
Journal of Computer Science 10 (11): 2330-2338, 2014
ISSN: 1549-3636
© 2014 K.G., Madhwaraj, This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2014.2330.2338 Published Online 10 (11) 2014 (http://www.thescipub.com/jcs.toc)

2330 Science Publications

JCS

EMPIRICAL COMPARISON OF TWO METRICS SUITES
FOR MAINTAINABILITY PREDICTION IN PACKAGES OF
OBJECT-ORIENTED SYSTEMS: A CASE STUDY OF OPEN

SOURCE SOFTWARE

K.G., Madhwaraj

Department of MCA, SSN College of Engineering, Kalavakkam, India

Received 2014-03-22; Revised 2014-05-14; Accepted 2014-11-29

Funding : Department of MCA, SSN College of Engineering, Kalavakkam – 603 110

Competing Interests: The authors have declared that no competing interests exist

ABSTRACT

Software maintainability has been an important external quality attribute that concerns both styles of
software development, the proprietary model as well as open source. As lots of open source software are
predominantly built using the OO paradigm, there exists a need for empirical validation with respect to
certain quality aspects especially maintainability. There are a few studies in the past which use code
metrics and a few which use design metrics, much earlier in the software development life cycle to
predict maintainability. In addition, there are studies which apply both code as well as design metrics to
evaluate maintainability. The objective of this research is to perform an empirical comparison of two
popular OO metrics suites, the Martin suite and the CK suite on four open source software systems by
analysing a few key design metrics such as size, coupling, complexity, inheritance and stability. Two
important observations were made with this empirical study. First, between the two OO suite of design
metrics, the prediction model developed using Martin metrics scores better than the model developed
using the CK suite. Second, the combination of Martin and CK suites is helpful in predicting the
maintainability of OO software, with a predictive accuracy of 66.7%, better than that of the models
constructed by either Martin metrics or by the CK metrics individually.

Keywords: Software Metrics, Maintainability, Object-Oriented Packages, Prediction Models, Software Quality

1. INTRODUCTION

The IEEE Standard Glossary of Software
Engineering Terminology defines maintainability as
“The ease with which a software system or component
can be modified to correct faults, to improve
performance or other attributes, or adapt to a changed
environment” (IEEE, 1990). Software maintainability is
an important external quality attribute that plays a
primary role when the quality of software is evaluated.
There have been several proprietary software systems
which have evolved using the Object-Oriented
paradigm. Plenty of research works exist which have

studied the quality attributes of such software.
Recently, many open source software systems have also
started evolving the Object-Oriented way and hence it
becomes essential to investigate such software also
from the quality perspective.

At the initial stages of software development, the
evaluation of quality parameters was carried out during
the later stages of the software development life cycle.
At this stage, it becomes rather difficult to make changes
in the design. Many empirical studies that have been
conducted in the recent past indicate that software design
metrics help in better prediction of maintainability when
compared to measuring it during the later stages of the

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2331 Science Publications

JCS

software development life cycle. Bansiya (2002) built a
hierarchical model using the OO design properties and
related those properties to high-level quality attributes.
Subsequent to this research, several design metric suites
such as Martin metrics (Martin, 2003; Chidamber and
Kemerer, 1994) and MOOD metrics (Brito and Abreu,
1996) were extracted from the data sets of commercial
software projects and subjected to statistical analysis.
Some studies were performed to verify which particular
suite of metrics would be able to quantify a specific
quality attribute in the best possible way. Subsequently,
predictive models gained popularity and thereby
researchers started building predictive models using
these design metrics to evaluate the quality of many
software systems. As lots of open source software is
built, predictive models using data sets of open source
software systems have gained significance and are
particularly focusing on certain quality parameters like
maintainability, fault-proneness and understandability.
This research study introduces a new perspective in
predicting maintainability using design metrics by
making an empirical comparison between two popular
OO metric suites, the Martin and CK suites. Further, it
also provides indications on which particular metric suite
would be better in predicting maintainability of OO
software. For this purpose, certain package-level design
metrics of the Martin metrics suite were extracted

using the jdepend tool (Clark 1999) and the CK suite
using the ckjm tool (Greece 2005) from all the
versions of popular open source software applications
namely jfreechart, javageom, freemind and treeview.

