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ABSTRACT 

Most machine learning algorithms need to handle large data sets. This feature often leads to limitations on 
processing time and memory. The Expectation-Maximization (EM) is one of such algorithms, which is used 
to train one of the most commonly used parametric statistical models, the Gaussian Mixture Models 
(GMM). All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In 
this study, we propose a parallel implementation of EM for training GMM using CUDA. Experiments are 
performed with a UCI dataset and results show a speedup of 7 if compared to the sequential version. We 
have also carried out modifications to the code in order to provide better access to global memory and 
shared memory usage. We have achieved up to 56.4% of achieved occupancy, regardless the number of 
Gaussians considered in the set of experiments. 
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1. INTRODUCTION 

Machine Learning (ML) algorithms are often costly, 
since learning is a task that requires a large amount of 
knowledge and constant improvement of it, thus 
requiring massive data computation. A major problem of 
massive computing is the limitation of mainstream 
sequential processing in older computer architectures. 
Such limitation can be overcome using a parallel 
processing of data provided on newer architectures. 

One of these recent architecture is the NVIDIA™ 
CUDA™ architecture, which is a framework for 
developing general programs source code and using the 
power of Graphical Processing Units (GPUs) to perform 
execution. It is possible to use the CUDA-C 
programming language, for instance, to provide a 
parallelized source code. 

GPUs have high amount of internal multiprocessors, 
optimized for doing several Computer Graphics 
calculations in parallel. 

The clear advantage of using GPUs is the small costs 
if compared to clusters or supercomputers and its 
processing power if compared to multi-core processors. 
Even the former NVIDIATM GeForce™ 8400 GS 
graphics card, for instance, is able to run up to 32 threads 
in parallel per clock cycle, under some restrictions. 

The work on CUDA to provide parallelized 
implementations of important algorithms in different 
domains can be observed in recent scientific literature 
(Subbaraj and Sivakumar, 2012; Tharawadee et al., 
2013; Meng  et al., 2013; Mielikainen et  al.,  2012; 
Lee and Park, 2012). 

Results show average performance gains of up to 
30 times compared to processing the same problem 
using conventional CPUs. There are also efforts to 
further develop the readability of CUDA programs 
through the development of an Application 
Programming Interface (API) for C/C++ which 
automate the processing of sequential code into 
parallelized code (Santos and Macedo, 2012). 
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In this study we present the CUDA parallel 
implementation of the Expectation-Maximization 
algorithm for the estimation of Gaussian Mixture 
Models. The Gaussian mixture model is one of the most 
widely used statistical models for machine learning 
tasks, being the most flexible parametric model. 

We are particularly interested in verifying whether a 
more efficient global memory access can reduce the 
concerned overhead, providing better usage of CUDA 
cores and, thus, improving performance. 

1.1. Expectation-Maximization Algorithm (EM) 

Statistical models are used in many machine 
learning techniques. The maximum likelihood method 
(Maximum- Likelihood Estimation, or just MLE) can 
estimate the parameters of a statistical model from a 
set of sample data, for further usage in classification 
tasks, for instance. 

An important concern is what to do when some data 
sample are missing. It is yet possible to perform 
estimation of model parameters. The Expectation-
Maximization (EM) allows learning of parameters that 
govern the distribution of the sample data with some 
missing features (Sujaritha and Annadurai, 2011; 
Poongothai and Sathiyabama, 2012; Malarvezhi and 
Kumar, 2013). 

The MLE is defined as Equation 1: 
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where, y represents the full set of sample data. To deal 
with missing data, tough, the EM can iteratively 
maximize the hope of the likelihood function, given 
the observed samples and the estimate of the current 
iteration Θ. 

