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ABSTRACT

Frequent pattern mining has been a widely usedénarea of discovering association and correlations
among real data sets. However, discovering intaigesorrelation relationship among huge numberaf ¢
occurrence patterns are complicated, a majoritythefm are superfluous or uninformative. Mining
correlations among large pile of useless infornmat® extraordinarily useful in real-time applicats In

this study, we propose a technique uses FP-tremifuing frequent correlated in periodic patterranira
transactional database. The analysis of time adiogl measure tend to improvise the performancedan

real time data sets and the result proves theittigoefficiency by shifting the data sets to vasalomain
towards time series, its correlation and noiselieggiratio. This work addresses the time corretafiactor
achieved with the previous evaluated result of th@ees sequence of FP tree.

Keywords: Time Series Data, Time Correlation, Frequent IPattéining

1. INTRODUCTION three type of periodic pattern: (1) Symbol peridglic(2)
o _sequence periodicity or partial periodic pattern #8)
The concept of frequent pattern mining used extelysi  segment or full-cycle periodicity (Rasheetlal, 2011).
in the field of data mlnlng The association rulmlng For examp]e, in time series contain the hour|y neindd
(Han and Pei, 2000), sequential pattern mining @&l transactions in retail store; the mapping differeriges
Han, 2002), graph pattern mining (Yan and Han, Pa@2  of transactions (is referred as discreet process)0}
the few common approaches used in it. The realTransactions, b: {1-300} Transactions, c: {301-600}
complication occurs in terms of real data sets. fead transactions, d: {601-1200} transactions, e: {>1p00
challenge is gather similar useful pattern colédtem a  Transactions. Based on this mapping, the time sdrie
large volume of information that catches the redear = 0,212, 535, 0, 398, 178, 0, 78, 0, 0, 102, 428 lma
concentration (Hasagt al, 2007; Cheret al, 2008). discreet intoT = abdacbabaahcAt least one symbol is
The piles of data are gathered with similar behaaio  repeated periodically in time seri€g is referred as
identical time interval and its series which brimigrepute ~ Symbol periodicityFor example T = a bd a cb a ba a bc,
prior to analysis (Elfeket al, 2005a; Haret al, 1999). symbol‘a’ is periodic with periodicity p = 3, starting at
The observation is to categorize duplicate patténas position zero.Sequence periodic or partial periodic
provide important observations and its updated pattern consists of more than one symbol, maybe
information of time series data (Weigend and periodic in a time series. For example T = ab dalb
Gershenfeld, 1994; Versaci, 2014) and assist iisibgc ~ aabc, symbolab’ is periodic with p = 5 starting at
making based on the result achieved (Rashetedl, position zero. In whole time series, a repetitiérpattern
2011). A time series (Shemg al, 2005a) is said to have or segment is callesegment or full-cycle periodicityor
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example T = abdc abdc abdc has segment perioditcity 2. RELATED WORKS
= 5 starting at position zero. Many existing altforis
(Elfeky et al, 2005a; 2005b; Haet al, 1998; Indyket al, The time series query based approach and its