The empirical analysis that has been performed,
compares the relationships between the package design
metrics proposed by the Martin and CK suite across the
above four open source software systems. The rest of
the paper is organized as follows. Section 2 reviews the
related work. Section 3 defines both the Martin as well
as CK suite of metrics. Section 4 describes the open
source software taken for a case study. Section 5
highlights the methodology that was used in predicting
maintainability. Section 6 gives the results. Section 7
presents the discussion. Section 8 presents the threats to
validity. Section 9 gives conclusions obtained from the
empirical study.

2. RELATED WORK

Oman and Hagemeister (1994) quantified the
maintainability of a system with an MI (Maintainability
Index) which was primarily a combination of different code
metrics. The concept of using both the code as well as

design metrics in predicting maintainability was proposed
by Misra (2005). In this study, it was found that both the
metrics were useful in evaluating the maintainability of
software. Later, (Zhou and Baowen, 2008) empirically
investigated the relationships open source software
systems. Based on this investigation between 15 design
metrics and maintainability of 148 java software, it was
found that size and complexity metrics strongly related to
maintainability. Gupta and Chhabra (2012). empirically
studied 18 packages from two open source software
systems and found strong correlations between package
coupling and understand ability of a package (s). This study
also suggested that coupling metrics could be used to
represent other external quality factors. Elish (2010)
explored the relationships between five package-level
metrics of the martin suite and the effort required to
understand a package. This study studied eighteen
packages from two open source systems and found
statistically significant correlation between most of the
martin metrics and understandability of a package.
Elish et al. (2011) empirically evaluated three suites of
package-level metrics (Martin, MOOD and CK) in
predicting the number of pre-release and post-release
faults in packages of eclipse software. It was found that
models which are based on Martin suite had more
predictive power when compared to the MOOD and CK
suites across various releases of eclipse. The current
study that has been conducted in this study empirically
compares the relationships between the Martin suite
and the CK suite on maintainability.

3. PACKAGE-LEVEL DESIGN METRICS

3.1. Martin Suite of Metrics

The metrics proposed by Martin (2003) which are
used in this empirical study are defined in this section.
These design metrics were extracted for all the 52
versions of jfreechart using the jdepend tool (Fig. 1)
since its release. Further, the metrics were extracted at
the package level as packages have now become
important organizational units for large applications
(Niemeyer and Knudsen, 2005).

Fig. 1. The extraction process

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2332 Science Publications

JCS

3.1.1. Concrete Classes (CC)

This captures the number of concrete classes in a
package. This metric indicates the size of software.

3.1.2. Abstract Classes (AC)

This captures the number of abstract classes (and
interfaces) in the package. This too is a metric that
indicates size. Both the above metrics (CC & AC) are
indicators of the extensibility of a package.

3.1.3. Afferent Couplings (Ca)

This metric provides a count of the number of other
packages that depend upon the classes within a given
package. This is an indicator of the responsibility of
that package.

3.1.4. Efferent Coupling (Ce)

This metric gives a count of the number of classes
in the current package that depends on other packages
and classes. This is an indicator of the independence of
that package.

3.1.5. Abstractness (A)

This metric for a package is defined as the ratio of the
number of abstract classes to the total number of classes
in the analysed package. The range of this values for this
metric is between 0 and 1, with A = 0 indicating a
completely concrete package and A = 1 indicating a
completely abstract package.

3.1.6. Instability (I)

This metric is defined as the ratio of efferent coupling
(Ce) to total coupling (Ca + Ce). The range of values for
this metric is between 0 and 1. When I = 0, it is a
completely stable package and when I = 1, it is a
completely unstable package. This is an indicator of the
package’s resilience to change.

