
Journal of Computer Science 10 (11): 2349-2357, 2014 
ISSN: 1549-3636 
© 2014 M. Sujitha et al., This open access article is distributed under a Creative Commons Attribution  
(CC-BY) 3.0 license 
doi:10.3844/jcssp.2014.2349.2357 Published Online 10 (11) 2014 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Sujitha, M., Department of Electronics and Communication Engineering,  
 Dr. M.G.R. Educational and Research Institute University, Chennai, India 
 

2349 Science Publications  
JCS 

RTOS IMPLEMENTATION OF NON-LINEAR SYSTEM USING 
MULTI TASKING, SCHEDULING AND CRITICAL SECTION 

1Sujitha, M., 2V. Kannan and 3S. Ravi 
 

1,3Department of ECE, Dr. M.G.R. Educational and Research Institute University, Chennai, India 
2Jeppiaar Institute of Technology, Kanchipuram, India 

 
Received 2014-04-21; Revised 2014-07-19; Accepted 2014-12-16 

ABSTRACT 

RTOS based embedded systems are designed with priority based multiple tasks. Inter task communication and 
data corruptions are major constraints in multi-tasking RTOS system. This study we describe about the 
solution for these issues with an example Real-time Liquid level control system. Message queue and 
Mail box are used to perform inter task communication to improve the task execution time and 
performance of the system. Critical section scheduling is used to eliminate the data corruption. In this 
application process value monitoring is considered as critical. In critical section the interrupt disable 
time is the most important specification of a real time kernel. RTOS is used to keep the interrupt 
disable time to a minimum. The algorithm is studied with respect to task execution time and response 
of the interrupts. The study also presents the comparative analysis of the system with critical section 
and without critical section based on the performance metrics. 
 
Keywords: Critical Section, RTOS, Scheduling, Resource Sharing, Mailbox, Message Queue 

 
1. INTRODUCTION 

Realtime Operating System (RTOS) is specially 
used to meet the real time constraint and to support the 
sophisticated facilities required by an embedded 
system. In this study a non realtime liquid level control 
system is transformed to real time using multiple tasks. 
In order to manage the various tasks, Priority based 
Preemptive Task Scheduling algorithm in RTOS is 
used. Each task in an application is assigned a priority, 
with higher priority values representing the need for 
quick response. In modern RTOS multitasking is a 
technique used for enabling multiple tasks to share a 
single processor. It is simply the ability to run two or 
more independent tasks on one CPU (appears to be at 
the same time) and running concurrently. 

A realtime kernel like (FreeRTOS) supports 
multitasking. It is a priority based pre-emptive realtime 

multitasking kernel for processors, written mainly in C 
programming language. RTOS design has been designed 
for very small embedded systems and implements 
essential set of functions, easy to integrate into small 
embedded systems. RTOS services a very basic set of 
handling tasks and memory management, just sufficient 
API Synchronization, drivers for external hardware (or) 
access to a file system. It also allows an unlimited 
number of tasks to run as long as Hardware and memory 
can handle it. Finally it implements queues, binary and 
counting semaphores and mutex. (Liu, 2000). 

1.1. Task 

A task is an independent thread of execution that can 
complete with other concurrent tasks for processor 
execution time. A task is schedulable. A task can be in one 
of two simple states: “Running” or “not running”. Suppose 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2350 Science Publications  

JCS 

there is only one core, at a time only one task can run; all 
other tasks are in the “not running” task. 

Fig. 1 gives a simplified representation of this life 
cycle. When a task changes its state from “Not 
running” to running, the “Not running” state can be 
expanded as shown in Fig. 2. A task can be preempted 
because of a higher priority task (or) it has been 
delayed (or) it waits for an event. When a task can run 
but is waiting for the processor to be available, its state 
is said “Ready”. The features of RTOS system are 
listed in Table 1. (Melot, 2014). 
 

