,
context switch is reduced in system with criticatton. ~ professor, Head of the Department, ECE, Dr. MGR
This will reduce memory use and task executiontime Educational and Research Institute his encouragemen

[B S TS I S]

AWT (ms) ART (ms) No CS

Fig. 15. Comparison between system with Critical section and
without critical section

,//// Science Publications 2356 JCS

M. Sujithaet al. / Journal of Computer Science 10 (11): 2349.23874

and guidance in the successful completion of thelabrosse, J.J., 2002. MicroC/OS-Il: The Real Time

implementation of this system. Kernel. 2nd Edn., CMP Taylor and Francis, San
Francisco, ISBN-10: 1578201039, pp: 605.
10. REFERENCES Liu, J.W.S., 2000. Real-Time Systems. 1st Edn.reea

Education India, Upper Saddle River, ISBN-10:
Abt, A.R. and K.Thomas, 2012. ARM based embedded 8177585754, pp624.
web servers for industrial applications. Int. J. Matarneh, R.J., 2009. Self-adjustment time quanitum
Comput. Applic., 44: 28-35. round robin algorithm depending on burst time of
Inam, R., J. Maki-TurjaM. Sjodin and M. Behnam, the now running processes. Am. J. Applied Sci., 6:
2011. Hard real-time support for hierarchical 1831-1837. DOI: 10.3844/ajassp.2009.1831.1837
scheduling in FreeRTOS. Malardalen University. Melot, N., 2014. Study of an operating system:
Indersain, N. Sharma and D. Singh, 2013. Design and FreeRTOS. Operating systems for embedded

implementation of uc/Os |l based embedded devices.
system using arm controller. Int. J. Eng. Rajput, I.S. and D. Gupta, 2012. A priority basednd
Technical Res., 1: 1-4. robin CPU scheduling algorithm for real time

Kamal, R., 2008. Embedded Systems 2E. 1st Edn., system. Int. J. Innovation Eng. Technol., 1: 1-11.
McGraw-Hill, Education, New Delhi, ISBN-
10: 0070667640, pp: 681.
Kolhari, N.R. and N.I. Bhopale, 2012. Porting and
Implementation of features of ?C/OS Il RTOS on
Arm7 controller LPC 2148 with different IPC
mechanisms. Int. J. Eng. Res. Technol.

////4 Science Publications 2357 jcs

