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ABSTRACT 

Revenue Management (RM) helped increase profitability for many travel industries. Selling perishable 
products with a fixed event date, the Sports and Entertainment (S&E) ticket industry can potentially 
benefit from RM ideas but has received less attention in the literature. In this study we develop 
dynamic pricing models for stochastic S&E demand in a discrete finite time setting, where demand 
depends not only on ticket prices but also on remaining times until the show dates. We assume the 
show popularity is uncertain to the seller, but this information can be learned via Bayesian updates as 
early sales are revealed. We present stochastic dynamic programs for Sports and Entertainment tickets 
pricing decisions. We test the models using real data obtained from a major performance venue in the 
U.S. to understand properties of the model solutions and performance under different scenarios. Our 
results show that demand learning is most beneficial when the initial estimates are incorrect. In 
addition, we found it is less necessary for the seller to vary price every period if demand variation is 
low and/or a large amount of demand arrives close to the show dates. Overall, we found that the 
benefits from having flexibility of price changes and demand learning can complement each other to 
achieve as much as 8.15% revenue increase on average, as compared to static pricing. 
 
Keywords: Dynamic Pricing, Demand Learning, Bayesian Updates, Sports and Entertainment Industry 

1. INTRODUCTION 

Revenue Management (RM) has attracted much 
attention and been proven as one of the most effective 
practices to increase profitability for many industries. 
RM first emerged in the airline industry in the context of 
passenger booking problems (Belobaba, 1987; 
Littlewood, 1972; Rothstein, 1971). Then, it has played 
important roles in improving the performance of many 
industries, selling fixed perishable capacity with high 
set-up costs such as hotels (Bitran and Gilbert, 1996; 
Bitran and Mondschein, 1995; Lieberman, 1992), cruise 

lines (Ladany and Arbel, 1991), passenger railways 
(Ciancimino et al., 1999) and rental car companies 
(Carol and Grimes, 1995; Geraghty and Johnson, 1997). 
Ultimately, RM is used to support decision making to 
achieve the goal of selling the right amount of product at 
the right price to the right customers at the right time 
(Bitran and Caldentey, 2003). 

Dynamic pricing is an RM tool that is widely used 
to manage and control demand at different points of 
time. Sellers adjust prices to increase or decrease 
demand in the short run so that it can be matched with 
their available resources. The main objective of 
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dynamic pricing is to find an optimal dynamic policy to 
balance utilization of the available capacity so that the 
revenue can be maximized over the selling period. 
There are extensive papers exploring a variety of 
dynamic pricing topics (Biller et al., 2005; Chan et al., 
2004; Gallego and van Ryzin, 1994; 1997; Kannan and 
Kopalle, 2001; Leloup and Deveaux, 2001; Levin et al., 
2009; Maglaras and Meissner, 2006). While dynamic 
pricing has been intensively studied in the travel 
industries, the Sport and Entertainment (S&E) 
industry is another business that has potential to be 
improved by the idea but still has not received as 
much attention (Drake et al., 2008). 

There are approximately 1,953 sport stadiums and 
236 performance venues in the United States, with the 
total revenue of 44.2 billion reported in 2009 
(PricewaterhouseCoopers, 2010). Similar to the airline 
business, the number of the S&E tickets is fixed and they 
are “perishable” since they have no value after the event 
date. However, the S&E industry’s characteristics differ 
from airlines or hotels in many ways. First, a much 
higher percentage of entertainment tickets are purchased 
on the day of the show than on the day of a flight or on 
the day of a hotel stay (Drake et al., 2008). Secondly, 
while important factors of demand are date/time of a 
flight for airlines and day/month of a stay for hotels, the 
S&E ticket demand is also very related to the sport teams 
or performance artists’ popularity. Moreover, consumer 
tastes and economic conditions change over time and 
events vary from one year to another, so it is difficult to 
incorporate all uncertainties to precisely predict S&E 
ticket sales. For these reasons, a different pricing model 
is necessary for the S&E industry. 