The EM algorithm consists of two steps. 
The E-step computes the hope of logarithmic 

likelihood, conditionally to the set of observed data and 
the current value of the parameters, Θ

t Equation 2: 
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The M-step computes the (t+1)-th parameter vector Θ 

that maximizes Q (Θ; Θt), given by Equation 3: 
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The algorithm starts from a Θ(0) (usually defined 
arbitrarily,   choice) and iterates through both steps 
until a stop criterion is satisfied. The widely used 
criterion is the variation of Q between steps, defined as 
Equation 4: 
 

1t t ε+Θ − Θ ≤   (4) 

 
1.2. EM for GMM Estimation 

Gaussian classifiers are the most widely used 
methods for supervised classification. However, these 
methods have limitations when dealing with problems 
where the classes cannot be linearly separable. Also, they 
cannot deal with non-Gaussian data, since their 
discriminant functions are linear or quadratic. A 
workaround for such limitation is to combine probability 
functions (pdf's). Indeed, this approach is widely used 
because it is a parametric method that can be applied to 
non-linear classification problems. Such technique is 
known as Finite Mixture Model and its probability 
function is defined as: 
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where, g is the number of components (pdf) of the 
mixture; πj is the probability of the components 
(commonly known as the weight of the component), 

such that 1 
1

g

jj
π

=∑  and p (x; Θj) is the pdf of the 

component in regards to the parameters Θj. 
When we use Gaussian models, each component 

assumes a multivariate normal distribution, where Θj = 
{µ; Σj}. This model is known as Gaussian Mixture 
Model (GMM) (Shanmugapriya and Nallusamy, 2014), 
(Ramalingam and Dhanalakshmi, 2014). Equation 5 cant 
thus be rewritten as Equation 6: 
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But how to find the parameters that maximize the 

likelihood of the GMM? Typically, the parameters of the 
components of GMMs are estimated using the EM 
algorithm described in the previous section. For the 
GMM, the EM steps are defined as follows. 

E-step: Calculate for each given i: 
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where, πj,µj and Σj are the weights, means and covariance 
matrices of component j at step t. 

M-step: For each given j, update the parameters 
Equation 8 to 10: 
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As described above, the EM algorithm iterates until 

the convergence of the model likelihood (stopping 
criterion). It is possible, though, that the algorithm 
becomes stuck in a local minimum, leading to 
nonoptimal solutions. It is thus a common practice, 
repeat the training process few times more, initializing 
the parameters with different values and in the end, 
choose the best solution (Webb and Copsey, 2011). 
Moreover, both the calculation of w and the calculation 
of parameters π, µ and Σ iterate over all sample data. 

For a large dataset, the time of the training process 
can be huge, especially in cases where there are high 
numbers of components. Despite such limitation, 
calculations performed for each data are independent and 
thus, fully parallelizable. 

1.3. Previous Work on Parallel Implementation 
of EM and GMM Learning 

Tagare et al. (2010), the authors present a strategy to 
speed up the EM algorithm using domain reduction. The 
approach considers the use of three different kernels to 
compute the calculation of latent probabilities and the 
Riemann sums for the parameter updates. The EM is 
used for reconstructing 3D volumes from noisy Electron 
Cryomicroscopy images of single macromolecular 
particles. The work focus on problems other than GMM. 

Chen et al. (2012), the authors derive an algorithmic 
method for incremental GMM learning from a 

hypothesis-test and merging based algorithm. EM is not 
used. The most time-consuming part of the algorithm is 
accelerated by GPU. Davies-Bouldin index is used to 
measure the cluster quality of the algorithm. 

Pham et al. (2010), the authors proposes a GPU 
implementation of the Extended GMM to Background 
Subtraction (BGS), which is used in various computer 
vision problems. 

Pangborn (2010), the author presents a strategy to 
speed up the EM algorithm for clustering in single and 
multiple GPUs. The approach consists in breaking the 
Estep into two kernels and the M-step into three 
kernels. The work includes a parallel version of the 
cmeans algorithm. 

Kumar et al. (2009), the authors spread the EM 
algorithm over six CUDA kernels for a fast parallel 
parametric estimation of GMM. The work focus is in 
speeding up the EM algorithm through improvements 
of the kernels and data organization, not using it for 
specific problems. 

Azhari and Ergün (2011), the authors implements a 
CUDA version of the EM algorithm for speaker 
verification based on Gaussian Mixture Modeling- 
Universal Background Modeling (GMMUBM). The 
major difference between this and the previous presented 
works is that it uses only 2 kernels for the EM, one for 
the E-step and one for the M-Step. There is also a 
parallel implementation of the k-means algorithm. 