 
 
Fig. 1. Simplified life cycle of a task 

 

 
 
Fig. 2. Life cycle of a task 

1.2. Scheduler  

A scheduler is the part of the kernel responsible for 
deciding which task should be executing at any particular 
time. Operating systems may be distinct  to three types 
based on schedulers features, a long, a medium and short 
term scheduler. The long term scheduler selects a 
process from the job pool and loads them into memory 
for execution. The short term scheduler or CPU 
scheduler selects from among the processes from 
memory and reduces the degree of multiprogramming 
results in the scheme of swapping. Swapping is the 
scheme which is performed by dispatcher that gives 
control of the CPU to the process selected by the short 
term scheduler. In the RTOS based embedded system 
CPU scheduling plays an important role which always 
has a time constraint on computation. The realtime task 
should be scheduled to be completed before their 
deadlines because real time system is one whose 
applications are mission critical. Most realtime systems 
control unpredictable environments, to handle unknown 
and changing tasks,  it need operating systems (Rajput 
and Gupta, 2012). 

 1.3. Inter Task Communication  

RTOS provides a variety of mechanisms for 
communication and synchronization between tasks. 
These mechanisms are necessary in a multi task 
preemptive environment, since without them the tasks 
might corrupt information or otherwise interfere with 
each other. Information can be communicated between 
tasks in two ways: 
 
• Through sharing global data 
• Sending messages 
 

Message sending is the main mechanism which is 
used for that purpose. Message sending methods include 
Mailbox and Queue. Through kernel services message 
can be sent to a task. A message mailbox also called a 
message exchange. It is typically a pointer size variable 
through a service provided by the kernel. A task (or) an 
ISR can deposit a message into the mail box. Through a 
service provided by the kernel, one or more tasks can 
receive messages. Both the sending task and receiving 
task will agree as to what the pointer is actually pointing 
to. Each mail box is associated with a waiting list, in 
case more than one task desires to receive message 
through the mail box (Labrosse, 2002). 

To send one (or) more messages to a task, Message 
Queue is used. A message queue is an array of mail 
boxes through a service provided by the kernel.  



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2351 Science Publications  

JCS 

Table 1. RTOS Features 
Features of  RTOS 
Realtime RTOS is a hard realtime operating system 
Preemptive or cooperative operation Process pass control from one task to another task by yielding in cooperative scheduling. 

The scheduler interrupts at regular frequency simply to increment the tick count 
Dynamic scheduling Scheduler decision points occur at regular clock frequency 
Scheduling algorithm The highest priority process is scheduled first by scheduler algorithm. Where more than 

one task exists at the highest priority, tasks are executed in round robin fashion. 
Double linked list Multiple tasks can exists with the same priority assigned. Tasks of the same priority are 

organized in a double-linked list.  
Inter-process communication Tasks within RTOS can communicate with each other through the use of queuing, mail 

box and synchronization mechanisms 
Blocking and deadlock avoidance In RTOS, tasks are either block with a fixed period of time or non-blocking. 
Critical section processing Critical section processing can be handled by semaphore or mutex or disabling of 

interrupts. 
scheduler suspension When exclusive access to the CPU is required without jeopardizing the operation of ISRs, 

the scheduler can be suspended. 
Memory allocation RTOS provides multiple heap models as part of the distribution. 
 
Table 2.  RTOS mail box and message queue function 
Typical OS functions Purpose 
OSMboxPend()  Retrieving message from a mailbox 
OSMboxPost()  Posted message to a mail box 
OSMboxcreate() Creating message 
OSMboxAccept() Accepting  message 
OSMboxQuery() Information about mailbox 
OSMboxDel() Deleting a mailbox 
OSMboxPostOpt() Message is posted in mailbox 

 
A message pointer can be deposited into a message  
queue by a task or an ISR. Through a service provided 
by the kernel one (or) more tasks can receive messages. 
Both the sending and receiving task will agree as to what 
the pointer is actually pointing to. Generally First in First 
out methodology is used to extract a message from queue 
(Abt and Thomas, 2012). Table 2 shows the mailbox and 
message related functions. 

In this article, section 2 gives related work. Section 3 
describes hardware implementation, section 4 describes 
the performance metrics and section 5 describes about 
real time implementation of critical section.  

2. RELATED WORK 

Kolhari and Bhopale (2012) implemented the porting 
of MicroC/OS-II kernel in LPC 2148 microcontroller for 
the implementation of features like multitasking, time 
scheduling, mailbox and, mutex. Here a real time kernel 
is the software that manages the time of a micro 
controller to ensure that all time critical events are 
processed as efficiently as possible. Different interface 
modules of ARM7 microcontroller like UART, ADC and 

LCD are used. Data acquired from these interfaces is 
tested using µC/OS-II based real time operating system. 

