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ABSTRACT

Revenue Management (RM) helped increase profitghfitir many travel industries. Selling perishable
products with a fixed event date, the Sports anteEainment (S&E) ticket industry can potentially
benefit from RM ideas but has received less attenin the literature. In this study we develop
dynamic pricing models for stochastic S&E demandaidiscrete finite time setting, where demand
depends not only on ticket prices but also on raigi times until the show dates. We assume the
show popularity is uncertain to the seller, busthiformation can be learned via Bayesian updases a
early sales are revealed. We present stochastiamlignprograms for Sports and Entertainment tickets
pricing decisions. We test the models using reah ddtained from a major performance venue in the
U.S. to understand properties of the model solgtiand performance under different scenarios. Our
results show that demand learning is most benéfigizen the initial estimates are incorrect. In
addition, we found it is less necessary for théesdb vary price every period if demand variatisn
low and/or a large amount of demand arrives clas¢he show dates. Overall, we found that the
benefits from having flexibility of price changeacademand learning can complement each other to
achieve as much as 8.15% revenue increase on ayexsgompared to static pricing.

Keywords: Dynamic Pricing, Demand Learning, Bayesian Upda&esrts and Entertainment Industry

1. INTRODUCTION lines (Ladany and Arbel, 1991), passenger railways
(Ciancimino et al, 1999) and rental car companies
Revenue Management (RM) has attracted much(Carol and Grimes, 1995; Geraghty and Johnson,)1997
attention and been proven as one of the most aféect Ultimately, RM is used to support decision makimg t
practices to increase profitability for many indies.  achieve the goal of selling the right amount ofdoret at
RM first emerged in the airline industry in the taxt of the right price to the right customers at the righte
passenger booking problems (Belobaba, 1987;(Bitran and Caldentey, 2003).
Littlewood, 1972; Rothstein, 1971). Then, it haayeld Dynamic pricing is an RM tool that is widely used
important roles in improving the performance of man to manage and control demand at different points of
industries, selling fixed perishable capacity witygh  time. Sellers adjust prices to increase or decrease
set-up costs such as hotels (Bitran and Gilber86;19 demand in the short run so that it can be matchd w
Bitran and Mondschein, 1995; Lieberman, 1992),serui their available resources. The main objective of
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dynamic pricing is to find an optimal dynamic pglito
balance utilization of the available capacity sattthe

For new products (without past sales information)
and/or products whose demand patterns may deviate

revenue can be maximized over the selling period.significantly from past history, demand charactian is
There are extensive papers exploring a variety ofdifficult (Lan et al, 2008). Likewise, the S&E demand can

dynamic pricing topics (Billeet al, 2005; Charet al,

be uncertain, especially for a new show or a spgedm

2004; Gallego and van Ryzin, 1994; 1997; Kannan andWith varying performance. So, the seller cannotlipt

Kopalle, 2001; Leloup and Deveaux, 2001; Leetral,

rely on past sales history when predicting demé&zaly

2009; Maglaras and Meissner, 2006). While dynamic sales observations can be useful for demand infavma
pricing has been intensively studied in the travel Updates. For example, after the selling time starts

industries, the Sport and Entertainment
industry is another business that has potentiabdo

improved by the idea but still has not received as

much attention (Draket al.,, 2008).

There are approximately 1,953 sport stadiums and

236 performance venues in the United States, vhi¢h t
total revenue of 44.2 billion reported
(PricewaterhouseCoopers, 2010). Similar to thdnairl
business, the number of the S&E tickets is fixed ey
are “perishable” since they have no value afteretent
date. However, the S&E industry’s characteristiiffed

from airlines or hotels in many ways. First, a much

higher percentage of entertainment tickets arehased
on the day of the show than on the day of a flghon
the day of a hotel stay (Dralat al, 2008). Secondly,
while important factors of demand are date/timeaof
flight for airlines and day/month of a stay for &lst the
S&E ticket demand is also very related to the spEains
or performance artists’ popularity. Moreover, cansu
tastes and economic conditions change over time
events vary from one year to another, so it idaliff to
incorporate all uncertainties to precisely preds&E
ticket sales. For these reasons, a different grionodel
is necessary for the S&E industry.