Although there are a number of studies that are related 
to ticket pricing (Courty, 2003; Deserpa, 1994; Rosen and 
Rosenfield, 1997) and the topic of price variation in the 
S&E business (Leslie, 2004; Rascher, 1999), the previous 
research considered static pricing decisions where ticket 
prices remain constant for the entire selling horizon. It is 
generally because in the past, most event tickets were sold 
with a fixed price (independent of when the tickets were 
sold) due to the limited inventory tracking devices or 
ticket changes were done on an ad-hoc basis. However, in 
recent years, tools such as internet based selling systems 
have become widely available, providing information for 
real-time demand observations. From our discussions with 
a performing arts consulting firm, there has been a 
significant interest from a number of performance arts 
organizations for methods to apply dynamic 
discounts/premiums pricing to more effectively manage 
demand and increase revenue. 

For new products (without past sales information) 
and/or products whose demand patterns may deviate 
significantly from past history, demand characterization is 
difficult (Lan et al., 2008). Likewise, the S&E demand can 
be uncertain, especially for a new show or a sports team 
with varying performance. So, the seller cannot totally 
rely on past sales history when predicting demand. Early 
sales observations can be useful for demand information 
updates. For example, after the selling time starts, the 
ticket sellers will have a clearer picture whether the games 
(or shows) are likely to have high or low sales. In this 
study, we consider stochastic S&E ticket demand and 
incorporate demand learning with Bayesian updates. A 
stochastic setting is appropriate to capture real-life 
situations when the paths of demand over time is difficult 
to be accurately predicted (Bitran and Caldentey, 2003); 
while demand learning allows the seller to update his 
beliefs as uncertainty reveals itself. 

In this study, we assume ticket demand in each 
period follows a Poisson distribution, where its rate is 
affected by three components; (1) the artists/sport 
teams’ popularity, (2) the ticket price and (3) the 
remaining time until the show date. Including timing 
effects for the S&E ticket demand is motivated by the 
actual data. Figure 1 depicts the average number of 
tickets sold for 108 shows performed in a major 
performance venue in the U.S. during the 2007-2008 
season, where the horizontal axis represents the number 
of months prior to the show dates. The upper and lower 
lines represent the average plus and minus one standard 
deviation, respectively. We can see in Fig. 1 that the 
average number of seats sold each month is dependent 
on time prior to the show and it generally increases 
when the time is closer to the event date. 

In our demand model, the seller can characterize 
price effects and timing effects on demand, but he has 
incomplete information about the event popularity (i.e., 
the base demand rate). The seller forecasts the base 
demand rate’s initial estimation and then uses the 
observed sales to update his belief about the upcoming 
period’s demand. We develop dynamic pricing models in 
a discrete-finite-time selling horizon. In the first period, 
the seller determines the optimal base ticket price. In the 
following periods, the seller can offer discounts 
(decrease price) or charge premiums (increase price), 
with respect to the decided base price. We develop a 
dynamic pricing model in a discrete-finite-time selling 
horizon. In the first period, the seller determines the 
optimal base price. In the following periods, the seller can 
offer discounts (decrease price) or charge premiums 
(increase price), with respect to the decided base price. 
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We develop a method for pricing and learning that allows 
us to address the following research questions: 
 
• How can the observed sales be used in the demand 

learning process to improve the forecast and when is 
demand learning most beneficial? 

• How are the optimal price changes related to model 
parameters such as price sensitivity and remaining 
inventory of unsold tickets? 

 
This study is organized as follows. We begin by we 

discussing demand assumptions and describe how the 
observed sales are used to update the belief about the 
upcoming period’s demand in the learning process. 
Section 3, we present the dynamic discounts/premiums 
pricing model, where the price discounts/premiums 
adjustment is allowed in every period and discuss the 
value of applying demand learning to the pricing model 
via the computational study. Finally, Section 4 concludes 
with a summary of insights from the results this study 
and discusses interesting future research ideas that this 
study could be extended further. 

2. DEMAND LEARNING MODEL 

In this section, we describe our demand model and 
show how the observed sales are used to update beliefs 
about demand in the upcoming periods. 

In this model, the ticket demand in each period t is 
assumed to follow a Poisson process with rate Θt(pt, Γt), 
which is affected by three components: (1) the ticket 
price, (2) the artists/sport teams’ popularity and (3) the 
remaining time until the show date. Note that pt denotes 
the ticket price in period t and Γt denotes the base 
demand rate, which represents the expected popularity of 
the show. The overall demand rate is defined as follows: 

( ) ( ) ( )Θ ,Γ = Γt t t t tp p g tφ  

 
where, φ (pt) represents price effects (i.e., the probability 
of each arrival purchasing a ticket) and it is decreasing 
with price pt. The demand timing effect, g(t), is a 
decreasing function of t (where t = n at beginning of the 
selling time and t = 0 at the show/event time). This 
assumption is underlined from the data we observed 
(Fig. 1) that ticket demand tends to increase closer to the 
show date. Also, ticket demand is sensitive to price, 
which is intuitive. 