2000) detects periods that span through entire sienies.  classification based on the given querying sequen@s
Some algorithms detect all the above mentionec ttygse addressed in (Fet al, 2005; Vlachogt al, 2002; Zhu and
of periodicity, along with noise within subsectiohtime Shasha, 2003). In trade off the algorithm thattenéed to
series, separately for each patterns (Raséeald 2011). provide the specific time period (Hat al, 1998; Ma and
The traditional association periodic pattern mining Hellerstein, 2001; Yangt al, 2002; Berberidist al, 2002;
problem is well defined and has been thoroughldistl ~ Chenet al, 2006) for getting the time series result and the
in last decade (Elfekyet al, 2005a; Rasheedt al, time series trend set up was discussed in (Udeahakal,
2011), there is currently no canonical way to measu 2004) and the range was addressed in (Ekétlal, 2005a;
the degree of correlation between periodic patternsindyk et al, 2000; Rasheect al, 2011). The noise
(Huang and Chang, 2005). We believe that thereldhou suppression ratio in time series data was addressed
intuitively be more than one solution to definesthew (Elfeky et al, 2005a) where it fails to do so. In order to
type of pattern, especially among different sceomari detect segment in periodicity and its sequencedineept
Although answer to whether a periodic pattern is of WARP (Elfekyet al, 2005b) was introduced. To detect
correlated or not is not an absolute, we at leapeet the time series and its periodicity Sheaigal (2005b)
to match common knowledge. An appropriate measureproposes an algorithm to retrieve the said datee Th
of correlation between long periodic patterns stidag combination all these algorithms (Elfelgt al, 2005a;
allowed to correlate with its sub-patterns. 2005b; Hanet al, 1999) retrieves time series data along
The concept of Frequent Correlated Periodic Patternwith periodicity based on its range. The time seseb
mining (FCPP) used with time series data was hadndle section was addressed in (Rasheteal, 2011) using STNR
efficiently in this study. The process was initthteith ~ algorithm. The proposed algorithm (Mueen al, 2010)
TRIE data structure referred as consensus treewtitiat ~ results in time series followed by its time corteda
enable parallel pattern search within the treecbgaath. It~ approach. The time series and its correlated cineSKNR
was followed by period establishing position anuhfiy ~ Prolongs for its entire pattern was also proposed.
results in time series and time correlated approach The study of correlation pattern mining focused on

This study addresses the following: two important aspects. The first aspect is theifiagmce
of the patterns. More specifically, it is relevata

- . provide significance measures for the correlatidn o

* The novelty of pattern mining using Frequent pujnte sets and the correlation patterns. Theorse
Correlated Per|0(_JI|c Pattern (FCPP) was handled toaspect is related to the computational cost of the
the addre_ss the_lssues on frequent pattern trée patproposed task. FP-growth mining algorithm (Han and
towards time series and time correlated approach  kamper, 2006), offers the better performance inimgn

 Inorder to focus on its efficiency of the algorith  nyll transactions for subsequent scanning of cait
the periodicity was evaluated in trade off with databases. Omiecinski (2003; Kiet al, 2004) which
CONV (Elfekyet al, 2005a) WARP (Elfekgt al, used to find correlated patterns satisfying given
2005b), ParPer (Haet al, 1999) and finally STRN  minimum all-confidence. Liuet al (1999) used the
(Rasheedkt al, 2011). The result obtained shows method of pruning by discovering the time correlati
scalable performance in single stretch using contingency table. The concept of independadt

« To mine item pairs of a particular node, represent correlated pattern was addressed to get the ekaet t
periodic pattern and determine the correlated correlated data from the time series data’s waslladrby
relationship among item pairs. We select measuregZhou, 2008; Zhoet al, 2006). The mining periodicity in
appropriate to our mining task compared with transaction data requires uniquetiigen

« To demonstrate the outstanding performance of ourNevertheless these works built obviously by scagnin
algorithm based on correlated relationship in terms€Very item pairs in a particular node of the cosssriree.

of both efficiency and effectiveness on datasets
y 3. PRELIMIARIES

The literature review was elaborated in sectiom@ a
section 3 with initial ground work, section 4 resuin
correlated time series data and its approachosebtiwith Suppose Y is a finite symbol set andZ]| its
algorithm and followed by Section 6 with its proslaons. cardinality. Our previous work reflects the followi

3.1. For Mining Periodic Pattern
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(Pujeri and Karthik, 2012). For DNAZ|| is 4 and the
symbols are the 20 amino acids. Let SS§%,...,S} of
input time series sequences over a finite symbblyse
with [Z] =R, such that |[p=L, 1<i<N and positive integer

d and q such that Qd<L and Xkqg<N. Here given
parameterdN andL are the number and length of given
input sequence. Letis called a pattern (center string) if
each of at leaqf input sequence contains a substring in
a’s d-neighborhood. Find all center string® with any

