
Journal of Computer Science 10 (2): 210-223, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.210.223 Published Online 10 (2) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Sarfraz Nawaz Brohi, Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

210 Science Publications

JCS

DESIGN AND IMPLEMENTATION OF A PRIVACY
PRESERVED OFF-PREMISES CLOUD STORAGE

1Sarfraz Nawaz Brohi, 1Mervat Adib Bamiah, 1Suriayati Chuprat and 2Jamalul-lail Ab Manan

1Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
2Strategic Advanced Research Cluster, MIMOS Berhad, Kuala Lumpur, Malaysia

Received 2013-09-21; Revised 2013-10-14; Accepted 2013-11-13

ABSTRACT

Despite several cost-effective and flexible characteristics of cloud computing, some clients are reluctant to
adopt this paradigm due to emerging security and privacy concerns. Organization such as Healthcare and
Payment Card Industry where confidentiality of information is a vital act, are not assertive to trust the
security techniques and privacy policies offered by cloud service providers. Malicious attackers have
violated the cloud storages to steal, view, manipulate and tamper client’s data. Attacks on cloud
storages are extremely challenging to detect and mitigate. In order to formulate privacy preserved
cloud storage, in this research paper, we propose an improved technique that consists of five
contributions such as Resilient role-based access control mechanism, Partial homomorphic
cryptography, metadata generation and sound steganography, Efficient third-party auditing service,
Data backup and recovery process. We implemented these components using Java Enterprise Edition
with Glassfish Server. Finally we evaluated our proposed technique by penetration testing and the
results showed that client’s data is intact and protected from malicious attackers.

Keywords: Cloud Storage, Privacy, Security, Confidentiality, Integrity

1. INTRODUCTION

 Cloud computing offers an innovative method of
delivering computing resources whereby clients are able
to execute their applications at remote servers with
unlimited storage capability while enjoying efficient
features such as scalability, availability, on-demand self-
service and elasticity on pay-per-use billing pattern
(Yashpalsinh and Modi, 2012). The cloud computing
paradigm has brought up an agile and revolutionized IT
infrastructure for business organizations, since they can
now focus on their core business while transferring the
IT responsibilities such as managing servers, storages,
developing applications and installing networks, to a
Cloud Service Provider (CSP) (Khayyam et al., 2012).
Due to cost-effective operational efficiency, business
organizations are rapidly adopting the cloud paradigm.
However migrating data to the cloud is still a serious
concern for the organizations requiring consistent
confidentiality and integrity (Rocha and Correia, 2011).

In order to formulate privacy preserved off-premises
cloud storage, in this research paper, we propose an
improved technique that will give confidence to users in
using the cloud storage for their daily transactions via
cloud applications. Our proposed privacy preserved off-
premises cloud computing storage solution may not be
appealing enough to ordinary users who do not need
strict security as well as privacy requirements. Ordinary
users also do not deal with critical data or follow any
industry based regulatory compliance standards such as
Health Insurance Portability and Accountability Act
(HIPAA) or Payment Card Industry Data Security
Standard (PCIDSS).

Since proposed solution requires client to perform
number of tasks such as encryption, decryption, metadata
generation, requesting and inserting security code for
each transaction, ordinary users may consider the overall
computing process as time consuming. However, to
protect the sensitive information of an organization,
these tasks are quite essential. For-instance nowadays in

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

211 Science Publications

JCS

online banking systems, users are required to complete a set
of security requirement to perform an operation, they follow
these processes appropriately to protect their confidential
information from malicious attacks, so there has to be a
trade-off among security, privacy and performance.

2. ORGANIZATIONS AND CLOUD
SECURITY

Organizations that are required to follow well-defined
data security standards such as HIPAA and PCIDSS do
not trust the existing security as well as privacy policies
offered by CSPs (Mervat et al., 2012; Shucheng et al.,
2010). They feel the lack of control while storing
confidential records at off-premises storage and they are
concerned that malicious users might gain illegal access to
their records. In order to defend the attacks, CSPs formulate
their cloud infrastructure with efficient security controls
such as network firewalls, secure cryptographic processors,
anti-malwares, honey pots, access control mechanisms.
However cloud storages using these techniques are also
subjected to vulnerabilities in terms of implementation
(Rocha and Correia, 2011).

Clients require full confidence that attackers are not
able to steal, view or tamper their data. We know from
the past studies that security and privacy on cloud is
breached by external or internal attackers (Ling et al.,
2011). External attacks are issued by hackers who steal
client’s confidential records with an objective to obtain
desired amount of cash. These attacks may take place by
an IT personal belonging to competitors of CSP or client.
The intention of these attacks is to damage the brand
reputation of CSP or to abuse as well as misuse client’s
files. CSPs secure their physical and virtual
infrastructure by using various tools and techniques to
protect data and their systems from outsider attacks.
However, we found out that existing solutions are not
adequate to preserve the client’s privacy. It is also
identified that internal employees of CSP may become
malicious as well (Catteddu and Hogben, 2009).