Although there are a number of studies that asae|
to ticket pricing (Courty, 2003; Deserpa, 1994; &oand
Rosenfield, 1997) and the topic of price variatiorthe
S&E business (Leslie, 2004; Rascher, 1999), theique
research considered static pricing decisions whkieket
prices remain constant for the entire selling tanizt is
generally because in the past, most event tickete sold
with a fixed price (independent of when the ticketre
sold) due to the limited inventory tracking devices
ticket changes were done on an ad-hoc basis. Honieve
recent years, tools such as internet based sellistems
have become widely available, providing informatfon
real-time demand observations. From our discussigtins

in 2009

(S&E) ticket sellers will have a clearer picture whettier games

(or shows) are likely to have high or low sales.this
study, we consider stochastic S&E ticket demand and
incorporate demand learning with Bayesian updates.
stochastic setting is appropriate to capture ital-l
situations when the paths of demand over timeffalt

to be accurately predicted (Bitran and Caldent&g32,
while demand learning allows the seller to update h
beliefs as uncertainty reveals itself.

In this study, we assume ticket demand in each
period follows a Poisson distribution, where itserés
affected by three components; (1) the artists/sport
teams’ popularity, (2) the ticket price and (3) the
remaining time until the show date. Including tigin
effects for the S&E ticket demand is motivated bg t
actual dataFigure 1 depicts the average number of
tickets sold for 108 shows performed in a major
performance venue in the U.S. during the 2007-2008
season, where the horizontal axis represents thmbeu

an@®f months prior to the show dates. The upper aneito

lines represent the average plus and minus ondastan
deviation, respectively. We can seeHig. 1 that the
average number of seats sold each month is dependen
on time prior to the show and it generally increase
when the time is closer to the event date.

In our demand model, the seller can characterize
price effects and timing effects on demand, buthhas
incomplete information about the event popularitg.(
the base demand rate). The seller forecasts the bas
demand rate’s initial estimation and then uses the
observed sales to update his belief about the upepm
period’s demand. We develop dynamic pricing models
a discrete-finite-time selling horizon. In the figeriod,
the seller determines the optimal base ticket piit¢he
following periods, the seller can offer discounts
(decrease price) or charge premiums (increase )price
with respect to the decided base price. We devalop

a performing arts consulting firm, there has been adynamic pricing model in a discrete-finite-time lsg

significant interest from a number of performancts a
organizations for methods to
discounts/premiums pricing to more effectively ngma
demand and increase revenue.
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horizon. In the first period, the seller determirthe

apply dynamic optimal base price. In the following periods, tle#les can

offer discounts (decrease price) or charge premiums
(increase price), with respect to the decided tpasze.
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We develop a method for pricing and learning ttiat\s 0. (p.I)=¢(n)gyT,
us to address the following research questions:

] where, ¢ (p,) represents price effects (i.e., the probability
* How can the observed sales be used in the demangf each arrival purchasing a ticket) and it is @esing
learning process to improve the forecast and wien i with price p. The demand timing effectg(t), is a
demand learning most beneficial? decreasing function of t (whete= n at beginning of the
 How are the optimal price changes related to modelselling time andt = 0 at the show/event time). This
parameters such as price sensitivity and remainingassumption is underlined from the data we observed
inventory of unsold tickets? (Fig. 1) that ticket demand tends to increase closerdo th
show date. Also, ticket demand is sensitive to ric
This study is organized as follows. We begin by we Which is intuitive.
discussing demand assumptions and describe how the From our discussions with the performing arts
observed sales are used to update the belief aheut consulting firm, the show’s popularity in custoniers
upcoming period’s demand in the learning process.perspective is usually uncertain to the selleis lisually
Section 3, we present the dynamic discounts/premium difficult to correctly forecast demand. Therefoire,our
pricing model, where the price discounts/premiums model we assume there is incomplete informatiotthen
adjustment is _allowed in every.perlod and _d_|chmEs t  exact value of the base demand reteAt the beginning
value of applying demand learning to the pricingdelo ¢ he selling time t( = n), we assumd, follows a
via the computational study. Finally, Section 4dades 52 distribution with a scale parameter of a and
with a summary of insights from the results thisdgt shape parameter ob. In addition to the show’s
and discusses interesting future research idedsthiza . oo
popularity, a and b may depend on the city in whiwh

tud Id be extended further.
study could be extended further show is performed, since we may expect a highee bas

2. DEMAND LEARNING MODEL demand rate for the show taking place in a bigggr A
Gamma distribution allows the flexibility of the abe