From our discussions with the performing arts 
consulting firm, the show’s popularity in customers’ 
perspective is usually uncertain to the seller. It is usually 
difficult to correctly forecast demand. Therefore, in our 
model we assume there is incomplete information on the 
exact value of the base demand rate, Γt. At the beginning 
of the selling time (t = n), we assume Γn follows a 
Gamma distribution with a scale parameter of a and a 
shape parameter of b. In addition to the show’s 
popularity, a and b may depend on the city in which the 
show is performed, since we may expect a higher base 
demand rate for the show taking place in a bigger city. A 
Gamma distribution allows the flexibility of the shape 
and position to be changed extensively via parameters a 
and b, where empirically we found it a good match to 
past data. Let Mn be the random demand in period t = n. 
The distribution of Mn, conditional on the base demand 
rate (Γn = γ) and ticket price (pn), follows a Poisson 
distribution with rate φ (pn)g(n)γ. Thus, for demand in 
the first period, we have Equation 1: 
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Fig. 1. The average ticket sales of 108 shows performed in a major performance venue in the U.S. during the 2007-2008 season, at 

different times prior to the show 
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Similarly, the distribution of demand in period t 
(denoted by),  conditional on the base demand rate 
and  ticket price,  follows  a  Poisson  distribution  
with rate, i.e., Equation 2: 
 

- ( ) ( )γ[ ( ) ( )γ]
( = |Γ = γ, ) = ,

!
{0,1,2,...}, { -1,...,1}

tp g tm
t

t t t
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f M m p
m

m t n

φφ
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 Next, we identify the prior distribution of the demand in 
the first selling period (t = n). From Bayes’ rule, we have 
that the distribution of demand (when the price is pn), 
unconditional on τn, is given by Equation 3: 
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where, (Mn= mΓn= γ,pn) is given by (1) and f(γ) is the 
distribution f function of  Γn (i.e., a Gamma 
distribution with parameters of a and b). From (3), we 
can see that f(Mn = m) follows a Negative Binomial 

distribution with parameters of a and 
+ ( ) ( )

.
n

b

b p g nφ
 

Denote mn as the actual sales in the first period t = n. 
After mn has been observed, the base demand rate in the 
next period, Γn-1, is updated. Using Bayes’ rule, the 
posterior distribution of Γn-1 is as follows Equation 4: 
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Thus, the posterior distribution of Γn-1 at the 

beginning of the next period (t = n-1) follows a Gamma 
distribution with a scale parameter of a +mn and a shape 
parameter of b + φ (pn)g(n). 

From Bayes’ rule, the distribution of demand in 
period t = n-1 is given by: 

-1

0

-1

-1

-1

-1 -1 -10

-1

- ( )g( -1)γ-1

-γ[b+ ( )g(n)] a+ -1 a+

[ ( )g( -1)γ] e
= ( )

!

+ + -1 ( ) ( -1)
=

+ ( ) ( ) + ( )

( = | , , )

= ( = |Γ = γ, ) (γ | , )

γ [ + ( )g( )]
×( ) γ

( + -1)!

n n n

n n n n n

n

n

n

n

p nm n
n

p m mn n n

n

n n

p n

m

m a m p g n

m b p g n p

f M m p p m

f M m p f p m dγ

e b p n
d

a m

φ

φ

φ

φ
φ φ

φ

∞

∞

 
 
 

∫

∫

-1

+m

( -1)

+ ( )g( )
, {0,1,2,...},

+ ( ) ( ) + ( ) ( -1)
×

m

n
n

n n

g n

b p n

b p g n p g n
m

α
φ

φ φ
∀ ∈

 
 
 

 
 
 

  
where, f(Mn-1= mΓn-1=γ,pn-1) is given by (2) for tn-1 and 
f(γmn, pn) is the distribution function of Γn-1, given by 
(4). We can see that Mn-1 follows a Negative Binomial 
distribution with parameters α+mn and 
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described above, we find that the base demand rate and the 
unconditional ticket demand distributions in any period t 
can be summarized in the following Theorem. 