Inside attackers such as malicious employees of
CSPs, intentionally exceed their privileged accesses in a
negative manner to affect the confidentiality (Adrian et al.,
2012). In contrast to an external hacker, malicious
insider can attack the computing infrastructure with
relatively easy manner and less knowledge of hacking,
since they have the detailed description of underlying
infrastructure. CSPs admitted their full awareness
aboutpossible malicious insiders and they would
normally claim to have its solution.

For-example, in order to hire a trusted cloud admin,
CSPs conduct strict background checks and multiple
detailed interviews whereas some CSPs state that they
have strict security procedures in place for all
employees when they have access to machines that
store client’s files. Although these are essential security
steps that they must follow, but without acomplete
trustworthy solution for defending insider attacks, a
malicious insider can easily obtain passwords,
cryptographic keys, files and gain access to client’s
records (Francisco et al., 2011). When client’s data
confidentiality has been breached, client would never
have any knowledge of the unauthorized access mostly
due to lack of control and transparency in cloud
provider’s security practices and policies.

2.1. Related Work

Ateniese et al. (2007) proposed Provable Data
Possession (PDP) model to ensure that external storage
retains the client’s file with required integrity policies.
Using the PDP model, data owner i.e. the client first pre-
processes the file F and adds some additional data or
expands it such as the new file is F’, client then generates
Verification Metadata (VMd) denoted as M for F’ before
sending it to the server for storage. Generated M will be
stored locally and client may delete the personal copy of
F, but prior to the deletion, client will execute a data
possession challenge to make sure that server has
successfully retained the file. The yes or no response
from server will verify the existence of file. While
uploading the file, client may encrypt it or it may already
be encrypted. To verify the file integrity, client issues a
challenge and request R to server to compute hash for the
stored file. Server will compute hash and send the result
P to the client and client will verify the integrity results
by comparing it to locally stored metadata M.

Wang et al. (2010) introduced an improved technique
of verifying data integrity on cloud by utilizing concept
of Third Party Auditor (TPA). Since client doesnot have
knowledge and expertise of auditing process, TPA will
conduct auditing services on behalf of client. TPA is a
certified and trusted entity for conducting scheduled or
requested auditing. This technique of using TPA, enables
the client to send the file by dividing it into number of
blocks, so file F will be denoted as sequence of N blocks
i.e., m1,…,mi,…,mn. For each block Message
Authentication Code (MAC) will be generated by using
the following function:

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

212 Science Publications

JCS

K x {0,1}* → {0,1} l

where, K denotes the key space.
 Using the TPA concept, the cloud user first generates
the public and private key parameters and then signs
each block and sends file with its VMd to server. As
TPA receives the file block number and verifies its
signature, quits by indicating false if verification has
failed or process continues if the result is true.

Venkatesh et al. (2012) provided a solution similar to
(Ateniese et al., 2007; Wang et al., 2010) but enhancing
them by adding Rivest Shamir Adleman (RSA)
algorithm based storage security. Client generates
signature for each block using RSA secret key and
hashing algorithm Ti = (H(mi). gmi rsk and generates
signature Φ = {Ti} for collection of all blocks. Merklee
Hash Tree (MHT) is constructed by involving each
block. Client then signs the root of MHT with secret key
as sigrsk(H(R)) = H(R)rsk. In next step client sends the
file, its hash and signed root {F,Φ, sigrsk(H(R))} to
server and deletes the local copy of Φ and sigrsk(H(R)).
During the auditing process, client issues a challenge to
server by selecting a specific file block, while the server
computes the proof and sends the results back to client.
Client verifies the data integrity by using the MHT root
and authenticates by using the secret key.

Ranchal et al. (2010) argued that the concept of
involving TPA in cloud services may associate
additional risk to confidentiality. TPA may not act as
expected (this happen when TPA is attacked by external
hacker or malicious insider) and they counter a solution
for protecting information integrity in cloud without
using TPA. They proposed an Identity Management
(IDM) approach using active bundle scheme which
includes sensitive data, metadata and a virtual machine.
In order to maintain confidentiality, the Personally
Identified Information (PII) is packed and encrypted
inside the active bundle. Virtual machine monitors and
manages the program inside the bundle that actually
controls the access to bundle.

Prasadreddy et al. (2011) focused on key and data
management technique while preserving the privacy of
users on cloud. They proposed a web-browser plug-in
that enables the client to store the key and data with
isolated CSPs. In this architecture, it is not required to
have mutual communication between two CSPs, rather
the plug-in handles all the necessary tasks. For-example
if file is stored with Amazon, keys will be stored with
Google, so Amazon cannot have illegal access to file
since it is obfuscated and it can only be de-obfuscated

using the corresponding key. Each file and its key will
have a unique tag. If user wants to access the file, the
data storing CSP sends the obfuscated data with its
associated tag to the plug-in and then plug-in sends
request to the key storing CSP by providing the tag. The
key storing CSP will check the tag, identify the
corresponding key and sends it to the plug-in and finally
plug-in de-obfuscates the data by using that secret key.