In this section, we describe our demand model andand position to be changed extensively via paramete
show how the observed sales are used to updaefsdeli and b, where empirically we found it a good matoh t

about demand in the upcoming periods. past data. LeM,, be the random demand in period n.
In this model, the ticket demand in each period t i The distribution of\M,, conditional on the base demand
assumed to follow a Poisson process with &g, I'), rate (, = y) and ticket price f,), follows a Poisson

which is affected by three components: (1) theetick distribution with rate ¢ (p,)g(n)y. Thus, for demand in
price, (2) the artists/sport teams’ popularity dB8) the the first period, we have Equation 1:

remaining time until the show date. Note thatipnotes

the ticket price in period and I, denotes the base fM.=mIl,=y.p)

demand rate, which represents the expected potyutdri  _ [¢(p,) g(n) )™ e AP ey OMOO.L.2,..) (1)
the show. The overall demand rate is defined devist m! ' e

= 100

2 0 o Mean+1SD

2

= 600

& Mean

Z 400 ¢
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ol —m- ) A
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Fig. 1. The average ticket sales of 108 shows performedrmjor performance venue in the U.S. during 1@722008 season, at
different times prior to the show
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Similarly, the distribution of demand in periad
(denoted by),
and ticket price, follows a Poisson distrilouti
with rate, i.e., Equation 2:

[ py) 9(By]™ AP 9O

f(M{=m|T;=y,p)= m )

OmO{0,1,2,..},0t0{n-1,...,1}

Next, we identify the prior distribution of the dand in
the first selling periodt(= n). From Bayes’ rule, we have
that the distribution of demand (when the pricepis
unconditional orr,, is given by Equation 3:

f(M,=m|p,)

=[7f(M,=m|T, =y, p) f) d

_ [ AeR) o €Y &7
° m! (a-1)!

:[m+ a-l}( @p,)9(n Jm[ b ]a
m b+¢(p,)g(n bte(p) dn

OmO{0,1,2,...}

)dy ©)

where, M,= mIl,= yp,) is given by (1) and(y) is the

distribution f function of T, (i.,e., a Gamma
distribution with parameters of a and b). From (8¢,

can see thaf(M, = m) follows a Negative Binomial
b

Rd———.
b+¢(p,)a(n
Denote m as the actual sales in the first pertoein.

distribution with parameters of a a

After m, has been observed, the base demand rate in the

next period,T',1, is updated. Using Bayes’ rule, the
posterior distribution of ., is as follows Equation 4;

f(M,=m, | Pl =9)f ()
[TfM,=m, | p, Ty =) f0) o
e—v(b+<ﬂ(m)g( n))yawh»l[ b+ a 91) q r)]a’fmn
(a+m, -1)! '

frlp,,m,)=
(4)

Oy>0

Thus, the posterior distribution of'; at the
beginning of the next period € n-1) follows a Gamma
distribution with a scale parameterafrm, and a shape
parameter ob + @ (p,)g(n).

From Bayes’ rule, the distribution of demand in

periodt =n-1 is given by:
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(M o =M Py, By M)
=[T My =mIT,, =y, p) fr | P m) @

o [@(py)g(n-1)y]Me A PrDo Y
=l ¢ i |

x(e-v[b+<a( pn)g(n)lyaﬂm 1[ b+ ¢ p)a(n] a+m
(a+m,-1)!
=[m+ a+m 1}( APp) 9(n-1) Jm
m b+@(p,) o) +¢( B.,)9(n-1)
x[ b +(p,)g(n)
b+@(p,) o0 +¢( B,) o 1)

)dy

a+mp
j ,0mo{0,1,2,..},

where, f(Mn..= mIM.1=ypn1) is given by (2) fort,, and
f(y|mn, pn) is the distribution function of ., given by
(4). We can see thaMl,, follows a Negative Binomial

distribution with parameters a+m, and
b+ ¢(p,) 9(0) .From the demand functions
b+e(p)a(n +e(R.,) (1)

described above, we find that the base demandundt¢he
unconditional ticket demand distributions in anyiqub t
can be summarized in the following Theorem.

Theorem 1

In period t, whera<t<1, we have:

e The base demand ratd,, follows a Gamma
distribution with a scale parameter of+>""  m,

and a shape parameteriof 3" o(p,) (K

e The unconditional ticket demand, Mt, follows a
Negative Binomial distribution with parameters

n CED I K
a*zkzﬁl”‘k and +D L AP) (K

b+ AR IR +e(R) o)
Theorem 1 (i) and (ii) address the distributionttod
base demand rat€; and the unconditional deman;,
respectively. From Theorem 1 (ii), the distributiof
demand in period t is given by:

f(Mt =m| [T o TR o 'mﬂ““,m)
m+a+ > m-1 gp)ot))"
o At

n

n a+ Z
.{ b+ Zk=t+l¢( P o k)] '