Indersain et al. (2013) implemented porting of kernel 
in ARM powered microcontroller for the implementation 
of multitasking and time scheduling. Here the real time 
kernel is the software that manages the time of a micro 
controller to ensure that all time critical events are 
processed as efficiently as possible. Different type of 
interface modules of ARM7 microcontroller like 
UART, ADC, DAC, KAYPAD, LCD, USB are used 
and data acquired from these interfaces is tested using 
µC/OS-II based real time operating system. The steps 
involved in porting the RTOS and final 
implementation details are provided. 

Rajput and Gupta (2012) implemented priority based 
round robin CPU scheduling Algorithm for realtime 
systems where there is more than one task with same 
priority to share CPU time, so the burden is on the user 
to proxy out the time slicing code to a high level 
mechanism of their own design. Allowing multiple tasks 
to have the same priority by adding a level of integration 
implies a fundamental redesign of the ready list and 
scheduling Algorithms and probably the adoption of 
queue based Scheduler. In its state µC/OS-II is an 
optimal solution of embedded real time software 
engineering problems. 

3. HARDWARE IMPLEMENTATION 

Realtime liquid level system consists of a conical 
tank, Host controller and zigbee module. Conical tank 
has a liquid level sensor, inflow and outflow rotary 
sensor. These sensor outputs are connected to controller 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2352 Science Publications  

JCS 

in host. Host has controller and a ZigBee module. 
ZigBee module is used to communicate with server. 
Controller calculates final action values and drive to 
valve control inputs in conical tank. 

The hardware implementation of the realtime control 
system is shown in Fig. 3 to 5. 
 

  
Fig. 3. Host system and conical tank setup 1. Conical Tank 2. 

Host controller 
 

 
 
Fig. 4. Host Controller module 1. Host ZigBee 2. Controller 
 

 
 

Fig. 5. Server ZigBee Interface 1.Server ZigBee Module 

4. PERFORMANCE METRICS 

4.1. Throughput 

Throughput refers to the number of task execute in 
a unit of time. The higher number Throughput 
indicates more work done by the system. 

4.2. Context Switch 

A context switch is the  process of storing and restoring 
state of a preempted process, so that execution can be 
resumed from same point at a later time. Context switching 
is usually resource intensive, so the design of operating 
system is to optimize only these switches. More number of 
context switch lead to wastage of time and memory, which 
in turn deccreases the system performance (Rajput and 
Gupta, 2012). 

4.3. Turnaround Time 

Turnaround time refers to the amount of time taken to 
complete the process and is how long it takes the time to 
execute that process.  

Turnaround time = Time of process completion-time 
of process submission 

Total turnaround time is the sum of the periods 
spent waiting to get into memory, waiting time in the 
ready queue, execution time on the CPU and doing 
I/O (Rajput and Gupta, 2012). 

4.4. Waiting Time 

Waiting time is the total time a process has been 
waiting in ready queue.  

Waiting time = Time of process scheduled-time of 
process ready to executes 

The CPU scheduling algorithm does not affect the 
amount of time during which a process executes or does 
input-output; it affects only the amount of time that a 
process spends waiting in ready queue (Rajput and 
Gupta, 2012). 

4.5. Response Time 

In an interactive system, turnaround time may not be 
best measure. Often, a process can produce some output 
fairly early and can continue computing new results 
while previous results are being produced to the user. 

Response time = Time of response received-time task 
submitted  (Kamal, 2008). 

So we can conclude that a good scheduling algorithm 
for real time and time sharing system must possess 
following characteristics (Rajput and Gupta, 2012). 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2353 Science Publications  

JCS 

 
• less context switches 
• high throughput 
• low turnaround time 
• low waiting time 
• low response time 

5. REALTIME IMPLEMENTATION 

The following tasks are identified: 
 
• Tracking input to Controller (Task1) 
• ZigBee Communication (Task2) 
• Error handling (Task3) 
• Monitor process value (Task4) 
 

In this study four tasks are created, namely Task1 
(uctsk_setpoint), Task2 (uctsk_zigbee), Task3 (uctsk_error) 
and Task4 (uctsk_display). The system initialization flow 
chart is shown in Fig. 6. The function of Task1 is getting 
the setpoint values from server and writes these data into 
controller. Task1 flowchart is given in Fig. 7. 