3. A PRIVACY PRESERVED OFF-
PREMISES CLOUD STORAGE

Considering the requirements, we proposed a privacy
preserving technique that enables an organization dealing
with sensitive information to store their confidential data
at off-premises cloud storage without security and
privacy concerns. We have designed as well
implemented an improved technique which focuses on
achieving following set of requirements:

• Only privileged users can access the system under a
strict access control policy

• Grant adequate control to client on his data, such as
handling encryption, decryption and VMd
generation tasks

• Client can process the data and perform certain
transactions without decryption

• Client can consistently monitor his files on cloud
without revealing any data to an illegal authority

• Client can efficiently restore the unintentionally
written, modified or violated records

3.1. System Architecture

The proposed system architecture consists of three
end-users i.e., Client, Trusted-TPA (TTPA) and Cloud
admin. From client’s perspective, we have assumed that
cloud admin is most un-trusted, TTPA is semi-trusted
and client’s personal admin is a fully trusted user. This is
based on the assumption that TTPA may have been
hijacked by a malicious attacker. In order to ensure a
safe computing environment, each involved entity is only
permitted to perform his privileged tasks but with added
security implementation of Role-based Access Control
(RBAC) with random Security Code Generator (SCG).
Cloud server is the central component of overall system.
It analyzes the access control mechanism and performs
corresponding operations requested by the privileged
users as shown in Fig. 1.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

213 Science Publications

JCS

Fig. 1. System architecture

For maintaining data confidentiality and integrity, the
responsibilities of client admin are as follows:

• Homomorphic encryption of data prior to its arrival
at the cloud storage

• Decrypt, update and download data throughout the
entire computing life cycle

• Safe delivery of significant parameters such as
hashes, private and public keys

• Ensure with the assistance of TTPA admin that data
on cloud is intact

TTPA admin belongs to an auditing authority and is
responsible for following tasks:

• Conducting the auditing services on behalf of client
• Initiating scheduled or requested auditing process as

directed by client admin
• Providing response to the client about the status of

data,whether it is tampered, deleted, manipulated or
intact

• Requesting the cloud admin to start data recovery
process from backup cloud storage

• Storing the client’s parameters such as keys and VMd

The auditing reports will be shared among all three

involved parties to determine the integrity status. Cloud
admin is responsible for successful recovery of certain
amount of records that has been violated by authorized
or unauthorized users.

Fig. 2. Encryption

3.2. System Workflow

 The process is initiated from client admin with the
generation of private and public keys by requesting the
cloud server. Let us examine a simple scenario. For-
instance client admin wants to store a file named as
EMP.txt containing organization’s employees’
confidential records at the cloud storage. Cloud server
requires the file and the public key for encryption
process as represented in Fig. 2.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

214 Science Publications

JCS

Fig. 3. Decryption

Fig. 4. Metadata generation

 Data inside the file will be homomorphically
encrypted from the stream during the uploading process
and when file arrives at the server it will be completely
encrypted and stored. File EMP.txt is renamed as
Encrypted.txt when it is saved at the cloud storage.
Whenever required, server needs client’s private key to
decrypt the selected file as shown in Fig. 3.
 Each attribute is retrieved from storage, decrypted
and presented for client’s view. Since data is
homomorphically encrypted, client admin can also
perform certain number of transactions without actually
decrypting the contents. Client admin requests the server
to compute VMd for the file. Cloud server divides the
file in equal number of blocks. In this example,
Encrypted.txt is divided into four blocks according to its
size and server generates metadata for the entire file as
well as its each block as shown in Fig. 4.

Fig. 5. Sound steganography

Fig. 6. Decoded sound-1

 Client admin downloads and store the VMd at his
local storage and request the cloud server to encrypt the
public key, private key and VMd. Cloud server encrypts
these parameters using sound steganography as shown in
Fig. 5 and transfers them to TTPA admin as two isolated
sound files i.e., sound-1 containing the public key and
VMd, sound-2 containing the private key.
 At this stage, client admin proceeds with the deletion
of cryptographic keys and VMd from the local storage
and request the TTPA admin to initiate the auditing
process. In order to audit the client’s files, TTPA admin
needs to extract public key and VMd from the sound-1
by requesting the cloud server as shown in Fig. 6.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

215 Science Publications

JCS

Fig. 7. Auditing process

Fig. 8. Initial auditing report

 TTPA admin downloads these parameters to his local
storage and proceed with auditing process by providing
them to the cloud server. Fresh metadata for the stored
file is computed by the cloud server and compared with
the old metadata as shown in Fig. 7.
 Based on the auditing results, cloud server creates the
auditing reports and shares it among involved users.
Since the file is securely saved with required integrity,
auditing reports indicated that integrity of file and each
block is well maintained as shown in Fig. 8.