A(t)

0mO{o,1,2,...}
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where, Af)=b+>"  o(n)a(K+@(p) d). Note that price discounts/premiums adjustments are allowed in
. k=t o every period, in the context of a stochastic dymami
ticket demand takes non-negative integer valuee Th program in section 3.1. Computational analysishint

posterior Negative Binomial distribution of demar&l  presented in section 3.2 to provide insights on the
advantageous since it provides the probability rhasstion  optimal pricing structures and the benefit of dedhan

for non-negative integers. Moreover, the shapepasdion |earning for the described pricing model.
can be changed extensively via its two parameters

(Subrahmanyan and Shoemaker, 1996). From tickes sal 3.1. Mode

data of the 2007-2008 season obtained from a peafure We consider a discrete finite time setting, whéwere
venue in the U.S. (108 showB)g. 2 depicts the probability  4re 1y sub-periods from the beginning of the setiagzon
density plots of sales occurred at different tinneshe {5 the event/show time. The time periods are nuetber
selling horizon; i.e., one, two, three and four therprior o reverse chronological order so that the beginnihthe
the show time, respectively. Using the Maximum- sejling horizon is time = n and the show takes place at
Likelihood method, the actual data was fitted t@ th timet = 0. At the beginning of the selling horizar=(n),
Negative Binomial distribution, where the fittedlues of there arel, number of tickets for sale. The number of
mean and standard deviation were shown. From theickets demanded and the actual sales in periade
Pearsons Chi-Square test (Plackett, 1983), we foad  denoted byd, and m respectively. If demand is less than
with a significant level of 5%, the hypothesis tdatmand  inventory at the beginning of periol, the ticket sales in
(from the venue’'s data) follows a Negative Binomial periodt(m) are equal ta,. However, if demand exceeds
distribution was accepted for all graphs showfi@ 2. inventory @>l), the ticket sales mwill equall,.

Given the observed sales data, the seller updédes h  In the first period of the selling horizon £ n), the
belief about demand in the next period. The follagvi  seller determines the base pripg, Then, at time = n-
Proposition presents the relationships between thel,...,1, the seller observes past sales and decidether
expected demand and key relevant factors. to offer any discounts (reduce price) or chargeniuens
(increase price) and how much. Den6étas the discount

Theorem 2 or premium for period t and we assume it is base,o
The expected demand in periois: (i.e., customers pa@p, for each ticket in period). If
6<1, thenb, is considered as a price discount; otherwise,
«  Decreasing with the ticket price in period it is a price premium. Define at as the ticket ey&dl
» Decreasing with selling prices offered in the past action (or decision) at time t, we have:
periodst+1,...,n o if t=n
* Increasing with sales in the past perigdsg, ... ,n \ ={9t it t=n-1..1

From Observation 1, the expected demand in period t
depends not only on, put also on the history of prices
charged Pyy,...P,. The result is intuitive because when
the seller sold tickets at expensive prices in plast
periods, it reduced past sales. This causes loxyesroted
demand in the current period t since the obseraks are
used to update belief about the upcoming demanothier
words, the lower (higher) the past sales, the |digiher)
the demand in the upcoming period is expected to be

Let Vih, denote the maximum expected revenue
obtained from time period until the time of the
show/event (att = 0), given the history at the beginning of
periodt is h; = (hy1, G2, Muy, |y) . Note that hconsists of
the history of the previous peridd-1 (i.e., the action and
the number of ticket sold in the previous peried), as
well as the current inventory levdl)( At the beginning
of the selling horizont(= n), we haveh, = I,, since there
is no prior information. We assume the seller sKkri
neutral, so the backwards recursion of the revenue

3. DYNAMIC DISCOUNTSPREMIUMS maximization problem can be written as Equation 5:

PRICING
Vi(h) = maxE[R@,) + Y, by | Moo my
In this section we describe how the demand learning @A (5)
technique discussed in section 3 can be embeddke in AP, (Prar );9(N),-., 9 (L +1)]

ticket seller’'s dynamic pricing model. We begin twit _ _ . .
descriptions of key assumptions and present thewhere, R(a) is defined as the immediate revenue
“Dynamic discounts/premiums pricing” model, where received in period t when the seller’s action jd.at,:
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a, Irl{ln,d(an)}— pmin{ 1, d( p)}
|f t=
R@)= atpnmm{u,d(a)} 0, p,min{ 1, (0, p,)}
if t=n-1,...,1,
where, i = max{0, lui1-du1(aw1)} The boundary

conditions are as follow Equation 6 and 7:
Vo(hy) = 0,0k

Vi(h = (R41, @42, 42, 0)) = 0,

(6)
(7)