Machlica et al. (2011), the authors present an 
implementation of the parallel EM algorithm for 
GMM training. According to the paper, their approach 
offers better memory occupancy and greater speedup 
due to less coalesced access. Their results were 
obtained using adapted data taken from 2008 NIST 
Speaker Recognition Evaluation. 

2. MATERIALS AND METHODS 

The method to provide parallelized implementation 
of EM for GMM is greatly founded on how to deal 
with the specificities of CUDA. In order to provide 
better understanding of the approach, firstly, we 
depict CUDA itself. 

2.1. Technological Background: CUDA 

Multiprocessors are responsible for GPU internal 
processing and there may exist many of them, varying 
according to graphics card's model. Every multiprocessor 
is composed by smaller processors, the so-called Core 
processors. These core processors share the same 
instruction chip, which belongs to the multiprocessor. 
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This means that CUDA™ architecture works as a 
Single Instruction Multiple Data (SIMD) system, where 
every multiprocessor is capable of processing only one 
instruction at a time. The basic parallel processing 
element is a thread, just like CPU, but there are two 
others important concepts: The block and the grid. A 
block is a composition of up to t threads, where t is the 
maximum value supported by the GPU. It is also the 
element seen in the multiprocessors, responsible for fully 
process all the threads of a block, when thus a new ready 
block is chosen. A grid, on the other hand, is an 
aggregation of multiple blocks. 

Both the grid of blocks and the blocks of threads can 
be uni-, two- or three-dimensional. A kernel call needs to 
specify the dimensions of grid and blocks and thus, it is 
possible to run kernels with different arrangements of 
threads within the same application. 

The memory hierarchy consists of local memory, 
global memory and shared memory. The local memory is 
a high speed memory and private to each thread. The 
shared memory is larger and slower than the local 
memory, but it is accessible by all threads of the same 
block, allowing threads to work collaboratively within a 
single run. The global memory is the largest and slowest 
memory of GPU, but it is accessible by any thread, 
thereby allowing different kernels to share common data. 

2.2. Rationale of the Parallelization Approach 

The calculation of wij in E-step (Equation 7) and the 
calculations of weights πj, means µj and covariances Σj 
are extremely parallelizable as they iterate over all the 
data and are independent of each other. 

An important point to be considered is the transfer of 
data from the host (main memory) to the GPU memory. 
The bus transfer between these two memories is slow 
and its usage should be avoided. As the algorithm must 
run iteratively in order to satisfy a stopping criterion and 
all steps are parallelizable, it would be more effective if 
the whole main loop of the algorithm could run on 
GPU, to avoid such data transfer. However, the 
arrangement of threads is statically defined in the 
kernel. This becomes an inconvenience, since the 
arrangement of threads is an important setting for a 
better efficiency of parallelization and each step of the 
EM algorithm requires a different arrangement. 

Similarly to the approach of (Machlica et al., 2011) 
and (Kumar et al., 2009), in our proposal the main loop 
of the algorithm is implemented sequentially and 
different CUDA kernels are in charge of running 
different steps of the algorithm. 

The implemented CUDA kernels are depicted as 
follows: 
 
• p-kernel: For each Gaussian component, j computes 

the probability of each data xi conditional to 
parameters Θj, multiplied by the weight of 
component πj. In this kernel, the thread blocks are 
arranged in a grid jmx, where m blocks of line j are 
responsible for the calculation for the component j 

• ^p-kernel: For each data xi, normalizes their 
probabilities computed in the previous kernel for 
each component j. It concerns the wij values of 
Equation 7. In this step m, blocks of threads are used 
and each block is responsible for normalizing the 
probabilities for a given data at a time, until the 
entire probability base is normalized 

• m-kernel: For each Gaussian, estimates its marginal 
probability, that is, calculates the sum of the 
probabilities of the data related to each component j. 
j blocks of threads are used and each block is 
responsible for performing the sum of a component 
µ-kernel: For each Gaussian, re-estimates the mean 
vector µ that maximizes the likelihood, as described 
in Equation 9. Again, using j blocks of threads, each 
block is responsible for a component 

• Σ-kernel: Re-estimates the covariance matrices Σ of the 
components. In this step, we use an array of 2D blocks, 
where blocks of threads are organized in a square 
matrix of order N, where N is the dimension of the 
data. Thus, each block is responsible for reestimate an 
element sij of each of the covariance matrices 