_P(AB- P(AR B

1)
P(AB)+ { AR B

P(AB)

If in the case of two data or items that sets the
minimum and maximum patterns along with the pattern
confidence level (threshold). The correlation tesitker
result in the combination of two data (dependent}tte
other case results in two separate data’s (indepgpd

lengthl, O<d<I<L every t has at least q sequence posse’sSUch as patterk = {iy, i,....In}, then Equatin 2:

x-mutatedcopy ks<d) of t. In real time, we have to
investigate time series to identify repeating pate
along with its outliers. The proposed work conceaiets
on manipulated data that received as a result noé ti
series patterns for exploring further patterns glon

with correlated approaches and it outliers. These

outliers will further detect other patterns alonghwits

sequence and its periodicity. The output of this

= P(il’iZ"in)_Pal)lPGZ)!"'P (n )
P(i, iy, d )P EIP L) P ()

p(X) (2

1 and 2, results in p that has two bounds, i.e., -
1<p<l. Let &0 be a given minimum correlated
confidence, if patteriX has two data’'s A, B are called

approach is the TRIE data structure (referred ascorrelated with each other, else A and B are called
consensus tree) that helps to explore the patterndhdependent (Karinet al, 2013). If pattern X has more

received as the result of the proposed approach.
The level of confidence to acquiring further patter
was done in two ways. First the pattern positids, i
sequence and its periodicity(as mentioned eartiea)
result in initial pattern sequence to start up \iadowed

by the level of confidence received as a result of

exploring patterns. The level of the patterns ated i
periodicity makes the initial point of access tqlexe
patterns of its kind as discussed in (Rasheteal, 2011).

3.2. For correlated Patterns

A correlation provides results by considering the
time series data as input and to detect the tirerval
of the series.

The concept of periodic mining assists in similar
patterns gathering and also provides the way togmrize
it. In order to do the comparison, the differengnsil
phases are taken and reflected (autocorrelationj}sto
copy. The repeating periodic signals are then cagtu
and analyzed subsequently.

In statistical theory from literature (Zhou, 2008;
Zhouet al, 2006) Ay, Ay,.. A, are independent iflk and:

O@<i, <
P(A LA A= (A)P(A)..F(A))

Sl sn,

A resultant pattern has two data followed by itdqra
A and B, then the approach (2) is applicable hasnare
than two data’s or items and result in the appro@gh
from the approach (1 and 2) then Equation 1:
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than two items, we define a correlated pattern and
independent pattern as follows:

Definition 1

Correlated pattern x result in y then both thegratt
are correlated in the case of depended patternsyfhx
and p (AB)|>& whered is a predefined value @t

Definition 2

In the case of independent pattern, there exists a
pattern x then no such patterns reflect on the same
pattern (subsets).

LetT = {i.i,..in} be a set oin distinct literals called
items andD is the set of variable length transaction over
T. The interestingness measure all-confidence ddnote
by a of a patternX can de defined as follows Equation 3:

Sup( X)

a(X)= MAX_item_Sup X

®)

Definition 3

In the case of dependent pattern, there exists a
pattern x and y, where the confidence level isegith
maximum or equal to its value. Such patterns famus
its associated pattern.

Definition 4

Associated-correlated pattern-In case of assoeiativ
pattern, there exist a association between palietmeen
two subsets of A and B.

JCS
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4. FCPP MINING ALGORITHM 14.
15.

4.1. FP Tree Construct

The mapping of sub patterns along with the time 16.
series data and its path were denoted as 't @erpat 17

time series and s’ as its sequence. It starts fl@nroot

node’n’ and it is mapped with the sub pattern gtrard 18.
(i.k.e) with pointers starting from the"kposition of 19.