Theorem 1  

In period t, where n<t≤1, we have: 
 
• The base demand rate, Γt, follows a Gamma 

distribution with a scale parameter of 
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Theorem 1 (i) and (ii) address the distribution of the 

base demand rate, Γt and the unconditional demand, Mt, 
respectively. From Theorem 1 (ii), the distribution of 
demand in period t is given by: 
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where, 
= +1

( ) = + ( ) ( ) + ( ) ( )
n

k tk t
A t b p g k p g tφ φ∑ . Note that 

ticket demand takes non-negative integer values. The 
posterior Negative Binomial distribution of demand is 
advantageous since it provides the probability mass function 
for non-negative integers. Moreover, the shape and position 
can be changed extensively via its two parameters 
(Subrahmanyan and Shoemaker, 1996). From ticket sales 
data of the 2007-2008 season obtained from a performance 
venue in the U.S. (108 shows), Fig. 2 depicts the probability 
density plots of sales occurred at different times in the 
selling horizon; i.e., one, two, three and four months prior to 
the show time, respectively. Using the Maximum-
Likelihood method, the actual data was fitted to the 
Negative Binomial distribution, where the fitted values of 
mean and standard deviation were shown. From the 
Pearsons Chi-Square test (Plackett, 1983), we found that 
with a significant level of 5%, the hypothesis that demand 
(from the venue’s data) follows a Negative Binomial 
distribution was accepted for all graphs shown in Fig. 2.

 

Given the observed sales data, the seller updates his 
belief about demand in the next period. The following 
Proposition presents the relationships between the 
expected demand and key relevant factors. 

Theorem 2 

The expected demand in period t is: 
 
• Decreasing with the ticket price in period t 
• Decreasing with selling prices offered in the past 

periods, t+1, . . . , n 
• Increasing with sales in the past periods, t+1, … , n 
 

From Observation 1, the expected demand in period t 
depends not only on pt but also on the history of prices 
charged, Pt+1,…Pn. The result is intuitive because when 
the seller sold tickets at expensive prices in the past 
periods, it reduced past sales. This causes lower expected 
demand in the current period t since the observed sales are 
used to update belief about the upcoming demand. In other 
words, the lower (higher) the past sales, the lower (higher) 
the demand in the upcoming period is expected to be. 

3. DYNAMIC DISCOUNTS/PREMIUMS 
PRICING 

In this section we describe how the demand learning 
technique discussed in section 3 can be embedded in the 
ticket seller’s dynamic pricing model. We begin with 
descriptions of key assumptions and present the 
“Dynamic discounts/premiums pricing” model, where 

price discounts/premiums adjustments are allowed in 
every period, in the context of a stochastic dynamic 
program in section 3.1. Computational analysis is then 
presented in section 3.2 to provide insights on the 
optimal pricing structures and the benefit of demand 
learning for the described pricing model. 

3.1. Model 

We consider a discrete finite time setting, where there 
are n sub-periods from the beginning of the selling horizon 
to the event/show time. The time periods are numbered in 
reverse chronological order so that the beginning of the 
selling horizon is time t = n and the show takes place at 
time t = 0. At the beginning of the selling horizon (t = n), 
there are In number of tickets for sale. The number of 
tickets demanded and the actual sales in period t are 
denoted by dt and mt, respectively. If demand is less than 
inventory at the beginning of period, It, the ticket sales in 
period t(mt) are equal to dt. However, if demand exceeds 
inventory (dt>It), the ticket sales mt will equal I t. 

In the first period of the selling horizon (t = n), the 
seller determines the base price, pn. Then, at time t = n-
1,…,1, the seller observes past sales and decides whether 
to offer any discounts (reduce price) or charge premiums 
(increase price) and how much. Denote θt as the discount 
or premium for period t and we assume it is based on pn, 
(i.e., customers pay θtpn for each ticket in period t). If 
θt<1, then θt is considered as a price discount; otherwise, 
it is a price premium. Define at as the ticket seller’s 
action (or decision) at time t; we have: 
 

t

   if   =             
=
θ     if   = -1,...,1.t

np t n

t n
α





 