Condition (6) means there is zero salvage valugngf
unsold tickets at the event tinte=(0 ). Condition (7) states
that when all tickets have already been sold, éwenue
from any period t on is zero since there are ri@tcleft for
sale. The stochastic dynamic program can be sdbyed
backwards induction starting at the final peribe; 1, to

periodt = n. The following example is a special case where

the selling time is divided into two periods: 2.
3.2. Computational Experiments

In this section, we perform computational experitaen
for the dynamic discounts/premiums pricing modathw
the goal of understanding the properties of thenwt

solutions and the model performance under different

situations. Specifically, we consider: (1) How the

remaining inventory affects the expected base ddman

rate and the optimal discounts/premiums pricingcyol
and (2) how the performance of
discounts/premiums pricing model with demand leagni

is compared to the model without demand learning) an

when demand learning is most beneficial.

3.3.Effects of the Remaining
Unsold Tickets

Inventory of

the dynamic

Let the timing effect bg(2) = 1 andg(1) = u, (where
u>1 since we assume higher demand in the perio@rclos
to the show date). At the beginning of the sellimgizon
(t = 2), the seller believes that ticket demand is$em,
with the base ratel'§) following a Gamma distribution
with parametera = 4 andb = 0.04(This choice of a and b
follows from an example of actual ticket demandadaie
observed). In this period € 2), the seller determines the

optimal base ticket pricqa;, from a discrete sd?,={30,

35, ..., 75, 80}. After he observes how manketis have
been sold, the seller updates his belief with dehtearning
techniques presented in section 3 and determines th

optimal price discount/premiumy,, to charge in perioti=

1 from a discrete s@i={70%, 75%, . .., 115%, 120%}.
Figure 3 presents the updated mean demand for
period t = 1 at different values of remaining intey
from the past period (where the price sensitivity
parameters (w) equal 0.018, 0.020 and 0.022,
respectively (Parameter values for the price seitgit
parameters (w) in this experiment result in shiffs
0.9%-1.1% (at p1 = 50) which is consistent withadat
have seen). As expected, at the same values ofmega
inventory, the graph for w = 0.018 is the higheu #he
graph forw = 0.022 is the lowest iRig. 3, since a higher
price sensitivity leads to lower expected demand.
Moreover, considering the trends, we can see tmat t
higher number of tickets left in inventory (i.ehgtlower
number of tickets already sold), the lower mean alein
the seller expects for the next period. This isststent
with analytical results in Theorem 2 (iii) in Sexti3 that
the expected mean demand is increasing with obderve
sales in the past periods (so it is decreasing tith
leftover inventory). The finding is rational becaus
having a large number of tickets sold in the pastquls
(or a few number of tickets left in the inventoogn be

In each period, the seller can observe how manyan indicator of show popularity and it is likelyathhigh
unsold tickets remained in inventory. This section demand will occur in the next period as well.

explores how the seller's expectation and optimal

decisions are affected by the inventory informatibet
us consider the following example. A ticket sellas
300 tickets for sale in a selling season with 2. Let the
probability of each arrival purchasing a tickete(tbrice
effect function) beg (p,) = €"®, where w is a known non-
negative scalar. Note that with this form of priféect,
the demand rate equa&)I’; whenp; equals 0 and the rate
approaches 0 g is very large. This form of exponential
price effect function has been generally used ia th
marketing literature since it was found to veryMielwith
the empirical data (Aviv and Pazgal, 2002).
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We solve the described problem by the stochastic
dynamic program described in section 4.1. The agitim
base price at the beginning of the selling horigon 2)
is 95. After sales are realized, the seller's optim
discount/premium pricing for period= 1 is shown in
Fig. 4, where the horizontal axis represents different
values of leftover inventory;. Note that different lines
in Fig. 4a represent different price sensitivity
parameters, i.e., w equals 0.018, 0.020 and 0.022,
respectively; while different lines iRrig. 4b represent
different timing effect parameters, i.e., u equalg,
2.0, 2.3, respectively.
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1 Month prior to the show time

2 Month prior to the show time
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Fig. 2. The probability density plots of ticket sales franmajor performance venue in the Udiring the 2007-2008 season)
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w=0.018
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Fig. 3. The expected demand for the last period (t = Hjflgrent values of remaining inventory
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Optimal price promotions/premiums in the last period (t=1)