• π-kernel: Re-estimates the weights π of components. 
Since the weight of a given component is given by 
the marginal probability normalized, as described in 
Equation 8, this step contains only a single block of j 
threads, which perform the summation and 
normalization of the marginal probabilities 

• φ-kernel: Calculates determinants and inverse 
matrices of covariance matrices, which are used to 
calculate the probabilities of p-kernel step. In this 
step, the matrix decomposition technique called LU 
decomposition is used. In such technique, we rewrite 
the matrix as the product of a lower triangular 
matrix (L matrix, lower) by an upper triangular 
matrix (matrix U, upper). Using j blocks of one 
thread only, the thread executes sequentially the LU 
decomposition algorithm 

 
Figure 1 summarizes the distribution of component 

parameters and input data on the arrangement of blocks 
and threads of the grid. 
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Fig. 1. Distribution of component parameters and input data on the grid 
 
2.3. The Algorithm 

The EM for GMM estimation algorithm takes as input 
the samples from the dataset, the number of gaussians to 
be estimated and the threshold as the stopping criterion. 
At each iteration, the algorithm initializes the parameters 
of each gaussian (weight π, mean µ and covariance 
matrix Σ). Next, for each sample, it estimates the 
likelihoods for each Gaussian and normalizes them. 
Finally, the parameters of the gaussian are re-estimated 
using the likelihood values. Iterations occur until the 
stopping criterion is satisfied (Algorithm 1). Each thread, 
one per block, estimates the likelihood of the sample j on 
Gaussian i, according to the position (i, j) of its block at 
the grid (Algorithm 2). The set of threads in a block 
performs the normalization likelihoods of values of a 
sample, using the reduction technique (Algorithm 3). 
The number of threads in a block performs the 
calculation of the probability of a marginal Gaussian 
(Algorithm 4). The number of threads in a block 
performs the reestimation of the parameter of a Gaussian 
mean µ (Algorithm 5). The number of threads in a block 
performs the reestimation of the parameter covariance 
matrix Σ of a gaussian (Algorithm 6). 

Algorithm 1 EM for GMM’s estimation 

Input: samples, samplesnum, Gaussiannum: 
Thresholdmin 

Output: πI, µi, Σj|i∈{1,2…., Gaussiannum} 
for i←1, Gaussiannum do 
 Initialize parameters (πI, µi,Σi); 
end for 
while-stop condition () do 
 for j ←1, Samplesnum do 
 for i←1, Gaussiannum do 
 likelihoodij← Calculatelikelihood(Samplej, πi, 
 µi, Σi); 
 end for 
 likelihoodj←Normalize Likelihood (likelihoodsj); 
 end for 
 for i←1, Gaussiannum do 
 πi ←UpdateWeight (likelihoodj); 
 µi ←Update Mean (likelihoodsj, Samples, πi); 
 Σi ←Update Couariance(likelihoodsj, Samples, πi, 
 µi); 
 end for 
end while 

Algorithm 2 CUDA Parallel p-kernel 

Input: Samples, Samplesnum, πi, µi, Σi 
Output: Likelihoods 
i←Block Index. Y; 
j←Block Index. X; 
likelihoodij←πi×N(samplesj, µi,Σi); 
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Algorithm 3 CUDA Parallel p̂ -kernel 

Input: Liklelihoods, Samplesnum 
Output: Likelihoods 
 i←ThreadIndex. X; 
 j←BlockIndex. X; 
 cachei ←likelihoodij; 
 SymchronizeThreads(); 
 Limit ←ThreadsPerBlock/2; 
 While limit ≠ 0 do 
 If i<limit then 
 cachei←cachej+cachei+limit ; 
 end if 
 SymchronizeThreads(); 
 limit←limit/2; 
end while 
likelihoodij← likelihoodij/cache0; 

Algorithm 4 CUDA Parallel m-kernel 

Input: Liklelihoods, Samplesnum  
Output: Marginals 
 j←ThreadIndex. X; 
 i←BlockIndex. X; 
 cachei ←likelihoodij; 
 SymchronizeThreads(); 
 Limit ←ThreadsPerBlock/2; 
 While limit ≠ 0 do 
 If i< limit then 
 cachei←cachej+cachej+limit ; 
 end if 
 SymchronizeThreads(); 
 limit←limit/2; 
end while 
marginal← likelihoodij/cache0; 