Fig. 9. Data violation

Fig. 10. Auditing report after integrity violation

 However, if file integrity is violated by any user, for-
example Fig. 9 represents that malicious users have
modified the first block of file by replacing an encrypted
record with garbage characters such as “xx”.
 The auditing report clearly indicates the integrity
violation and its location i.e. block-1 as shown in Fig.
10. TTPA admin requests the cloud admin to overcome
the violation and recover the data back to its original
state.
 Upon receiving the request cloud admin views the
auditing reports and identifies that block-1 is violated.
Cloud admin will issue a request to cloud server for
recovering the block-1 as shown in Fig. 11.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

216 Science Publications

JCS

Fig. 11. Data recovery process

Fig. 12. auditing report after data recovery

 After the successful recovery, he will alert the TTPA
admin to restart the auditing process in order to ensure
that data is intact. After the successful recovery, cloud
admin will alert the TTPA admin to restart the auditing
process in order to ensure that data is intact. The auditing
reports after recovery indicate that integrity in well
maintained as shown in Fig. 12 and there is no data loss.
At this point, TTPA admin will inform the client admin
to proceed with other operations such as uploading more
files, update existing records or download files
permanently.
 Since client admin has already deleted all the
parameters from local storage, client will retrieve both
sound files from TTPA admin and request the cloud
server to extract the public and private key from sound-1
and sound-2 respectively.

3.3. System Implementation

 We have described the implementation mechanism of
our suggested contributions such as Resilient RBAC

mechanism, Partial homomorphic cryptography,
Metadata generation and sound steganography, efficient
third-party auditing service, Data backup and recovery
process. The codes snippets used throughout this paper
are written in Java and compiled using NetBeans 6.9.1
runtime environment with Glassfish Server version-3.0.

3.3.1. Resilient Role-based Access Control
Mechanism

 According to security recommendations provided by
Cloud Security Alliance (CSA), data owner is
responsible for enforcing access control policies whereas
CSP is responsible for their implementation (CSA,
2011). We assumed that data owner together with its IT
professionals and legal law authorities will specify and
enforce the access control policies by signing a Service
Level Agreement (SLA) with CSP. We have implemented
the access policies of client by using RBAC.
 Three major roles were created for accessing the
system i.e., Client, TTPA and Cloud Admin by using
Glassfish Server file realm security domain. The access
control to perform a particular operation by a privileged
user is further implemented using Enterprise Java Beans
and security annotations. We assume that client will set
the following access privileges for each involved user as
shown in Fig. 13. Operations such as decryption and
encryption of client’s data are only associated to client
admin, data recovery process is associated to cloud
admin and conducting the auditing service is associated
to TTPA admin, whereas viewing audit reports is
associated to all three involved roles, these accesses are
controlled using following code snippet:

@RolesAllowed("Client Admin")
public String decryptDataFiles() throws Exception {}
public String encryptDataFiles() throws Exception {}
@RolesAllowed("Cloud Admin")
public String dataRcoveryProcess() throws Exception {}
@RolesAllowed("TTPA Admin")
public String initiateAuditingProcess() throws
Exception{}
@RolesAllowed({"Client Admin","TTPA
Admin","Cloud Admin"})
public String viewAuditingReports() throws Exception
{}

 In order to further enhance the security of access control,
we have implemented a SCG process that generates a
random twelve digit code which consists of special
character, symbols, numbers, upper and lower case letters.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

217 Science Publications

JCS

Fig. 13. Role-based access control privileges

The SCG was implemented using following code
snippet:

Random r=new Random();
String
alphabet[]={"a","b","c","d","e","f","g","h","i","j" ,"k","l"
+
"","m","n","o","p","q","r","s","t","u","v","w","x", "y","z"
};
String symbol
[]={"~","!","@","$","%","^","&","*","(",")","?"};
String
alphabetTwo[]={"A","B","C","D","E","F","G","H","I", "
J","K","L"
+
"","M","N","O","P","Q","R","S","T","U","V","W","X", "
Y","Z"};
String alpha;
int number;
int c=6;
int c2=c/2;
int nc2=0-c2;
String finalCode="";

String alphaTwo;
String alphaThree;
for(int x=nc2;x<0;x++){
 int alphaNum=r.nextInt(26);
 alpha=alphabet[alphaNum];
 number=r.nextInt(10);
 String numStr=Integer.toString(number);
 int symbolNum=r.nextInt(11);
 alphaTwo=symbol[symbolNum];
 int alphaNumTwo=r.nextInt(26);
 alphaThree=alphabetTwo[alphaNumTwo];

finalCode=finalCode+alpha+numStr+alphaTwo+alphaT
hree;
}

 All transaction such as decryption or auditing cannot
proceed unless accurate security code has been requested
and provided by the authorized user. Once the code is
requested, it will be generated and sent via email or SMS to
the appropriate user to proceed with the transaction. On the
successful entry of security code, system will perform the
operation or else user needs to request a fresh code.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