3.1.7. Distance from the Main Sequence (D)

This is the perpendicular distance of a package
from the idealized line A+I = 1. A package that is
squarely on the main sequence is optimally balanced
with respect to its abstractness and stability. Ideal
packages are either completely abstract and stable or
completely concrete and unstable. The range of values
for this metric is between 0 to 1, with D = 0 indicating
a package coincident with the main sequence and D =
1 indicating a package as far as possible from the
main sequence.

3.2. Chidamber and Kemerer (CK) Suite of Metrics

The CK suite consists of six class-level metrics that
are defined in this section as follows.

3.2.1. Weighted Methods Per Class (WMC)

 WMC is defined as the sum of the complexities of
all the methods defined in a particular class.

3.2.2. Coupling between Object Classes (CBO)

This metric gives the number of classes coupled to a
given class.

3.2.3. Response for a Class (RFC)

This metric measures the number of different
methods that can be executed when an object of that
class receives a message.

3.2.4. Depth of Inheritance Tree (DIT)

This metric provides for each class a measure of the
inheritance levels from the object hierarchy.

3.2.5. Number of Children (NOC)

This metric measures the number of immediate
descendants of the class.

3.2.6. Lack of Cohesion in Methods (LCOM)

This metric counts the sets of methods in a class that
are not related in sharing some of the class’s data. Since
the CK suite captures the metric values at the class level,
they have been converted to the package level by taking
the average of all classes in a package.

4. CASE STUDY

The software systems that have been taken for a
case study are jfreechart, javageom, freemind and
treeview, all of which are open source. The jfreechart
software is a very popular charting application that
enjoys the maximum downloads (4000 downloads per
week). All the 52 versions of jfreechart, 15 versions
of freemind software, 21 versions of javageom
software and 18 versions of treeview software are
taken for analysis. All these software systems are
popular systems among the user community. The
significance of this selection is that all these software
were developed using the java language. A dataset of
106 versions of open source software was taken for
statistical analysis.

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2333 Science Publications

JCS

5. METHODOLOGY USED IN
PREDICTING MAINTAINABILITY

In our case study, the maintainability of a system is
quantified with a Maintainability Index (Oman and
Hagemeister, 1994). MI is a combination of different
metrics that affect maintainability. It can be defined as
follows:

MI = 171-5.2 ln (aveV)-0.23aveV (g’)-16.2 ln

(aveLOC) + 50 sin (sqrt (2.4perCM))

where, aveV is the average Halstead’s Volume per
module, aveV(g’) is the average extended cyclomatic
complexity per module, aveLOC is the average count of
lines of source code per module and perCM is the
average percentage of lines of comments per module.
This is a code metric which takes into account several
aspects of maintainability like size, complexity and self-
descriptiveness of the source code. The range of MI
values are given in Table 1. The maintainability index
for all the versions of the four different open source
software was measured and this was taken as the
dependent variable for studying the relationships
between design metrics and maintainability.

The different package design metrics (AC, CC, Ca,
Ce, I, A, D, WMC, RFC, DIT, NOC, CBO and LCOM)
were taken as the independent variables. These metrics
have already been defined in Section 3. Metric data was
collected from the several versions of the four open
source software. Notably, as all these metrics were
captured at the package level, the mean value of all
packages in a particular version was taken as the
independent variables for the study.

We know that every software system consists of both
the system packages as well as user-defined packages. In
this study, only the user-defined packages across all the
versions have been considered. This would provide clear
indications on how user-defined packages have been
designed. Further, it will also provide indications on
which metrics need to be taken care while designing the
next version of software. The study was conducted in
three phases as below:

Table 1. Range of maintainability index

MI value Maintainability

<65 Poor
65-85 Moderate
>85 Good

• Using the design metrics proposed by the Martin
suite as independent variables and MI as a
dependent variable

• Using the design metrics proposed by the CK suite as
independent variables and MI as a dependent variable

• Using the combination of both Martin and CK
metrics as independent variables and MI as a
dependent variable

Several statistical tests like multivariate correlation,

multivarite regression and factor analysis were
performed using the dataset in all the three phases.
Further, we tested the OO dataset for multi-collinearity
by performing a test for multi-collinearity and a VIF
(Variance Inflation Factor) test. The following sub-
sections define the different statistical tests that were
applied in all the three phases of our case study.