 
Let Vtht denote the maximum expected revenue 

obtained from time period t until the time of the 
show/event (at t = 0), given the history at the beginning of 
period t is ht = (ht+1, αt+1, mt+1, I t) . Note that ht consists of 
the history of the previous period t +1 (i.e., the action and 
the number of ticket sold in the previous period t+1), as 
well as the current inventory level (I t). At the beginning 
of the selling horizon (t = n), we have hn = In since there 
is no prior information. We assume the seller is risk 
neutral, so the backwards recursion of the revenue 
maximization problem can be written as Equation 5: 
 

t t

-1 -1 +1
A

+1

( ) = max [ ( ) + | ,..., ;

( ),..., ( ); ( ),..., ( +1)]

t t t t t t n t

n n

V h E R V h m m

p p g n g t

α
α

φ φ
∈   (5) 

 
where, Rt(at) is defined as the immediate revenue 
received in period t when the seller’s action is at; i.e.,: 
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n

t

min{ , ( )} = min{ , ( )}          
if   t = n;

( ) =
min{ , ( )} = θ min{ , (θ )}     

if   = -1,...,1,

n n n n n n n

t t
n t t t t n t t t n

I d p I d p

R
p I d p I d p
t n

α α

α
α α







 

 
where, i t = max{0, l t+1-dt+1(αt+1)} The boundary 
conditions are as follow Equation 6 and 7: 
 

0 0 0( ) = 0,V h h∀  (6) 
 

+1 +1 +1( = ( , , ,0)) = 0,"t t t t tV h h a m t (7) 
 

Condition (6) means there is zero salvage value of any 
unsold tickets at the event time (t = 0 ). Condition (7) states 
that when all tickets have already been sold, the revenue 
from any period t on is zero since there are no tickets left for 
sale. The stochastic dynamic program can be solved by 
backwards induction starting at the final period, t = 1, to 
period t = n. The following example is a special case where 
the selling time is divided into two periods, n = 2. 
3.2. Computational Experiments 

In this section, we perform computational experiments 
for the dynamic discounts/premiums pricing model, with 
the goal of understanding the properties of the optimal 
solutions and the model performance under different 
situations. Specifically, we consider: (1) How the 
remaining inventory affects the expected base demand 
rate and the optimal discounts/premiums pricing policy 
and (2) how the performance of the dynamic 
discounts/premiums pricing model with demand learning 
is compared to the model without demand learning and 
when demand learning is most beneficial. 

3.3. Effects of the Remaining Inventory of 
Unsold Tickets 

In each period, the seller can observe how many 
unsold tickets remained in inventory. This section 
explores how the seller’s expectation and optimal 
decisions are affected by the inventory information. Let 
us consider the following example. A ticket seller has 
300 tickets for sale in a selling season with n = 2. Let the 
probability of each arrival purchasing a ticket (the price 
effect function) be φ (pt) = e-wpt, where w is a known non-
negative scalar. Note that with this form of price effect, 
the demand rate equals g(t)Γt when pt equals 0 and the rate 
approaches 0 as pt is very large. This form of exponential 
price effect function has been generally used in the 
marketing literature since it was found to very well fit with 
the empirical data (Aviv and Pazgal, 2002). 

Let the timing effect be g(2) = 1 and g(1) = u, (where 
u>1 since we assume higher demand in the period closer 
to the show date). At the beginning of the selling horizon 
(t = 2), the seller believes that ticket demand is Poisson, 
with the base rate (Γ2) following a Gamma distribution 
with parameters a = 4 and b = 0.04 (This choice of a and b 
follows from an example of actual ticket demand data we 
observed). In this period (t = 2), the seller determines the 

optimal base ticket price,
2

*p , from a discrete set P2={30, 

35, . . . , 75, 80}. After he observes how many tickets have 
been sold, the seller updates his belief with demand learning 
techniques presented in section 3 and determines the 

optimal price discount/premium,*

1
θ , to charge in period t = 

1 from a discrete set θ1={70%, 75%, . . . , 115%, 120%}. 
Figure 3 presents the updated  mean demand for 