218 Science Publications

JCS

3.3.2. Partial Homomorphic Cryptography

 One of the limitations of cloud systems is the
enablement of the client to process the data on cloud
while it remains encrypted (Hibo et al., 2011). In order
to perform this task, client is required to decrypt the data
prior to processing. We have implemented partial
homomorphic cryptography which enables the client to
perform certain number of operations on encrypted data.
However, it is not possible to perform unlimited number
of operations, due to unavailability of practical
implementation for full homomorphic cryptography.
Considering the security features of asymmetric
algorithms, we implemented the homomorphic version
of RSA algorithm to encrypt, decrypt and process the
encrypted data on cloud. The random homomorphic
public and private keys are generated by using following
code snippet:

BigInteger p=BigInteger.probablePrime(N/2,random);
BigInteger q=BigInteger.probablePrime(N/2,random);
n=p.multiply(q);
BigInteger
phi_n=(p.subtract(one)).multiply(q.subtract(one));
publicKey=new BigInteger("65537");
privateKey=publicKey.modInverse(phi_n);
// where N refers to bit-length of returned BigInteger.

 The public and private keys are generated and stored
with user. Using the public key client admin can then
start the encryption by using the following code which is
multiplicative homomorphic.

message.modPow(publicKey,n);
// where message refers to the data being encrypted.

Similarly, data will be decrypted using the following
code:
encrypted.modPow(privateKey,n);
// where encrypted refers to the cipher data.

 Since the data is encrypted by using RSA
multiplicative homomorphism, client processes the
encrypted data by performing number of transaction that
are multiplicative in nature. For-example when file
EMP.txt is stored at the cloud, client can increase,
modify or delete the salary and commission rate of an
employee. Some demo queries are implemented as
follows:

Query-1: Increase the commission rate of an employee.
inputFactor=2;
encrypt(inputFactor,publickKey).
inputFactor.muptiply(commission_rate).

Query-2: Alter and update the salary of an employee to
1350.
inputFactor=1350;
multiplicativeFactor=1;
encrypt(inputFactor,publickKey).
encrypt(multiplicativeFactor,publickKey).
amount=inputFactor.mupltiply(multiplicativeFactor).
salary=amount.
Similarly, there can be various other operations that can
be performed on encrypted records.

3.3.3. Metadata Generation and Sound
Steganography

 When data is stored at the cloud, client admin needs
to generate VMd by using file and block level hash
calculation methods. Client first generates the VMd for
entire file and then for its each block. The file will be
automatically divided by server in N number of blocks
according to its size. For-example if the file F is 8MB, it
will be divided in four equal chunks F1, F2, F3 and F4
each of size 2MB. VMd for entire file will be calculated
by using Digital Signature Algorithm (DSA) with SHA-
1, as represented in following code snippet:

Signature
dsa=Signature.getInstance("SHA1withDSA","SUN");
dsa.initSign(privateKey);
dsa.update(fileData);
verificationMetadata=dsa.sign();

 Similarly VMd for each block will be generated, but
instead of file, block number will be provided as
parameter i.e. dsa.update(fileBlock_n), where n refers to
a specific block number. After metadata generation
process is accomplished, the client admin will send the
VMd and public key to TTPA admin for conducting the
auditing process. Client admin will also send his private
key for secure storage. However, to verify the data
integrity TTPA admin only requires the VMd and
client’s public key. In order to protect these parameters
from man-in-middle and other malicious attacks,
parameters such as keys and VMd are first encoded
using Base64 encoding scheme for the transmission over
the network and secondly by using sound steganography
techniques, as represented in following code snippet:

BASE64Encoder encoder=new BASE64Encoder();
String message=encoder.encode(parameter);
// Sound steganography.
Sound s=new Sound(inputFile);
int nbrOfSamples=message.length()*3;

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

219 Science Publications

JCS

// where message refers to the value being encoded.
smoothAmpValues(s,nbrOfSamples+3);
for(int g=0;g<nbrOfSamples;g++) {
 int asciiValue=(int) message.charAt(g/3);
 int digit=getDecimalDigit(asciiValue,g%3);
 int ampValue;
 if(s.getSampleValueAt(g)>=0) {
 ampValue=s.getSampleValueAt(g)+digit;
 }
 else{
 ampValue=s.getSampleValueAt(g)-digit;
 }
if(ampValue>32767){
 ampValue=ampValue-10;
 } if (ampValue<-32768){
 ampValue=ampValue+10;
 }
s.setSampleValueAt(g,ampValue);

 With the completion of steganography process, two
encoded sound files will be created, sound-1 contains the
public key and VMd and sound-2 contains the private
key. TTPA admin is only privileged to decrypt the
sound-1, since private key belongs to the client admin
and it is just sent for secure storage.