94(%) e1(%)
120 : 120
110 : 110
100 100
20 90
80 80
70 70
80 w=0.018 &0 u=17
....... w=0.020 eravnes u=2.0
0 w=0.022 s0 u=23
40 40
0 50 100 150 200 250 300 0 50 100 150 200 250 30(
Inventory Inventory

@ (b)

Fig. 4. The optimal discounts/premiums pricing for the laperiod (t = 1) at different values of leftoviewentory, where (a) w =
0.018, 0.020, 0.022 (b) u = 1.7, 2.0 and 2.3, {&ifferent price sensitivities (where u = 2) (k)different timing effects
(where w = 0.020)

Observation 1 learning. The insights will allow us to identify veh
, ) , , i , situations are most worthwhile to apply the leagnin

The optimal ticket price discount/ premiip,is  hrocess. The Demand Learning (DL) model incorpsrate
nonincreasing Wlth.th_e amount of. leftover inventory gnserved sales in updating the belief of the nexiop’s
observed at the beginning of the period demand, while the No Demand Learning (NoDL) model

Similar to other sets of experiment results we havejgeg not. Thus, when the seller applies the NoDHeho
explored, Observation 1 states that the higher thep, every period he uses the same estimated basandem
inventory, the lower the percentage of the baseethat ot as in the first period. We capture the DL énel
should be charged in the last perive (). This resultis  NoDL model performances by comparing revenues

consistent with other studies of dynamic pricingho  opiained from each model to the revenue under gerfe
demand learning where the optimal price is foun®€0  jytormation. Note that under perfect informatiome t

non-increasing with the remaining inventory (Chaiwi ggjier knows the true base demand without uncéytain
2000; Feng and Xiao, 1999; Zhao and Zheng, 2000). | g he optimizes his prices based on the true value

addition, we can see ig. 4a that at the same level of pefine pFM, as the performance of demand learning,
inventory, the higher the price sensitivity, thevés the Revenueof demand learningod el
= x10

i imi i ie., PFM,, =
optimal 6;. The timing effect parameter (u) also impacts ° = Revenueof perfednf ormationcase

the optimab,. FromFig. 4b, at the same inventory level,
the line withu = 2.3 is the highest and the line with u = @nd PFMqp_ as the performance of the no demand

0

1.7 is the lowest It implies when high demand is !€armning model, e,
expected in the last period, it is less necessanftife  ppy - Revenueof demandleamingod gl .

seller to offer a deep discount (since there isveer risk Revenueof perfednf ormationcase

of having empty seats). The closer PFM. and PFM,p, are to 100, the better

Next, we examine benefits of demand learning andineir performances are as compared to the perfect

gienln;‘r)]/ )[Ar/]r;'?ga rz'itrl]"at'?gcseszre most worthwhile - for information case, although the latter may not thées@ble.
PPyIng gp ' Consider a ticket seller having 100 tickets foresal

3.4. Benefits of Demand L ear ning Process a two-period selling horizon, where the timing effeare

. . g(2) = 1 andg(1) =u, u>1. The price effect function is
In this section, we study how the performance ef th 0031 At the beginning of the selling time €

dynamic discount/premium pricing model with demand o(p) =e i _ o .
learning compares to the model without demand 2). the seller determines the optimal base tickeepp,
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from a discrete sé?, = {50, 55, ..., 95, 100}. Then in
the next periodt(= 1), he determines the optimal price
discount/premium ;) from a discrete se®; = {70%,
75, ..., 115, 120%}. .
Let us consider what happens if the ticket seller
misestimates demand. For instance, suppose the true
base demand rate in the first perive Q) isy, while the
seller believes the base demand rate follows Gamma
distribution with parameters a atd respectively. Note

Observation 2
We found that:

Demand Learning (DL) is most beneficial, as
compared to No Demand Learning (NoDL) when
the initial estimation is inaccurate (with up to 8-
11% improvement in revenue when the
misestimates are high)

The marginal benefit of the DL model over the

that the expected value of the base demand ratigisn NoDL model is higher when a greater amount of

demand arrives in the last period (approximately
5.4% improvement in revenue on average for case 2,
as compare to 3.9% for case 1)

The underestimation of the base demand rate when
using the DL model causes fewer revenue loss as
compared to overestimation

case equalsg and the variance equalt% (for Gamma

distribution). Thus, the demand is overestimatethé

seller believes thaZt is greater than the true base demand

rate,y and the demand is underestimated otherwise.