20.

sequence j and provides the results in terms qfitern.
The tree is fully balanced for the node that hdariuze
pointers connecting its descends. The concept of

backward closure property (Karthik and Pujeri, 2013 51

makes pre-pruning in connection with the constgint
levels for every pointer linked with the sub pattefhe

Frequent Correlated Periodic Pattern mining (FCPP)22.
dealing with23,

categorized based on constraints
antimonotone, monotonic and succinct constraintskvh

is also addressed in our previous work (Karthik and 24.

Pujeri, 2013). Nodes with confidence value as dgnf
((N-sugb) ((N-g)<1) will be pruned; it is used as an
antimonotonic constraint and a node in the consensu

tree will branch out only if a support valuesig which is 26.
used as a monotonic constraint (Lee and Raedt,)2004 27.
Each pointer in a consensus node has to satistgeer 28.

mutation e>d, otherwise it will be also pruned which
sustains all position in consensus node like swtcin 29

constraint (Lee and Raedt, 2004). For each pointers30.

without the mutation leveé>d will not participate in
production of pointers in next consensus node.

Algorithml. FP-Tree Construction

31.
1. For each stringof given input sequendg do 2
2. For each symbdlof input string of lenghtL do 33'
3. If thekth symbolith sequence is,;bl do 34:
4

Put (j,k in new nodesbl, find (j,k substring is in
all Sblfor b,zb, andj in Tbl for eachb,0% if and
only if sup g)> threshold.

5. For eaclith sequence from 1 1 >do
6. Loop(1):
7. For each substring’s cortfy(b,,bs,...,bi.1)<do
8. Loop(2):
9. For each entry (j,k,e) in each
SDl B ,...pwherek<L-i+1 do
10. Loop(3):
11. If the (j,k,e) th element of thth sequence is

t1+1 0 and sup lQi+1)<q do
12. Begin(1):
13. put (j,k,e) ierl,bz -
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if e<d then for all b #b;.1
put (j,k,e+1) inSDl,bZ i b
(by,bo,bs,... 0i41)21;

if and only if conf

End Begin 4;

If conf 1)<l then Removsq L

End Loop 3;

For each nodsbl,bz ""%# jdo

For each node in next leve , ...b with
distance Ify, b))<d do

For eachsblbz, 70 and conf(%lbz AAAAA > q
along with distance (bbi)<d do

Loop(5):

If conf f;)<1 then Removeiq
Create a new level in consensus tree with

Tbl'bz ----- ti & . DS? B b

If no node exists ||Tbl - then
Increment ; End Loop2;

Else

Print the output sequer(dnp,% );
End Loop 5;

If all Sbl:bz:-ul’i’ - removed then stop the
program else

(b, ,b,,..b,, 1S by b JM)

Remove alsbl,bz,,,,b andTblvbQ
End Loop 2;

i =i+1;

End Loop 1;

output all pairs

4.2. Periodicity Detection Algorithm

The usage of consensus tree provides sufficierst dat
for identifying the periodicity of time series dbsese.
The concept of linear distance was applied foneatiing
the distance between two sub pattern that creates
distance vector and represents it in matrix fornidte
Fig. 1 shows the results of distance vector with its
nodes Subsequent starting and end position and also &stim
the possible repetition of the sub pattern occueenith
respect to the consensus tree structure. It alsonzes
the occurrence frequency based on the frequencigt.cou
The Starting Position and EndingPostion of the
subpatterns along with its occurrence frequencywelb
recognized using FCPP algorithm. As a result the
algorithm takes three parameters for consideration
i Vi’ (starting position, ending position and its frequgn

JCS
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4.3. Algorithm 2. Difference Matrix (Diff-
matrix) Algorithm

Input:

Starting position pointer for time series data with
its position

Output:
Difference vector of A

1 Fori = 1 toN-1
2 Begin Loop 1:
3 Assignj =1

4, if (j<N-i)

5. A(N)=5S.;
6 if +1# j+)

7 Then

8 t=j+1;