3.3.4. Efficient Third-Party Auditing Service

 In order to conduct the auditing process, TTPA admin
will request the cloud server to generate fresh VMd for
client’s file stored at cloud. However, server requires
client admin’s public key and VMd from TTPA admin to
generate the auditing reports. Since parameters sent by
client are encoded using sound steganography and
Base64, all parameters will be decrypted using the
following code snippet:

Sound s=new Sound(filename);
SoundSample[] samples=s.getSamples();
int[] digit=new int[10];
String message="";
// where message contains the desired data decoded by
sound.
int sampleIndex=0;
boolean nullReached=false;
while (!nullReached) {
digit[0]=getDecimalDigit(samples[sampleIndex].getValu
e(),0);
digit[1]=getDecimalDigit(samples[sampleIndex+1].getV
alue(),0);
digit[2]=getDecimalDigit(samples[sampleIndex+2].getV
alue(),0);

 int asciiValue=digit[0]+digit[1]*10+digit[2]*100;
 if
(digit[0]==digit[1]&&digit[1]==digit[2]&&digit[2]== 0)
 nullReached=true;
 message+=(char) asciiValue;
 sampleIndex+=3;
}

BASE64Decoder decoder=new BASE64Decoder();
byte[] parameters=decoder.decodeBuffer(message);
// where message contains the encoded parameters.

 Due to access control TTPA is not privileged to
decode the sound file containing the private key as it
only belongs to the access privilege of client admin.
However it will be decoded in similar fashion as other
parameters. Once the decoding process is accomplished,
TTPA admin will extract the client admin’s public key
and VMd and provide it to the server and then server will
start the process of calculating the fresh metadata by
generating the digital signature for each block and the
entire file as follows:

sigNew=Signature.getInstance("SHA1withDSA","SUN"
);
sigNew.initVerify(publicKey);
FileInputStream fis=new FileInputStream(fileName);
BufferedInputStream bufin=new
BufferedInputStream(fis);
byte[] buffer=new byte[1024];
int len;
while (bufin.available()!=0){
 len=bufin.read(buffer);
 sigNew.update(buffer,0,len);
};
bufin.close();

When new signatures are generated, TTPA admin will
request the cloud server to start a comparison process to
verify the integrity as follows:

boolean
verifies=signofFileorBlockNumber.verify(sigNew);
if(verifies==true){
 report.write("Integrity is Maintained");
}else{
 report.write("Integrity is Violated"+’\n’);
}

 The auditing process will be recorded and a report
will be shared among all associated entities to view the
auditing results. If TTPA report encounters integrity

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

220 Science Publications

JCS

violation, a request will be sent to cloud admin for
successful recovery of violated records from the backup
cloud storage.

3.3.5. Data Backup and Recovery Process

 We assumed that client’s primary storage on cloud is
Kuala Lumpur while secondary or backup location is
New York datacenter. Under some unwanted
circumstances such as natural disasters, malicious attacks
or un-wanted modifications, data will be recovered from
the New York datacenter without any loss or leakage.
During the auditing process if TTPA admin identifies
integrity violation, it will not generate success signal for
client to move on with further process, unless data is
successfully recovered from backup storage to its state of
correctness. By viewing the auditing reports cloud admin
will initiate the backup and recovery process. If entire
file or a block is violated, it will be recovered and there
is no need to recover the un-violated records. This
process will take place by using following code snippet:

byte[] buff=new byte[size];
int bytesRead;
originalFile=new File("File.txt");
originalFileStream=new FileInputStream(originalFile);
backupFile=newFile("BackupFile.txt");
backupFileStream=new FileInputStream(backupFile);
fw=new FileWriter("Recovered.txt");
bw=new BufferedWriter(fw);
String newData;
int i=1;
while
((bytesRead=originalFileStream.read(buff,0,size))>0){
 if(i<5){
 if(i==1){
 backupFileStream.read(buff,0,size);
 newData=new String(buff);
 bw.write(newData);
 }else{
 newData=new String(buff);
 bw.write(newData);
 }
 }
 i++;
} // end while
bw.close();

 Once the violated, lost or damaged records are
recovered back, TTPA admin will re-initiate the auditing
process to verify its correctness, since data is
successfully backed up, the auditing results will be

positive and TTPA will send success message to client
for further tasks such as downloading, uploading new
files or processing. However the data stored on cloud is
homomorphically encrypted, for the decrypted
downloading process, client needs to extract his private
key from encoded sound file.

3.4. Advantages of the Proposed Technique

 Data owner has sufficient degree of control over his
data since the client admin is privileged to perform
encryption, decryption and metadata generation tasks.
Performing these tasks does not require in-depth and
technical knowledge of cryptography, security or cloud
computing. An intermediate IT admin can handle these
operations efficiently. Unlike other cloud systems, client
admin is not required to encrypt the data before sending
it for cloud storage, using our system, data will be
encrypted automatically while it is being uploaded but
before it arrives to the cloud storage. Data is encrypted in
real-time directly from the stream without being stored at
any location. When data arrives at the cloud storage, it
will be fully encrypted. Similarly for the decryption
process, data is not decrypted at the CSP’s end and then
transferred to the client because this could raise the
concerns of confidentiality violation. Data will depart
from cloud storage as encrypted and it will be decrypted
in real-time from the download stream. Contents will be
downloaded or viewed once arrive at the client’s end.
With the use of RBAC and random security access
generator, client can ensure that only authorized users
are accessing the system as per their privilege, this will
provide sense of satisfaction to the client.
 For performing any transaction, client admin is not
required to decrypt the records due to the
implementation of partial homomorphism cryptography
so it saves time and bandwidth cost. In order to provide
client full advantage of acquiring a cloud storage
service, using our approach client admin will store the
VMd, private and public keys with TTPA, not at their
local machine, however these parameters are encoded
and can be decrypted only by the privileged user. For
the integrity checks, TTPA will initiate an efficient
auditing process, where it will be easy to determine the
location of violated data from a huge file so as to
enable efficient recovery. During the recovery process,
cloud admin will check the auditing report to determine
the actual data that needs to be recovered instead of
recovering the entire file.