period t = 1 at different values of remaining inventory 
from the past period (where the price sensitivity 
parameters (w) equal 0.018, 0.020 and 0.022, 
respectively (Parameter values for the price sensitivity 
parameters (w) in this experiment result in shifts of 
0.9%-1.1% (at p1 = 50) which is consistent with data we 
have seen). As expected, at the same values of remaining 
inventory, the graph for w = 0.018 is the highest and the 
graph for w = 0.022 is the lowest in Fig. 3, since a higher 
price sensitivity leads to lower expected demand. 
Moreover, considering the trends, we can see that the 
higher number of tickets left in inventory (i.e., the lower 
number of tickets already sold), the lower mean demand 
the seller expects for the next period. This is consistent 
with analytical results in Theorem 2 (iii) in Section 3 that 
the expected mean demand is increasing with observed 
sales in the past periods (so it is decreasing with the 
leftover inventory). The finding is rational because 
having a large number of tickets sold in the past periods 
(or a few number of tickets left in the inventory) can be 
an indicator of show popularity and it is likely that high 
demand will occur in the next period as well. 

We solve the described problem by the stochastic 
dynamic program described in section 4.1. The optimal 
base price at the beginning of the selling horizon (t = 2) 
is 95. After sales are realized, the seller’s optimal 
discount/premium pricing for period t = 1 is shown in 
Fig. 4, where the horizontal axis represents different 
values of leftover inventory, I1. Note that different lines 
in Fig. 4a represent different price sensitivity 
parameters, i.e., w equals 0.018, 0.020 and 0.022, 
respectively; while different lines in Fig. 4b represent 
different timing effect parameters, i.e., u equals 1.7, 
2.0, 2.3, respectively. 
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Fig. 2. The probability density plots of ticket sales from a major performance venue in the U.S. (during the 2007-2008 season) 
 

 
 

Fig. 3. The expected demand for the last period (t = 1) at different values of remaining inventory 
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 (a) (b) 
 
Fig. 4. The optimal discounts/premiums pricing for the last   period (t = 1) at different values of leftover inventory, where (a) w = 

0.018, 0.020, 0.022 (b) u = 1.7, 2.0 and 2.3, (a) at different price sensitivities (where u = 2) (b) at different timing effects 
(where w = 0.020) 

 
Observation 1 

The optimal ticket price discount/ premium,θt, is 
nonincreasing with the amount of leftover inventory 
observed at the beginning of the period. 

Similar to other sets of experiment results we have 
explored, Observation 1 states that the higher the 
inventory, the lower the percentage of the base price that 
should be charged in the last period (t = 1). This result is 
consistent with other studies of dynamic pricing with no 
demand learning where the optimal price is found to be 
non-increasing with the remaining inventory (Chatwin, 
2000; Feng and Xiao, 1999; Zhao and Zheng, 2000). In 
addition, we can see in Fig. 4a that at the same level of 
inventory, the higher the price sensitivity, the lower the 
optimal θ1. The timing effect parameter (u) also impacts 
the optimal θ1. From Fig. 4b, at the same inventory level, 
the line with u = 2.3 is the highest and the line with u = 
1.7 is the lowest It implies when high demand is 
expected in the last period, it is less necessary for the 
seller to offer a deep discount (since there is a lower risk 
of having empty seats). 

Next, we examine benefits of demand learning and 
identify which situations are most worthwhile for 
applying the learning process. 

3.4. Benefits of Demand Learning Process 

In this section, we study how the performance of the 
dynamic discount/premium pricing model with demand 
learning compares to the model without demand 

learning. The insights will allow us to identify which 
situations are most worthwhile to apply the learning 
process. The Demand Learning (DL) model incorporates 
observed sales in updating the belief of the next period’s 
demand, while the No Demand Learning (NoDL) model 
does not. Thus, when the seller applies the NoDL model, 
in every period he uses the same estimated base demand 
rate as in the first period. We capture the DL and the 
NoDL model performances by comparing revenues 
obtained from each model to the revenue under perfect 
information. Note that under perfect information, the 
seller knows the true base demand without uncertainty 
and he optimizes his prices based on the true value. 
Define PFMDL as the performance of demand learning, 

i.e., 
Re mod

100
Re infDL

venueof demand learning el
PFM

venueof perfect ormationcase
= ×   

and PFMNoDL as the performance of the no demand 
learning model, i.e., 

Re mod
100

Re infNoDL

venueof demand learning el
PFM

venueof perfect ormationcase
= ×  

The closer PFMDL and PFMNoDL are to 100, the better 
their performances are as compared to the perfect 
information case, although the latter may not be achievable. 