9. While (<j+i-1)
10. Begin Loop 2:
11. A i) = S-Ssi;
12. t =t+i;

13. End Loop 2;
14. Endif;

15. j =jH;

16. Endif;

17. End Loop 1;

4.4. Finding Correlation in Periodic Patterns

We use Discrete Fourier Transform (DFT) to identify
correlated item pairs in consensus node. The DFa& of
item X = Xg, X,...,Xm1 IS @ sequenck = Xg, Xg,...,. X1 =

DFT(X) of  complex numbers given by
1 m-1 -2rif _ .
X, =EZk:o>§ e k f=0, 1...m1. We also define

the normalization ok asx = Xg, X1,....Xm1 Such that x=
(%-14)/ oy are mean and standard deviation of the values
= Xo.X1....Xm1. The correlation coefficient of two item

pairs, we will get a set of likely correlated sihpairs.
Conceptually, the algorithm produces a matrix e
shown inFig. 2, where all pairs with correlation above a
threshold and some pairs with correlation below the
threshold are marked as 1 and all other pairs arked as

0. We can call this a pruning matrR and use it in
subsequent steps.

In our technique, the pattern occurrence of itema in
node is partition based on the capacity of cachéd
cache does not fit with all instance of the node,need
to partition the instance of the node. Thus, comgut
correlation between signals in different batchesuia
additional costs. Hence we chose existing algorifim
partitioning algorithm for partitioning instanced a
node into equal size.

Consider a discretized sequence {a b a b a} for an
interval range of 2. The 2*5 Matrix M produced ftie
input sequence is given as follows:

10101
m=
{01014

In this matrix, the first row represents symbol aid
the second row represents symbol ‘b’. The apptcatif
autocorrelation on each of the rows separately will
produce the below result:

Ro[3 0201
“lo2010

In the correlated output R, every non-zero element
represents the total number of occurrences ofytindal
starting from that position. In that, the first mient
represents the total number of occurrences ofythbsl.

In this example, the output 3 in the first row megents
the total number of occurrence of symbol a and thin
next row represents the total number of occurresfce
symbol ,b. The index positions of the non-zero edats
are derived from the matrix. From that index positi
the perfect and imperfect periodic rates are coethun

andy can be reduced to the Euclidean distance betweeiS €xample symbols a and b has occurred withrfeqte

their normalized series such casr (x,y) :1-2i d?(x,y),
m

whered(x',y") is the Euclidean distance betweenand
y'. By reducing the correlation coefficient to Euelgh

distance, we can apply the technique (Zhu and Shash

2002) to report the correlation between the iterirspa
exists in consensus node which is higher than aifspe
threshold. Few item pairs can be

whichd, (X,Y)<\2m1-T), since they cannot have
correlation above a given threshold By ignoring such
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periodic rate of 1. Every non-zero element of the is
auto correlated with the adjacent element of every
other row until a zero value or end of the serigs i
reached. The formula used is as follows:

R(x( J) :zxnxn-j

ignored for Where:

R = The discrete autocorrelation
J = The lag for a discrete signgql

JCS
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Iteration
1 2 3 4 5
Pos Pos Pos Pos Pos
2 2 2 2 2
; % ; ; :
8 8 8 8 8
10 10 10 10 10
12 12 12 12 12
14 14 14 14 14
@
Difference matrix (Diff Matrix)
k/Pos 2 4 8 10 12
1 2 4 2 2 2
2 6 6 4 4
3 8 8 6
;‘ 10 10
12
(b)
Fig. 1. Time series pattern from FP tree node pointers
3 4 5 6 7 8 approach (Pujeri and Karthik, 2012) over a number o

-F

4.5. Experimental Evaluations

We tested our algorithm based on our previousof the time points in the time serigSigure 5b shows
work that gathers information based on time seriesthat the algorithm speeds up linearly to symbolggof
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data sets. For real data experiments, we used
supermarket data which contains sanitized data of
timed sales transactions for Wal-Mart stores over a
period of 15 months. Synthetic data taken from
Machine Learning Repository (Blake and Merz, 1998)
were also used. We tested h&@ PP satisfies this on
both synthetic and real data. The algorithm cad &t
periodic patterns 100% along with their correlation
coefficient. This is an important feature in usig tree
which guarantees identifying all repeating patterns