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

221 Science Publications

JCS

Table 1. Evaluation results

Attack ID Type Issued by Attacked assets and operation Solution to preserve privacy Final data status
A001 External External hacker Data while uploading Partial homomorphic Intact
 cryptography, auditing
A002 Internal external Cloud admin Data at storage Process, RBAC partial Intact
 external hacker homomorphic cryptography,
 auditing process,
 data backup and recovery, RBAC
A003 Internal external Cloud admin Private key, VMd at storage Sound steganography, RBAC Intact
 external hacker
 TTPA admin
A004 External External hacker Private Key, VMd while Sound steganography, Intact
 transferring RBAC partial
A005 External External hacker Data while downloading Homomorphic Intact
 cryptography, RBAC

4. EVALUATION

 In order to verify the objectives of this research i.e.,
preserving the privacy of client’s data at off-premises
cloud storage, we evaluated the security of implemented
system using penetration testing strategy in a lab based
environment by creating a network of three workstations
(one for each user). The system is checked against
various attacks that might take place by an external
hacker or malicious internal such as cloud or TTPA
admin. The evaluation results are represented in Table 1.
The evaluation process is based on considering the
following attack scenarios:

• External hackers launch attacks during the data

transmission process to steal the client’s confidential
records and remotely access the cloud system in
order to exploit the access control privileges of the
client admin by stealing his authentication
credentials

• Internal as well as external hackers breach the
physical security barriers deployed by CSP to gain
unauthorized and direct access to client’s data in
order to view, modify or delete the actual contents.
They also attack the secure storage of TTPA to steal
or manipulate the significant parameters of client
i.e., keys and VMd

• A malicious TTPA admin attempts to extract the
client’s private key to decrypt the data

4.1. Results

 During the experiments, we identified that client’s
privacy always remains intact despite the attacks
launched by several malicious users. For-example if an
expert hacker is able to attack the data during the transfer
(downloading, uploading) or at the storage it doesn’t

affects the privacy because before data departs from the
client it gets and remains encrypted throughout the entire
process even when it is stored or processed at cloud
storage. When attackers get access, they are not able to
get any meaningful information just beside the cipher
text and if an attacker violates the integrity at physical
cloud storage, it is immediately identified during the
auditing process and data is recovered back to its original
state from the backup storage.
 Similarly when, TTPA admin wants to extract the
private key of client, attacker will not be able to decrypt
it because it is encrypted as sound. Also if attacker gets
the private key, attacker cannot decipher the client’s
data, since for decryption, system must perform the
decrypt process and this task can only be initiated by the
client when successfully logs in with required
credentials. Un-authorized users cannot perform any
operation, even if they break-in security of login menu
they need to request for random security code and the
code can be only sent to privileged users under the
implemented RBAC.
 We concluded that using the proposed technique,
besides the threatening attacks, client’s privacy i.e., data
confidentiality and integrity is preserved at off-premises
cloud computing storage.

4.2. Discussion

 Various researchers across the globe have formulated
valuable contributions in forms of models, techniques
and algorithms to overcome the security and privacy
concerns of adopting the cloud paradigm. In this
research, we analyzed the significant contributions of
(Ateniese et al., 2007; Wang et al., 2010; Venkatesh et al.,
2012; Ranchal et al., 2010; Prasadreddy et al., 2011). We
proposed an improved and enhanced technique by

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

222 Science Publications

JCS

overcoming the limitations of existing work and
acquiring their strengths. For-instance we developed the
process of efficient third party auditing process as
suggested by (Ateniese et al., 2007; Wang et al., 2010)
but we further enhanced their efficiency by
implementing partial homomorphic cryptography where
users are not only able to store and audit their data files,
they can also perform transaction on their encrypted
data. Venkatesh et al. (2012) proposed a RSA based
cryptography technique which facilitates users to only
encrypt their data but this technique does not have
capability of processing the encrypted data. Similarly, as
(Ranchal et al., 2010), argued that involving TPA may
associate additional risk to confidentiality of client’s
data, we overcame this issue by implementing a process
of sound steganography which secures the significant
parameters of client by malicious activities of TTPA
hence user’s parameters can be stored without any
security concerns. Prasadreddy et al. (2011) provided the
solution for securing the data of client by storing the data
and their associated keys with isolated CSPs, however
this is a good suggestion, but we believe that involving
multiple CSPs may result in enhancing the
communication and security complexity. In order to
improve this approach we implemented a concept of
encoding the cryptographic keys while at storage and
during the transfer. Keys and data can be only decrypted
by the relevant privileged authorities due to the
implementation of RBAC and SCG. In order to
overcome data violation issues, we further enhanced the
existing work by implementing the process of data
backup and recovery, where data of user is efficiently
recovered from secondary or backup cloud storage with
any loss or damage.