5.1. Multivariate Correlation

The degree of relationship between two or more
variables is statistically called as correlation. It can also
refer to the co-variation (variation in one variable affecting
the variation in the other variable). The degree of
correlation between two variables is called as simple
correlation or univariate correlation and the degree of
correlation between one variable and several other
variables can be called as multiple correlation or
multivariate correlation. Both uni-variate and multivariate
correlation were performed to understand the influence of
all the design metrics on maintainability. The following
tests were performed to test the levels of correlation.

5.1.1. Test for Multi-Collinearity

 Multi-collinearity is a statistical test that is used the
test the level of dependence or correlation among design
metrics. During correlation, if we find that every variable
in correlation is depending on every other variable,
chances of multi-collinearity is possible. This can be
detected when almost all the inter-correlations between
variables have a value greater than 0.9. Statistical
evidence has shown that the existence of multi-
collinearity within a dataset would never help in
providing the right prediction about the correlations
between design metrics and if not detected, would result
in making biased conclusions.

5.1.2. Variance Inflation Factor (VIF) Test

Multi-collinearity can also be detected by testing the
variance inflation factor of all the design metrics. We

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2334 Science Publications

JCS

tested this also and kept the VIF to a minimum by
applying another multivariate statistical technique called
as Factor Analysis.

5.2. Multivariate Regression

Regression is the determination of statistical
relationship between two or more variables. One
variable (independent) is the cause of the behavior of
another one (dependent). When there are more than two
independent variables, the analysis concerning the
relationship is known as multiple correlations and the
equation describing such relationship is called as the
multiple regression equation. Regression analysis is
concerned with the derivation of an appropriate
mathematical expression which is derived for finding
values of a dependent variable on the basis of
independent variable(s). It is thus designed to examine
the relationship of a variable Y to a set of other
variables X1, X2, X3………….Xn. Therefore,
multivariate regression analysis was performed to
examine the common effectiveness of the metrics. The
general form of a multivariate linear regression model
can be given by:

0 1 1

0 1 1

...

...

i k ik

i k i ik

i

i

y a a x a x

y a a x a x e

= + + +

= + + + +

where, xi1

,…,xik
 are the independent variables, a0,...,ak

are the parameters to be estimated, ˆiy is the dependent

variable to be predicted, yi is the actual value of the
dependent variable and ei is the error in the prediction
of the ith case. We used stepwise regression to build
the model.

5.3. Factor Analysis

This is a multivariate statistical technique that is
used if multi-collinearity exists within the data set. If
multi-collinearity is left undetected within a data set,
biased conclusions can be made while making a few
predictions. We performed regression after obtaining
the factor scores as a result of factor analysis. Factor
scores are a set of values that are generated from the
original data set. Regression is later performed with
factor scores as the independent variables and MI as the
dependent variable. There are two important parameters
of factor analysis. The KMO measure of sampling
adequacy is used to compare the magnitudes of the
observed correlation coefficients in relation to the

magnitudes of the partial correlation coefficients. KMO
values range between 0 and 1 and it is good to have
values closer to one.

Bartlett’s test of sphericity is a statistical test that is
used to test whether the correlation matrix is an identity
matrix i.e., all metric variables are perfectly correlated
with themselves (a value of one) and have some level of
correlation with the other metric variables. If they are not
correlated with the other items, then they can’t be a part
of the same factor. Researchers always look for
significance value less than 0.05.