Task2 access the process status values namely inflow, 
level and outflow. The collected process status values are 
send to the server through Zigbee communication. Task2 
flowchart is given in Fig. 8. 

The function of Task3 is processing the error and 
deciding the control output for action. When this task is 
started it gets the process value such as level from server 
then it wait for an interrupt from server. Once it receives 
an interrupt from the server, reads the process value from 
plant for final action. Task3 flowchart is given in Fig. 9. 

Task 4 is used to display the different data in 
monitor. When this task is started it will wait for error 
signal interrupt. Once it receives the interrupt it will 
display process status data. Task4 job is considered 
critical as it should not be preempted, when it is reading 
and displaying process value. . A critical section of code 
is called a critical region. This section of code should 
treat indivisibly. The section of code must not be 
interrupted once it starts executing. To ensure this, 
interrupts are typically disabled before the critical code 
is executed and enabled when the critical code is 
finished. Disabling the interrupts before a critical 
section starts executing and enabling interrupts is a 
powerful option for solving shared resource problems. 
For critical section implementation RTOS has interrupt 
disabling and enabling functions that execute at 
entering and exiting section respectively 
(OS_ENTER_CRITICAL and OS_EXIT_CRITICAL).  

 
 
Fig. 6.  Flowchart for iinitialization 

 

 
 
Fig. 7. Flowchart for set point tracking 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2354 Science Publications  

JCS 

 
 
Fig. 8. Flowchart for Zigbee communication in Task2 
 
To achieve significant enhancement in the task execution 
and prevention of other task to run in between, these 
application programming interfaces are incorporated in 
RTOS under critical environment that provides the 
interface between the application software and system 
software. Task4 without critical implementation 
flowchart is given in Fig. 10. 

Task4 with critical implementation flowchart is given 
in Fig. 11. Table 3 shows the related OS functions used 
for this implementation. 

Task2 and Task4 has highest and equal priority task 
and Task1 has low priority. Task3 has medium level 
priority. A mailbox is created using OSMboxCreate() 
function to communicate process status values to Task2 
and Task4. In Task3 read inflow, level and outflow 
values from sensors in plant and post a message to 
mailbox using OSMboxPost() function. Task2 and Task4 
are in waiting state for message. Once mailbox receive 
message from Task2, OSMboxPend() resume execution 
immediately after call OS_Sched(). Now Task2 and 
Task4 moved to ready state from blocked state. Task4 
will execute first because Task4 has critical section 
which will block all tasks by disabling interrupt. Once 
Task4 is completed then Task2 will execute.  

 
 

Fig. 9. Flowchart for error tracking 
 

 
 
Fig. 10. Flowchart for display parameters without critical section 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2355 Science Publications  

JCS 

 
 
Fig. 11. Flowchart for display parameters with critical section 
 

 
 
Fig. 12. Relationship between Mailbox and Tasks 
 
Communication from Task3 to Task2 and Task4 using 
mailbox is shown in Fig. 12 (Inam et al., 2011). 

6. RESULT 

Table 4 shows the arrival and burst time for various 
tasks. For Analysis the Time quantum is taken as. 

Figure 13 and 14 shows Gantt chat (Matarneh, 
2009) for system without critical section and with 
critical section. System without critical section 
average response time and average waiting time are 
calculated below: 
 
• Average Response Time = (0+0+2+0) = 2/4 = 0.5 
• Average Waiting Time = (0+0+2+6)/4 =2 
• Number of Context switch: 8 
 

System with critical section average response time 
and average waiting time are calculated below: 
 
• Average Response Time = (0+2+2+0) = 4/4 = 1 
• Average Waiting Time = (0+2+2+0)/4 =1 
• Number of Context switch: 6 
 

Table 5 and Fig. 15 show performance comparison 
between system with critical section and without 
critical section. 
 