Consider a ticket seller having 100 tickets for sale in 
a two-period selling horizon, where the timing effects are 
g(2) = 1 and g(1) = u, u>1. The price effect function is 
φ (pt) = e-0.02pt. At the beginning of the selling time (t = 

2), the seller determines the optimal base ticket price, *
2p , 
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from a discrete set P2 = {50, 55, . . . , 95, 100}. Then in 
the next period (t = 1), he determines the optimal price 

discount/premium (*1θ ) from a discrete set Θ1 = {70%, 

75, . . . , 115, 120%}. 
Let us consider what happens if the ticket seller 

misestimates demand. For instance, suppose the true 
base demand rate in the first period (t = 2) is γ, while the 
seller believes the base demand rate follows Gamma 
distribution with parameters a and b, respectively. Note 
that the expected value of the base demand rate in this 

case equals 
b

α
and the variance equals 

2b

α
 (for Gamma 

distribution). Thus, the demand is overestimated if the 

seller believes that
b

α
is greater than the true base demand 

rate, γ and the demand is underestimated otherwise. 
In the following example, let the true base demand 

rate, γ, be 120. Fig. 5 shows the chosen prices for the 
first and the second periods when the seller’s estimates 

of the mean base demand rate (
b

α
) are 30, 60, . . . , 210, 

240, respectively. The second period (t = 1) price equals 
the first period (t = 2) price times the discount/premium 
of the second period (p1 = p2 × θ1). In case 1, u = 2.0 and 
the optimal prices under perfect information are 75 and 
56 for the first and the second period (in case 2 with u = 
2.3, they are 80 and 60, respectively). We can see from 
Fig. 6 that in the first period, both DL and NoDL models 

choose similar prices for almost all values of 
b

α
. 

However, when the base demand rate is underestimated, 

i.e., 120
b

α < , the DL model’s prices for the second 

period are higher than the NoDL model’s. Due to the 
ability of updating demand, the DL model uses the 
observed sales to adjust the true base demand rate’s 
distribution for the next period. With the DL model, 
the seller realizes in the second period that he has 
underestimated the rate and then decides to charge 
higher prices than he would have done without 
Demand Learning (NoDL). Similar reason applies 
when the base demand rate is overestimated, where 
the second period’s prices chosen by the DL model 
are lower than the NoDL model. 

Considering the performance of each model, Fig. 
6. shows PFMDL and PFMNoDL, where the horizontal 

axis represents different estimates of 
b

α
 and the true 

value is indicated. 

Observation 2  

We found that: 
 
• Demand Learning (DL) is most beneficial, as 

compared to No Demand Learning (NoDL) when 
the initial estimation is inaccurate (with up to 8-
11% improvement in revenue when the 
misestimates are high) 

• The marginal benefit of the DL model over the 
NoDL model is higher when a greater amount of 
demand arrives in the last period (approximately 
5.4% improvement in revenue on average for case 2, 
as compare to 3.9% for case 1) 

• The underestimation of the base demand rate when 
using the DL model causes fewer revenue loss as 
compared to overestimation 

 
As we can see in Fig. 6, when the misestimates of the 

base demand rate are fairly large, PFMDL is greater than 
PFMNoDL for both graphs. It implies demand learning can 
help increase revenue, compared to no learning. The 
intuition is that when there are estimation errors, 
observed sales are effectively used since the inaccurate 
estimation can be corrected for an updated belief of 
demand in the next period. For example, if there is high 
uncertainty about the show’s popularity (e.g., a new 
show with no records of past sales), it can be difficult for 
the ticket seller to identify a correct value of the show’s 
base demand rate. The seller can start with a rough 
estimate of the base demand rate and then use the 
observed sales to update his belief. 

In addition to the demand pace, we observe that 
demand learning affects the performance difference 
between the two models. Specifically, the dynamic 
timing model’s performance is closer to the dynamic 
discounts/premiums pricing model’s when demand 
learning is not allowed (as PFMDT is closer to 100 in this 
case). It indicates limiting the frequency of price changes 
is less disadvantageous, compared to allowing price 
changes every period, when the seller does not use 
observed sales to update his belief of demand. An 
explanation is when the seller allows demand learning, 
new information is received every period. So, it can be 
more beneficial to change price often, according to the 
updated demand. Adjusting price regularly as in the 
dynamic discounts/premiums pricing model can lead to 
higher revenue, especially with an integration of demand 
learning implementation. This observation is consistent 
with results across the set of computational experiments 
we performed, using different demand parameters. 