The communalities are yet another result of factor
analysis. The communalities explain the proportion of
variance accounted for by the common factors (or
‘communality’) of a variable. The communality value
has a range between 0 to 1. A value of 0 means that
the common factors don’t explain any variance; 1
means that the common factors explain ALL the
variance. Researchers always look for a higher value
closer to one.

Therefore, we performed all the tests in each phase
that were necessary to make strong conclusions on
predicting maintainability.

6. RESULTS

6.1. Predicting Maintainability using Martin Suite

6.1.1. Multivariate Correlation

The inter-correlation values between the design
metrics of the Martin suite were not greater than 0.90.
Except for the concrete classes, all the other metrics had
significant influence on maintainability.

6.1.2. Multivariate Regression

The regression model fetched a multiple correlation
coefficient of 0.787. The value of R2 was 0.620 and also
significant at the 99% level. The f values were also high.

Fitted Regression Line:

MI = 55.855-13.678 (D)-2.577 (Ca)-0.154 (CC) +

0.978 (Ce) - (1)

6.1.3. Factor Analysis

Since the efferent coupling of the Martin suite had
a VIF of 6.946 (not a desired range), we performed
factor analysis on the data set and then later
performed regression using the factor scores obtained
from factor analysis. The Martin metrics gave a KMO
value of 0.592. The Bartlett’s test of sphericity value
was less than 0.01.

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2335 Science Publications

JCS

6.2. Predicting Maintainability using CK Suite

6.2.1. Multivariate Correlation

As with the Martin suite, all the inter-correlation
values had no multi-collinearity i.e., all the correlation
values are not >.9. The variance inflation factor was
also checked to detect the presence of multi-collinearity
within the dataset. It clearly showed that out of six
metrics, two metrics namely WMC and CBO have
significant correlation with MI at 99% level. The
LCOM metric is also significant at 95% level. WMC
was positively contributing towards maintainability.
CBO showed a negative correlation.

6.2.2. Multivariate Regression

The NOC metric became a removed variable from the
regression analysis as it did not contribute significantly
on MI. The coefficient of determination R-square was
found to be 0.471. The R square value was also
significant at 99% level.

Fitted regression line:

MI = 42.007-1.181(CBO) + 0.437(RFC) - (2)

6.2.3. Factor Analysis

As done with the Martin metrics suite, factor analysis
was performed on the CK metrics data set to remove any
levels of multi-collinearity. The results of factor analysis
and factor scores regression were as follows:

• The KMO value is just 0.465 which is less than what

was obtained with the Martin metrics suite
• The communalities value of the DIT metric was at

0.480 whereas in the Martin metrics suite, all the
variables had a very high communality value

• There are two factors that have been formed by
factor analysis that explains 82% of the total
variance which is less than the Martin metrics suite
which obtained 92%

• The regression performed after factor scores
obtained through factor analysis yields an R2 of
0.242 which is very less when compared to the
Martin suite which gave an R2 of 0.463

6.3. Predicting Maintainability using Martin

and CK Suite

6.3.1. Multivariate Correlation

The following were the inferences from the analysis.
Six metrics out of seven of the Martin suite and three

metrics of the CK suite are showing significant
correlation with MI. The DIT metric(Martin suite), NOC
metric and RFC metric(CK suite) did not show any
impact on MI.

6.3.2. Multivariate Regression

Stepwise regression was performed with the
combination of the Martin suite and CK suite. We found
that the distance metric of the Martin suite as the primary
contributor influencing MI. The CBO, WMC and RFC
metrics of the CK suite are secondary indicators. The
abstractness metric of the Martin suite is significantly
influencing MI.

6.3.3. Factor Analysis

The regression with factor scores gave an R2 of 0.511
i.e., the variables explain 51.1% of the variance in MI.

7. DISCUSSION

7.1. Predicting Maintainability using Martin Suite

7.1.1. Multivariate Correlation

Since the inter-correlation values between the
design metrics of the Martin suite were not greater
than 0.9, this indicates that there is no big multi-
collinearity in the dataset.