Algorithm 5 CUDA Parallel µ-kernel 

Input: Liklelihoods, Samples, Samplesnum, marginals 
Output: µi 
 j←ThreadIndex.X; 
 i←BlockIndex.X; 
 cachei ← Samplej* likelihoodij; 
 SymchronizeThreads(); 
 Limit ← ThreadsPerBlock/2; 
 While limit ≠ 0 do 
 If i < limit then 
 Cachei ← cachej+cachej+limit ; 
 end if 
 SymchronizeThreads(); 
 limit←limit/2; 
end while 
µi← cache0/marginalj; 

Algorithm 6 CUDA Parallel Σ-kernel 

Input: Liklelihoods, Samples, Samplesnum, marginals, 
Gaussiannum, Dimensionnum 
Output: Σk 
 l←ThreadIndex.X; 
 i←BlockIndex.X; 
 j←BlockIndex.Y; 
 for k←1Gaussiannum do 
 sub1←Sample11-µki; 
 sub2←Sampleij-µkj; 
 cache1←(sub1*sub2*likelihoodki); 
 SymchronizeThreads(); 
 limit ←ThreadsPerBlock/2; 
 while limit ≠ 0 do 
 If i< limit then 
 Cachel←cachel+cachel+limit ; 
 end if 
 SymchronizeThreads(); 
 limit←limit/2; 
 end while 
 Σkij← cache0/marginalk; 
End for 

3. RESULTS 

3.1. Dataset 

We have used the dataset Arabic Spoken Digit 3 from 
UCI Repository in order to test the algorithm 
implementation. This dataset consists of instances with 
13 Mel Frequency Cepstral Coefficients (MFCC), widely 
used to represent audio signals in speech processing 
systems, which commonly use GMMs to model the 
distribution of phones in the language. The database 
consists of 8800 instances: A training base with 6600 
instances and a testing base with 2200 instances. These 
instances correspond to audios of 88 speakers (44 males 
and 44 females) pronouncing the digits 0 to 9 in Arabic. 

3.2. Metrics 

In parallel programming, Speedup (or Speed-up) is 
the most widely used metric to evaluate how much a 
parallel algorithm is faster than its sequential version. It 
its defined as Equation 11: 
 

1
p

p

T
S

T
=   (11) 

 
where, p is the number of processors on which the 
algorithm is running, T1 is the execution time of the 
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algorithm and Tp is the execution time of the parallel 
algorithm. 

3.3. Experimentation Sets 

The GPU used in the first two sets of experiments 
was a NVidia GeForce GTS 250 with 16 processors. 

In the first experimentation set, the target number of 
Gaussians (components) have been varied with a fixed 
quantity of 30 iterations to estimate parameters. Figure 2 
shows a comparison between the time of parallel 
execution and its respective sequential version. This 
execution has shown a Speedup S16 = 7. The runtime of 
the parallelized version varies from 0.781 to 15.094 sec. 

This time results from the execution of φ-kernel 
step, which actually performs sequentially on the 
GPU. The second set of experiments was conducted 
varying the number of the instances in dataset: 23,344 
to 263,256. In this case, the algorithms have 
performed 30 iterations to estimate two Gaussians. 
Results of this step are shown in Fig. 3. In this step, 
the Speedup of parallel algorithm was S16 = 6. 

3.4. Coalesced Access to Global Memory 

We have carried out modifications to the code of 
the kernels p-kernel and p-kernel to provide better 
access to global memory and shared memory usage. 
The kernels used in such arrangements have been 
rearranged according to the size of the warp in order 
to ensure aligned access with the “cache line” and, at 
the same time, maintaining all the CUDA cores 
employed as long as possible. 

We have carried out modifications to the code in 
order to allow a more efficient memory access and a 
more appropriate array of threads. An important issue in 

regards to memory access is the coalesced access to the 
global memory, i.e., the warp threads need to access 
adjacent memory blocks and aligned with the "cache 
line" (fixed blocks of memory that are loaded once to the 
cache memory). In this way, the accesses required by the 
various warp threads are part of a single transaction, 
thereby reducing the overhead of the global memory 
access. The arrangement of threads in the grid and its 
blocks are also important for the coalesced access, since 
a better arrangement ensures that the accesses of the 
active warp threads are aligned on cache size. 