In the following example, let the true base demand
rate,y, be 120.Fig. 5 shows the chosen prices for the
first and the second periods when the seller'sregés

of the mean base demand ra{%)(are 30, 60, ..., 210,

As we can see iRig. 6, when the misestimates of the
base demand rate are fairly lar§d&Mp, is greater than
PFMyop. for both graphs. It implies demand learning can
help increase revenue, compared to no learning. The
intuition is that when there are estimation errors,
observed sales are effectively used since the imate
estimation can be corrected for an updated belfef o
demand in the next period. For example, if therbigh
uncertainty about the show’s popularity (e.g., avne
show with no records of past sales), it can beadlilff for
the ticket seller to identify a correct value oé tthow's
base demand rate. The seller can start with a rough
estimate of the base demand rate and then use the
observed sales to update his belief.

In addition to the demand pace, we observe that
ie., 5<120, the DL model's prices for the second demand learning affects the performance difference
_ b ) between the two models. Specificallthe dynamic
period are higher than the NoDL model’s. Due to the tining model's performance is closer to the dynamic
ability of updating demand, the DL model uses the discounts/premiums pricing model's when demand

observed sales to adjust the true base demands ratejearning is not allowedasPFMpr is closer to 100 in this
distribution for the next period. With the DL model case). It indicates limiting the frequency of pritenges
the seller realizes in the second perIOd that he hais less disadvantageOUS, Compared to a”owing price
underestimated the rate and then decides to Chargehanges every period, when the seller does not use
higher prices than he would have done without gpserved sales to update his belief of demand. An
Demand Learning (NoDL). Similar reason applies explanation is when the seller allows demand |eagni
when the base demand rate is OVerestimated, Wherﬂew information is received every period_ SO, ih dee
the second period’s prices chosen by the DL modelmore beneficial to change price often, accordinght®
are lower than the NoDL model. _ updated demand. Adjusting price regularly as in the

Considering the performance of each mod&y.  dynamic discounts/premiums pricing model can lead t
6. shows PFM. and PFMpL, Where the horizontal  higher revenue, especially with an integration efnand
learning implementation. This observation is caesis
with results across the set of computational expenis
we performed, using different demand parameters.

240, respectively. The second period (1) price equals
the first period {(= 2) price times the discount/premium
of the second periog{ = p, % ;). In case 1u= 2.0 and
the optimal prices under perfect information areansl
56 for the first and the second period (in caset@ w=
2.3, they are 80 and 60, respectively). We canfreee
Fig. 6 that in the first period, both DL and NoDL models

_— . Jof
choose similar prices for almost all values %f.

However, when the base demand rate is underestimate

axis represents different estimates %f and the true

value is indicated.
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wiite= DL

. . NoDL } First period
Price for the first and the second periods when

ing the DL and NoDL model —— DL
using the and NoDL models }Second périod
NoDL
Case (1)u=2.0 Case l)u=23
The first period price = 575 The first period price = 580,
Pe:fectmfarmanon{ Fes periodp Perfect information { st period pn
The second period price = $56 The second period price = $60
100 4 / 100
®
80 - ',."A’ 80
o
e __‘/-r/d
60 . 60
" I .
True value True value
20 4 20 1
0 + , 1 0 . : . ; . .
0 30 60 90 120 150 180 210 240 0 30 60 90 120 150 180 210 240
a/'b a'b

Fig. 5. The optimal prices for the first and the secondooks when using the DL and the NoDL models

PFMyp; and PFMy,pp at different estimates of ob

Case(1)u=2.0 Case (1)u=23
00 100 DL
- _— ——
il ~ ”~ =~ —
80 - NoDL — 20 o —
NoDL
60 - 60
True value True value
40 l 40 - l
20 - . 20 _ i i . . :
0 30 60 90 120 150 180 210 240 0 30 60 90 120 150 180 210 240
a'b a/b

Fig. 6. Performances of the DL and the NoDL models atediffit estimates o% when the timing effects, u, are 2.0 (the left

diagram) or 2.3 (the right diagram)
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10 % Average revenue increase
(compared to static pricing)
8.15 S
8 Dynamic pricing
(=1 price change)

6 5.19

4.33 Dynamic timing
4 3.26 (1 price change)
O - - -

No learning Learning

Fig. 7. The average percentage revenue increase(frora ptating policy) under different scenarios