7.1.2. Multivariate Regression

As the predicted values were obtained as a linear
combination of the distance metric, afferent couplings,
concrete classes and efferent couplings, the co-efficient
value of 0.787 indicates that the relationship between
maintainability and the four independent variables of
the Martin suite is quite strong and positive. The
coefficient of determination R-square measures the
goodness of fit of the estimated Sample Regression
Plane (SRP) in terms of the proportion of the variation
in the dependent variable explained by the fitted sample
regression equation. Thus, the value of R square is
0.620 simply means that about 62% of the variation in
maintainability is explained by the estimated SRP that
uses distance, afferent coupling, concrete classes and
efferent coupling as independent variables.

7.1.3. Factor Analysis

The KMO value of 0.592 is good. The Bartlett’s test
is less than 0.01 i.e., i.e., .000 which is very good and is
a test which indicates that factor analysis can be

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2336 Science Publications

JCS

continued further. It was also noticed that all the Martin
design metrics showed a high communality value which
provides us a fact that most of the variance in the
dataset have been explained by the factors. This is very
positive and good.

7.2. Predicting Maintainability using CK Suite

7.2.1. Multivariate Correlation

The WMC had a positive influence on the
maintainability i.e., when the weighted methods for a
class increases, maintainability also increases, which is
a surprising result. Literature shows that high WMC
results in high complexity which in turn reduces
maintainability and a low WMC always helps in
reusability, testing and more importantly bettering
maintainability levels. CBO showed a negative
correlation i.e., when CBO decreases the
maintainability increases and vice versa. RFC also
showed a significant negative influence on
maintainability. LCOM shows a positive correlation
i.e., when the levels of method cohesion in a class
increases, maintainability increases and vice versa.
There is past literature which justifies the fact that
when higher levels of LCOM exists within a class, it
results in a fault or error.

7.2.2. Multivariate Regression

The R2 value explains about 47.1% of the variation
in maintainability that uses CBO and RFC as
independent variables. The R square value was also
significant at 99% level. The other metrics were
removed by the regression model. Though both the
metrics CBO and RFC are significant at the 99% level,
the F values are not very high.

7.2.3. Factor Analysis

The F-values that were obtained by the CK suite were
much lower than the F-values of the Martin suite i.e.,
The R2 also seems to be lower in the case of the CK suite
when compared with the Martin suite.

7.3. Predicting Maintainability using Martin
and CK suite

7.3.1. Multivariate Correlation

There is no multi-collinearity in the OO dataset
taken for analysis. Therefore, the conclusions made
are valid conclusions.

7.3.2. Multivariate Regression

The following conclusions can be made after
performing multivariate regression analysis:

• The distance metric is the balance between

abstractness and instability which is giving a
negative influence on MI. Previous literature has
shown that as and when packages have a high
distance value, maintainability becomes difficult.
When packages stay within the main sequence, it
is good for maintainability purposes (Martin,
2003). Abstractness talks about the number of
abstract classes when compared to the concrete
classes in a package Instability is the ratio of
efferent coupling to total coupling (efferent
coupling + afferent coupling). This negative
influence indicates that coupling has a negative
influence on MI

• The CBO metric of the CK suite is the next
important predictor which again indicates that any
sort of coupling is detrimental in bringing down the
values of MI. To add, it again gives a negative
influence on MI

• The WMC metric delivers a negative influence i.e.,
when the weighted complexity of methods in a class
increases, the MI would decrease. It is advised to
reduce the complexity of the methods in a class

• The RFC metric and the Abstractness metric are
giving positive influences. This gives us another
indication that when the count of abstract classes
are higher when compared to the concrete classes,
this stands as a good sign in increasing the MI. It
is advised to use more abstract classes in package
design

The model generated is able to give a predictive

accuracy of 0.667% i.e., the model is able to explain
66.7% of the variance in MI. The F values are also
significant and higher when compared to the F values of
Martin and CK suite.