Naragain Phumchusri and Julie L. Swann / Journal of Computer Science 10 (11): 2240-2252, 2014 

 
2249 Science Publications

 JCS 

 
 

Fig. 5. The optimal prices for the first and the second periods when using the DL and the NoDL models 

 

  
 

Fig. 6. Performances of the DL and the NoDL models at different estimates of 
b

α
, when the timing effects, u, are 2.0 (the left 

diagram) or 2.3 (the right diagram) 
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Fig. 7. The average percentage revenue increase(from static pricing policy) under different scenarios 
 

We conclude this section by exploring the benefit 
gained from dynamic pricing as compared to static 
pricing. Figure 7 shows the average percentage revenue 
increase from implementing the dynamic discounts/ 
premiums pricing model and the dynamic timing model, 
with demand leaning and without demand learning, 
respectively. We observe that dynamic pricing (without 
demand learning) can help increase revenue by 
approximately 3.26-4.33%, compared to static pricing. 
When demand learning is incorporated with one price 
change (dynamic timing model), the average revenue 
increase is approximately 5.19%. Moreover, we found 
that the benefits from having flexibility of price changes 
(dynamic discounts/premiums pricing model) and 
demand learning can complement each other to achieve 
as much as 8.15% revenue increase. 

4. CONCLUSION 

While Revenue Management (RM) has been 
intensively studied in the travel industries, Sport and 
Entertainment (S&E) also has a great potential to be 
improved by this idea but still has not obtained much 
attention in the literature. In addition, there may be 
models or insights from the S&E industry that may 
apply to other RM contexts. In this study, we developed 
pricing and timing models for stochastic S&E ticket 
demand in the existence of demand learning with 
Bayesian updates to reduce uncertainty and improve 
forecast. We also allow flexibility of demand being 
affected by time since in the S&E industry, we 
observed significantly higher sales when it is closer to 
the end of the selling horizon. 

We found that the optimal price discount/premium for 
the upcoming period is non-increasing with the amount of 
remaining inventory observed at the beginning of the 
period. To identify the benefit of demand learning, we 
compared the described model to a similar model without 
learning. We observed that demand learning is most 
beneficial when the initial demand estimation is 
inaccurate since the seller can correct his belief after 
observing the actual sales (with up to 8-11% 
improvement in revenue when the misestimation is high). 
In addition, our results showed: When incorporating 
demand learning, the underestimation of the base demand 
rate causes less revenue loss as compared to 
overestimation. This implies a risk-averse seller who 
tends to underestimate the demand rate may obtain higher 
revenue than a risk-taker seller who overestimates it. 

It is worthwhile to note that our model is suitable for 
situations when ticket demand is sensitive to both price 
and time of the selling season, according to our demand 
learning model assumption. A challenging task is to 
identify this function correctly to help this model 
compute the suitable ticket price for each selling period. 
There are several possible extensions of this study. First, 
our model assumes demand uncertainty comes from the 
base demand rate, while the price and the timing effects 
are unchanging. One could extend the model to allow 
imperfect information on price and/or timing sensitivities 
to explore the form of the resulting posterior distribution. 
We expect the distribution will be more complex in those 
cases, but it could be interesting to examine if the benefit 
can offset the higher complexity. A second promising 
extension is a pricing model with demand learning for 
substitutable products, e.g., substitutable seating sections 
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or shows. If the ticket seller would like to allow different 
discounts/premiums for different types of seats or 
different days of the same performance, it can be useful 
to study how he can employ the observed sales to predict 
future demand for a variety of substitutable products 
(although there may not exist a closed form posterior 
distribution for each of them). Another possible 
extension is a dynamic pricing model that allows price 
adjustment only once. Each period, the seller needs to 
decide whether or not he should reduce or increase price 
and he has only one chance to do so. This model can be 
applied to situations when adjusting price frequently is 
costly or not preferable. 

Since dynamic pricing is fairly new for the S&E 
business, an empirical work exploring the short-term and 
long-term effects of this revenue management idea could 
be useful. Obviously, there is still room for revenue 
management improvement for the Sports and 
Entertainment ticket industry and we hope our study will 
encourage future research in this area. 
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