In order to test the accuracy, we test the algoritbr
various period sizes, distribution and time sekégyth.
We used synthetic data obtained from Machine Leagrni
Repository (Blake and Merz, 1998), have been géaera
in the same done in (Elfekgt al, 2005a).Figure 5a
shows the behavior of the algorithm against the rem

JCS
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different size. FCPP checks the periodicity for all The frequent constraint algorithm does not allow
periods within synthetic data in absence of noise. duplicate entry information based on the data
For real data experiments, we used the Wal-Martregistered in Diff-Matrix. The representation of F&
data which contains hourly based records of alland Par Per algorithm and its impact over timeeseri
transaction performed at a Supermarket. The datavas shown inFig. 3 and 4. Figure 5 represents the
contains the record of around 15 months of data wit Performance analyzes of time series and its behavio
expected period value of 24CPP algorithm with ~ over a period of time was shown. The performance
periodicity threshold values ranging from 0.8 tet 0. Ccomparison of FCPP and ParPer was checked with the

and observed: The number of periods captured bydata size between 1 to 10 lac. As the result theR-C
algorithm, StPos and EndPos of the sequence, shown better performance compared with WARP and

confidence value and the Pattern shownTable 1. ~ STNR and projects less impact compared with CONV
The expected period 24 is captured at the thresholdPased on runtime. FCPP maximizes its performance

value 0.8. Periodic pattern obtained less in nunigr ~ Over a period of time as there is persistent prsgjia
accurate, useful and meaningful.Table 1 data and period size were such combination affénets

demonstrates that how periodic pattern are obtainederformance of ParPer (Haet al, 1999) and WARP
without redundant period=CPP algorithm does not (Elfeky et al, 2005b) in terms of its data size.

produce duplicated period due to the presence of : ; ; ;
supper-pattern (Karthik and Pujeri, 2013) whichdsol 4.6. Ef::;ggﬂgs Time Correlation Based on

the information of gathered patterns using Diff-rixat
The result of time correlation shown in thable 1 Step 1

based on the wall mart data analysis. As the data_ . ) .

grows enormously the efficient growth analysis of l‘\estlng fordaanlzt rocl):t IIT StPOSf Stp

time series data using frequent pattern mining ated . ugmented Dickey-Fuller test for StPos I

as shown inFig. 3 and 4 based on time factors. In including one lag of (1-L)StPos (max was 1, craeri

. ' ) . " . modified AIC)
also duplicates as there is change in data and it ample size 13
volume. To address this issue the concept time

lati f . duced . unit-root null hypothesis: a =1
correlation factor is introduced using pearson . in constant and quadratic trend

correlation coefficient is define as Equatoin 4: model: (1-L)y = b0 + b1* + b2*"2 + (a-1)*y(-1) + + e
1st-order autocorrelation coeff. for e: -0.212
corr (x,y) = iz_”_“' M]{MJ (4) estimated value of (a - 1): -1.20505
me="={ ox ay test statistic: tau_ctt(1) = -1.9731

asymptotic p-value 0.8273
In order to identify the exact factors and pairscim
correlation factor was identified by x the dataeiged Step 2
from Table 1 and its sequence is followed by the Testing for a unit root in EndPos
variable y Equatoin5: Augmented Dickey-Fuller test for EndPos
including one lag of (1-L) EndPos
(5) (max was 1, criterion modified AIC)
sample size 13
unit-root null hypothesis: A =1
the with constant and quadratic trend