7.3.3. Factor Analysis

Stepwise multiple regression was done with the four
factor scores generated after applying factor analysis.
The factor scores were taken as the independent variable
and the MI was taken as the dependent variable. The
comparative study is presented in Table 2.

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2337 Science Publications

JCS

Table 2. Summary of comparative study
Statistic Martin suite CK suite Martin and CK suite
Correlation with MI Six out of seven metrics are Three out of Six metrics are Six metrics of Martin suite
 highly influencing MI. highly influencing MI. Two and three metrics of CK
 All the six metrics were metrics are significant at suite highly
 significant at 99% level 99%level and one metric significant with MI.
 significant at 95% level.
Goodness of fit (R2) 62 47.1 66.7
after regression in %
F values (ANOVA) High values Less when compared to
after regression Martin suite High values
Variance Inflation Efferent coupling had a Two metrics had a low VIF Three metrics of CK suite
Factor after regression VIF of 6.946; Other metrics give a less VIF had higher VIF when
 compared to two metrics
 of Martin suite
KMO measure of 0.592 0.465 0.545
sampling adequacy
Bartlett’s test of
sphericity (sig value) 0.000 0.000 0.000
Communality values All metrics have communality DIT metric has a low DIT metric had a
 values closer to one communality value of 0.480; communality value of
 Other metrics have values 0.709; All other metrics
 closer to one had communality values
Cumulative % of
variance explained 92.715 82.576 88.360
after factor analysis
Goodness of Fit (R2) 45.6 24.2 51.1
after factor scores
regression in %
F values (ANOVA) after Higher than CK suite and Less when compared to Not very high
factor scores regression Martin and CK suite Martin and CK suite

8. THREATS TO VALIDITY

The design metrics of the Martin suite which were
used as independent variables in this study were
extracted from the source code of different versions of
open source software. Therefore, the design information
that was extracted is the current design information and
not the original design information i.e., significant re
factorings or design changes could have been done to the
different versions. The various statistical analysis which
were done with the different design metrics cannot be
taken as final indicators for predicting maintainability.
We only took four software applications, the jfreechart,
freemind, treeview and javageom and their several
releases right from their evolution. In order to get
meaningful conclusions, more such empirical validations
need to be performed in future on different open source
data sets. This would further validate the claim that a few
metrics in the Martin and CK suites are helpful in
predicting maintainability.

9. CONCLUSION

We have made an attempt to investigate two popular
OO metric suites on the maintainability of four open
source software systems. Zhou and Baowen (2008) found
that size and complexity metrics as primary indicators,
coupling and cohesion metrics as secondary indicators for
predicting maintainability. We found on the contrary, the
Abstractness metric of the Martin suite as a primary
indicator for predicting maintainability. The secondary
indicators are the coupling metrics (both Ca and Ce)
which have a negative influence on maintainability and
the tertiary indicators being the complexity metrics.
Before the next version of open source software is
released, the designers are advised to increase the number
of abstract classes when compared to concrete classes
while deigning user-defined packages.

We also found Martin metrics as a better suite of
metrics than the CK suite while predicting the
maintainability of four open source software. This

K.G., Madhwaraj / Journal of Computer Science 10 (11): 2330.2338, 2014

2338 Science Publications

JCS

conclusion is very much evident where Martin metrics
are scoring better than CK metrics (Table 2). When both
the Martin and CK suite were used to build a model, there
are a few important parameters where this model (Martin
and CK) seems to predict maintainability better than the
Martin and CK suite independently. i.e., The goodness of
fit (R2) after regression is 66.7%, which is better than the
Martin suite and the CK suite and the other is the R2 value
with factor scores regression which is 51.1%. Therefore, it
is advised to use the Martin and CK suite model in
predicting maintainability of open source software. More
importantly, the Distance and Abstractness metric of the
Martin suite and CBO, WMC and RFC metrics of the
CK suite are significantly influencing maintainability
either positively or negatively.