Table 3. Critical Function of RTOS 
Typical µC/OS functions Purpose 
OS_ENTER_CRITICAL Enter to Critical 
OS_EXIT_CRITICAL Exit From Critical 
OS   OS_FLAG_CONSUME Consume the Arguments 
OS_Task_Create() Create a Task 
OS_Task_delete() Delete a Task 
OS_Task_Suspend() Suspend a particular Task 
OS_Task_Resume() Resume the Task 
OS_FLAG_PEND Arguments are Waiting 
OS_FLAG_Wait_SETALL Set all Values While pending 
OS_Task_Name_EN() Enable the Task 
OS_Task_Name_SET Set Task Name 

 
Table 4.  CPU Burst time for tasks 
Task Arrival time (ms) Burst time (ms) 
Task1 2.0 2.0 
Task2 7.0 3.0 
Task3 3.0 2.0 
Task4 6.0 2.0 
 
Table 5.  Performance comparison 
 AWT ART No. context 
 (ms) (ms) switch 
Critical section 1 1.0 6 
Without critical section 2 0.5 8 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2356 Science Publications  

JCS 

 
 

Fig. 13.  Gantt chart for RTOS operation without critical section 
 

 
 

Fig. 14.  Gantt chart for RTOS operation with critical section 
 

 
 
Fig. 15. Comparison between system with Critical section and 

without critical section 
 

7. DISCUSSION 

From the results given, it is observed that the average 
waiting time is reduced in system with critical section. 
But response time is increased little due to disable 
interrupt during execution of critical section. Since 
critical section designed with minimum burst time, it will 
not affect overall performance of system. Number 
context switch is reduced in system with critical section. 
This will reduce memory use and task execution time. 

From the given results it is observed that nonlinear 
system is protected from the tasks entering 
simultaneously from multiple tasks or ISR. Tasks 
synchronization is handled very well by preemptive 
based task scheduling and the overall system 
performance is improved. 

8. CONCLUSION 

In this study scheduling multiple tasks along with 
critical section and the realtime performance was 
analyzed. From the results it is concluded that RTOS 
based embedded system can manage any critical section 
containing multiple tasks. Event based and time based 
planning, scheduling can be implemented by RTOS stack 
and timer management, for quick and efficient 
functioning of a Control System. 

For future scope, by properly redesigning the scheduler 
to improve average response time enhancing features of 
scheduler, controllability over the execution can be easily 
achieved. 

9. ACKNOWLEDGEMET  

The researcher are grateful to Dr. S. Ravi, 
professor, Head of the Department, ECE, Dr. MGR 
Educational and Research Institute his encouragement 



M. Sujitha et al. / Journal of Computer Science 10 (11): 2349.2357, 2014 

 
2357 Science Publications  

JCS 

and guidance in the successful completion of the 
implementation of this system. 

10. REFERENCES 

Abt, A.R. and K.Thomas, 2012. ARM based embedded 
web servers for industrial applications. Int. J. 
Comput. Applic., 44: 28-35.  

Inam, R., J. Mäki-Turja, M. Sjödin and M. Behnam, 
2011. Hard real-time support for hierarchical 
scheduling in FreeRTOS. Mälardalen University.  

Indersain, N. Sharma and D. Singh, 2013. Design and 
implementation of µc/Os II based embedded 
system using arm controller. Int. J. Eng. 
Technical Res., 1: 1-4.  

Kamal, R., 2008. Embedded Systems 2E. 1st Edn., 
McGraw-Hill, Education, New Delhi, ISBN-
10: 0070667640, pp: 681. 

Kolhari, N.R. and N.I. Bhopale, 2012. Porting and 
Implementation of features of ?C/OS II RTOS on 
Arm7 controller LPC 2148 with different IPC 
mechanisms. Int. J. Eng. Res. Technol. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Labrosse, J.J., 2002. MicroC/OS-II: The Real Time 
Kernel. 2nd Edn., CMP Taylor and Francis, San 
Francisco, ISBN-10: 1578201039, pp: 605. 

Liu, J.W.S., 2000. Real-Time Systems. 1st Edn., Pearson 
Education India, Upper Saddle River, ISBN-10: 
8177585754, pp: 624. 

Matarneh, R.J., 2009. Self-adjustment time quantum in 
round robin algorithm depending on burst time of 
the now running processes. Am. J. Applied Sci., 6: 
1831-1837. DOI: 10.3844/ajassp.2009.1831.1837 

Melot, N., 2014. Study of an operating system: 
FreeRTOS. Operating systems for embedded 
devices. 

Rajput, I.S. and D. Gupta, 2012. A priority based round 
robin CPU scheduling algorithm for real time 
system. Int. J. Innovation Eng. Technol., 1: 1-11. 