We conclude this section by exploring the benefit ~We found that the optimal price discount/premium fo
gained from dynamic pricing as compared to static the upcoming period is non-increasing with the amad
pricing. Figure 7 shows the average percentage revenueremaining inventory observed at the beginning @& th
increase from implementing the dynamic discounts/period. To identify the benefit of demand learnimgg
premiums pricing model and the dynamic timing model compared the described model to a similar modedowit
with demand leaning and without demand learning, learning. We observed that demand learning is most
respectively. We observe that dynamic pricing (aith ~ beneficial when the initial demand estimation is
demand learning) can help increase revenue byinaccur_ate since the seller can co_rrect his bediedr
approximately 3.26-4.33%, compared to static pgcin ©OPserving the actual sales (with up to 8-11%
When demand learning is incorporated with one priceimprovement in revenue when the misestimationgbhi
change (dynamic timing model), the average revenudn addition, our results shovyed:.When incorporating
increase is approximately 5.19%. Moreover, we found demand learning, the underestimation of the baswdd
that the benefits from having flexibility of prichanges ~ 'al€ causes less revenue loss as compared to

(dynamic discounts/premiums pricing model) and overestimation. T_his implies a risk-averse se_lldwow
demand learning can complement each other to az=;hievtends to underespmate the demand rate may pbgham
as much as 8.15% revenue increase. revenue than a risk-taker seller who overestimates

It is worthwhile to note that our model is suitalfibe
4. CONCLUSION situations when ticket demand is sensitive to lmibe
and time of the selling season, according to ounatel

While Revenue Management (RM) has been learning model assumption. A challenging task is to
intensively studied in the travel industries, Spand  identify this function correctly to help this model
Entertainment (S&E) also has a great potential ¢o b compute the suitable ticket price for each selfpegiod.
improved by this idea but still has not obtainedctnu  There are several possible extensions of this steidst,
attention in the literature. In addition, there mhg our model assumes demand uncertainty comes from the
models or insights from the S&E industry that may base demand rate, while the price and the timiferts
apply to other RM contexts. In this study, we depeld are unchanging. One could extend the model to allow
pricing and timing models for stochastic S&E ticket imperfect information on price and/or timing seisiies
demand in the existence of demand learning withto explore the form of the resulting posterior wlsition.
Bayesian updates to reduce uncertainty and improveNe expect the distribution will be more complestfinse
forecast. We also allow flexibility of demand being cases, but it could be interesting to examinedftibnefit
affected by time since in the S&E industry, we can offset the higher complexity. A second prongsin
observed significantly higher sales when it is eto® extension is a pricing model with demand learniag f
the end of the selling horizon. substitutable products, e.g., substitutable seatugions
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or shows. If the ticket seller would like to allaifferent Chatwin, R., 2000. Optimal dynamic pricing of
discounts/premiums for different types of seats or perishable products with stochastic demand and a

different days of the same performance, it can seful finite set of prices. Eur. J. Operat. Res., 129-14

to study how he can employ the observed saleseidiqir 174. DOI: 10.1016/S0377-2217(99)00211-8

future demand for a variety of substitutable prdsuc Ciancimino, A., G. Inzerillo, S. Lucidi and L. Pgla

(although there may not exist a closed form posteri 1999. A mathematical programming approach for

distribution for each of them). Another possible the solution of the railway yield management

extension is a dynamic pricing model that allowser problem. Trans. Sci., 33: 168-181. DOI:

adjustment only once. Each period, the seller néeds 10.1287/trsc.33.2.168

decide whether or not he should reduce or incrpase Courty, P., 2003. Ticket pricing under demand

and he has only one chance to do so. This modebean uncertainty. J. Law Econ., 46: 627-652. DOI:

applied to situations when adjusting price freglyerg 10.1086/377117

costly or not preferable. Deserpa, A., 1994. To err is rational: A theoryestess
Since dynamic pricing is fairly new for the S&E demand for tickets. Managerial Decis. Econ., 15:

business, an empirical work exploring the shontrteind 511-518. DOI: 10.1002/mde.4090150513

long-term effects of this revenue management idegdc Drake, M.J., S. Duran, P. Griffin and J. Swann, 200

be useful. (?bvi_ously, theret iSfSti” trr:)om Sfor rteuen d Optimal timing of switches between product sales

management = Improvemen or € ports an for sports and entertainment tickets. Naval Res.

Entertainment ticket industry and we hope our stwdly Logist., 55: 59-75. DOI: 10.1002/nav.20266

encourage future research in this area. Feng, Y. and B. Xiao, 1999. Maximizing revenues of
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