As future work, we would like to investigate other
popular object oriented-suites and extract evidence on their
impact too on predicting the maintainability. Our immediate
focus would be on getting the right blend of metrics that
would help in predicting the maintainability of object
oriented open source software in the best possible way.

10. ACKNOWLEDGMENT

I would like to thank Dr. Chitra Babu, Professor and
Head, Department of CSE for giving effective research
directions. I would also acknowledge the PG students of my
Department who supported me in pursuing this research
work”.

11. ADDITIONAL INFORMATION

11.1. Funding Information

This project was funded by the Department of
Computer Applications, SSN College of Engineering,
Kalavakkam.

11.2. Author Contributions

a) A predictive model for OO software
maintainability using Martin metric suite

b) Identification of the most influential metrics from
both Martin and CK suites useful for predicting OO
software maintainability

c) A predictive model for OO software maintainability
using a subset of Martin and CK metric suites

11.3. Ethics

I wish to state that this work is done by me wholly
and there are no ethical issues that would arise after this
article gets published.

12. REFERENCES

Bansiya, J., 2002. A hierarchical model for object-
oriented design quality assessment. IEEE Trans.
Software Eng., 28: 4-17. DOI: 10.1109/32.979986

Brito, E. and F. Abreu, 1996. Evaluating the impact of
object-oriented design on software quality. Proceedings
of the 3rd International Software Metrics Symposium,
Mar. 25-26, IEEE Xplore Press, Berlin, pp: 90-99.
DOI: 10.1109/METRIC.1996.492446

Chidamber, S.R. and C.F. Kemerer, 1994. A metrics
suite for object oriented design. IEEE Trans.
Software Eng., 20: 476-493. DOI: 10.1109/32.295895

Clark, M., 1999. Pragmatic Project Automation: How
to Build, Deploy and Monitor Java Applications.
Pragmatic Bookshelf, LLC.

Elish, M.O., 2010. Exploring the relationships between
design metrics and package understandability: A case
study. Proceedings of the 18th IEEE International
Conference on Program Comprehension, Jun-Jul. 30-2,
IEEE Xplore Press, Braga, Minho, pp: 144-147. DOI:
10.1109/ICPC.2010.43.

Elish, M.O., A.H.A. Yafei and M.A. Mulhem, 2011.
Empirical comparison of three metrics suites for fault
prediction in packages of object-oriented systems: A
case study of eclipse. Adv. Eng. Software, 42: 852-
859. DOI: 10.1016/j.advengsoft.2011.06.001.

Greece, A., 2005. Ckjm-a tool for calculating
Chidamber and Kemerer Java metrics. Athens
University of Economics and Business.

Gupta, V. and J.K. Chhabra, 2012. Package level
cohesion measurement in object-oriented software.
J. Comput. Sci. Technol., 24: 273-283. DOI:
10.1007/s13173-011-0052-4.

IEEE, 1990. 610.12-1990-IEEE standard glossary of
software engineering terminology. Report IEEE
Std. DOI: 10.1109/IEEESTD.1990.101064.

Martin, R., 2003. Agile Software Development:
Principles, Patterns and Practices. Prentice Hall,

NJ. ISBN-10: 0135974445.
Misra, S.C., 2005. Modeling design/coding factors

that drive maintainability of software systems,
Software Quality J., 13: 297-320. DOI:
10.1007/s11219-005-1754-7.

Niemeyer, P. and J. Knudsen, 2005. Learning Java,
2nd Edn., O’Reilly and Associates, ISBN-10:
0596002858, pp: 826.

Oman, P. and J. Hagemeister, 1994. Construction and
testing of polynomials predicting software
maintainability. J. Syst. Software, 2: 251-266.

DOI: 10.1016/0164-1212(94)90067-1.
Zhou, Y. and X.U. Baowen, 2008. Predicting the

maintainability of open source software using
design metrics. Wuhan University J. Nat. Sci., 13:
14-20. DOI: 10.1007/s11859-008-0104-6.