In order to verify the performance gain achieved with 
the changes, tests with a NVidia GeForce GT 555M 
GPU have been performed. An important metric to 
consider when considering the arrangement and 
coalesced access is the occupancy, which refers to how 
effectively the hardware (the CUDA cores) is kept busy, 
i.e., the longer busy, best the hardware effective use. 

Experiments have been performed by varying the 
number of Gaussians and size of the database, for both 
versions of the p and p kernel codes (E-Step). Firstly, we 
have fixed the database size of 23344 instances and 
varied the number of Gaussians. In the second set of 
experiments, we have varied the size of the database for 
a fixed number of Gaussians (eight). Figure 4 and 5 
show the execution time (in milliseconds) for both 
kernels by varying the number of Gaussians: 1, 2, 4, 8, 
16, 24 and 32. Figures 6 and 7 illustrate the runtimes of 
both kernels varying the size of the database. In such 
case, the average speedup was 19x and 30x for the 
kernels p and p, respectively. In both kernels, the largest 
observed speedups (~21x and ~32x) occurred with the 
database containing 152526 instances. 

 

 
 

Fig. 2. Execution time for both parallel and sequential versions of EM as the number of gaussians increases 
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Fig. 3. Execution time for both parallel and sequential versions of EM as the number of instances of dataset varies 
 

 
 

Fig. 4. Comparison of the execution time of the p-kernel with and without coalesced access by increasing the number of Gaussians 
 

 
 

Fig. 5. Comparison of the runtime of the ^p-kernel with and without coalesced access by increasing the number of Gaussians 
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Fig. 6. Comparison of the execution time of the p-kernel with and without coalesced access by increasing the database size 
 

 
 

Fig. 7. Comparison of the runtime of the ˆp -kernel with and without coalesced access by increasing the database size 
 

4. DISCUSSION 

Results have shows an increase from 38.8 to 50.2% 
on the average achieved occupancy for pkernel, 
ranging from 16.6 to 60.1% with the growth in the 
number of Gaussians. In the case of p-kernel, the 
growth was 16.2 to 56.4% of achieved occupancy, 
regardless the number of Gaussians. Neither kernels 
have varied with the increase in the size of the 
database. As had been initially suspected, this 
increased occupancy directly reflects the execution 
time of kernels. This is clearly shown in Fig. 4-7. 

The new version of p-kernel code, for instance, has 
achieved an average speed up of ~22x if compared to the 
previous one. In regards to the p-kernel, the average 
speedup is ~33x and the highest value has been observed 
for only one Gaussian. 

These results show a clear performance gain when 
there is a greater control of hardware resources. 

Furthermore, it is important to notice that the 
execution settings and resource usage need to be 
adjustable to the capabilities of the available 
hardware, since the architectures of GPUs with 
support to CUDA have undergone changes over the 
years, including the cache memory management, 
which directly affects the transfer between the 
different available memories. 

5. CONCLUSION 

In this study, we propose an approach to provide a 
parallelized implementation of Expectation Maximization 
(EM) algorithm for training Gaussian Mixture Models 
(GMM). GMM is vastly used in Automatic Speech 
Recognition (ASR) systems, for instance. 

In our approach for parallelization, the main loop of 
the algorithm is implemented sequentially and different 
CUDA kernels are in charge of running different steps of 
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the algorithm. Pseudocode for each CUDA kernel 
implementation is properly provided. 

Experiments performed over a UCI database and 
varying number of Gaussians have shown a speedup 
of 7 if compared to sequential implementation of EM 
algorithm. We have also provided modifications in 
two of the CUDA kernels in order to allow more 
coalesced access to global memory. As a result we 
have achieved up to 56.4% of achieved occupancy. 

The proposed approach thus contributes to the 
stateof-the-art of the research in ASR by providing an 
effective algorithm for training GMM. 

Future work consists in providing modifications to 
the other three CUDA kernels in order to provide more 
coalesced access to global memory in a similar manner 
we have made to the first two of them. 
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