1<m-
corr (x,y) = EZJX

o

-2z (Y, -uy)j

y

The normalization is estimated based on
parameter score of x and y is achieved, resultghén ~ Model: (1-L)y =b0 + bl t+ b2+ (a-1)*y(-1) + ... + e
correlation value as per Equation 5. 1st-(_)rder autocorrelation coeff. for e: -0.333

The correlation sequence is estimated for avoiding stimated value of (a - 1): -1.08833
the repeated and duplicated index of the factomat a €St statistic: tau_ctt(1) = -2.26869
subsequently takes the y as a sequence factortand i a@symptotic p-value 0.6951
further date analysis. Figure 6 and 7 shows the algorithm performance in

The results were discussed in able 1 and shown in  terms of threshold value with it periods also by
the time correlated column. Such factor affectdhiheshold ~ considering the factors of starting and ending tiosi
value based on time series and time correlatee valu with its occurrence.
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Table 1. FCPP algorithm output for Wal-Mart data

Periodicity No. of Time
Data threshold periods  StPos EndPos Conf. Pattern orrelated
Storel 0.8 4 109968 145081 0.42 AAA TR \ P\ ik k [\ J\ ek AAAFFEAAN
0.7 9 134887 161412 0.40 AAABBBCC Crrxxxriiis |\ \k AABBCC*AA
0.6 11 151141 194123 0.30 AABBBBCCCD****xtx A AN AR** AABBBBCCCD
0.5 16 213476 263129 0.32 AAAABBCCD***AADD***kkkk AABBCCDD*A
0.4 25 234980 280673 0.40 AAAFFAAAAAFRERRRRRR [\ |\ \* AAFBBAA
Store2 0.8 6 180613 199457 0.44 AAAFKKBCCCHH***D R AA**BCC**DD*
0.7 7 164319 200312 0.47 AAB****AAABBBDDD****BB* AB****AABBD*
0.6 13 229846 273422 0.37 AAAABBB*******CC****DDD* AABB**CC*DD*
0.5 17 215978 286421 0.40 AAAAACCCC***BBBCC***DD  AACC*BBC*DD
0.4 20 283149 304231 0.41 AAAAAACCCH**xB Bk AACCC*BB***
Store3 0.8 5 147030 155044 0.42 AA***BBB***BCDDD***** AA*BB*BCDD*
0.7 8 152783 167329 0.30 AAAABBBC*******CCCCD**** AABCCH***D***
0.6 12 182390 186064 0.46 AAAAAACCCCCD ki AAACCCD*****
0.5 14 177389 216892 0.47 AAAAABBBBBCCCCD ik AABBBCCD****
0.4 27 258202 299582 0.49 AAAABBBBBC******BCCDDD AABBBCC**DD
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Time performance of CBPM algorithm with partial periodic patterns algorithm

Time (sec)

CBPM
STNR —&—

A

0.4

0.6 0.8 1

Data size (millions)

Fig. 3. Time performance of FCPP with ParPer algorithm

Time performance of CBPM algorithm with STNR, CONV and WARP algorithm

le+012

1e+010
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algorithm mines
addresses the issues dealing with time seriesiame t
correlated approach. The achieved threshold hold
from time correlated approach proven to be effectiv Elfeky, M.G., W.G. Aref and A.K. Elmagarmid, 2005b.
compared with the value achieved using time series.
The work also addresses the need for combining both
time series and time correlated approach for pragid
better theroshold value with efficient feasible ules
that too in terms of large datasets.
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5. CONCLUSION

The performance measures of proposed algorithmeprov Chen, F., J. Yuan and F. Yu, 2006. Finding periibgia
to be effective in terms of its threshold value &8s its
time series correlation.

pseudo periodic time series and forecasting.
Proceedings of the IEEE International Conference
on Granular Computing, May 10-12, IEEE Xplore

Press, pp: 534-537. DOl:
10.1109/GRC.2006.1635858

In this work, the proposed Frequent pattern growth Eifeky, M.G., W.G. Aref and A.K. ElImagarmid, 2005a.

large database which in turn

Fu,
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