5. CONCLUSION

 This paper provides a data privacy preserving solution
for organizations dealing with sensitive information to
adopt off-premises cloud paradigm. We proposed and
presented an improved technique evaluated it by
penetration testing. The results showed that client’s data
is intact and protected from malicious attackers.
 For future work, we would solely focus on privacy
concerns to maintain the confidentiality and integrity of
client’s data. We intend to implement the proposed
system on Secure Socket Layer (SSL) to enhance the
security capabilities during the data transfer and
receiving process to protect the system from man-in-the-
middle and other session hijacking sort of attacks. Other
plans include, enhancing the functionality of proposed

technique, implementing a secure computing
environment for multiple clients, TTPA and cloud
admins working together to protect the data
confidentiality and integrity and analyzing and
evaluating the performance of system together with its
security and privacy capabilities.

6. REFERENCES

Adrian, D., S. Creese and M. Goldsmith, 2012. Insider
attacks in cloud computing. Proceedings of 11th
International Conference on Trust, Security and
Privacy in Computing and Communications, Jun.
25-27, IEEE Xplore Press, England, pp: 857-862.
DOI: 10.1109/TrustCom.2012.188

Ateniese, G., R. Burns, R. Curtmola, J. Herring and L.
Kissner et al., 2007. Provable data possession at
untrusted stores. Proceedings of the 14th ACM
Conference on Computer and Communications
Security, Oct. 29-Nov. 02, ACM Press, USA., pp:
598-609. DOI: 10.1145/1315245.1315318

Catteddu, D. and G. Hogben, 2009. Benefits, Risks and
Recommendations for Information Security.

CSA, 2011. Security Guidance for Critical Areas of
Focus in Cloud Computing v3.0. USA.

Francisco, R., S. Abreu and M. Correia, 2011. The final
frontier: Confidentiality and privacy in the cloud.
Computer, 44: 44-50. DOI: 10.1109/MC.2011.223

Hibo, H., J. Xu, C. Ren and B. Choi, 2011. Processing
private queries over untrusted data cloud through
privacy homomorphism. Proceedings of the 27th
International Conference on Data Engineering, Apr.
11-16, IEEE Xplore Press, Germany, pp: 601-61.
DOI: 10.1109/ICDE.2011.5767862

Khayyam, H., Q. Ilkin, B. Vusale and B. Mammad,
2012. Cloud Computing for business. Proceedings
of the 6th International Conference on Application
of Information and Communication Technologies,
Oct. 17-19, IEEE Xplore Press, Georgia, pp: 1-4.
DOI: 10.1109/ICAICT.2012.6398514

Ling, L., X. Lin, L. Jing and C. Zhang, 2011. Study on
the third-party audit in cloud storage service.
Proceedings of teg International Conference on
Cloud and Service Computing, Dec. 12-14, IEEE
Xplore Press, Hong Kong, pp: 220-227. DOI:
10.1109/CSC.2011.6138525

Mervat, B., S. Brohi, S. Chuprat and A. Jamalul-lail,
2012. A Study on significance of adopting cloud
computing paradigm in healthcare sector.
Proceedings of the 2012 International Conference on
Cloud Computing Technologies, Applications and
Management, Dec. 8-10, IEEE Xplore Press, UAE,
pp: 65-68. DOI: 10.1109/ICCCTAM.2012.6488073

Sarfraz Nawaz Brohi et al. / Journal of Computer Science 10 (2): 210-223, 2014

223 Science Publications

JCS

Prasadreddy, P., T. Srinivasa and S. Phani, 2011. A
threat free architecture for privacy assurance in
cloud computing. Proceedings of the IEEE World
Congress on Services, Jul. 4-9, IEEE Xplore Press,
USA., pp: 564-568. DOI:
10.1109/SERVICES.2011.11

Ranchal, R., B. Bhargava, L. Ben and L. Lilien, 2010.
Protection of identity information in cloud
computing without trusted third party. Proceedings
of the 29th IEEE Symposium on Reliable
Distributed Systems, Oct. 31 Nov. -03, IEEE Xplore
Press, Indian, pp: 368-372. DOI:
10.1109/SRDS.2010.57

Rocha, F and M. Correia, 2011. Lucy in the sky without
diamonds: Stealing confidential data in the cloud.
Proceedings of the 41st International Conference on
Dependable Systems and Networks Workshops, Jun.
27-30, IEEE Xplore Press, Hong Kong, pp: 129-134.
DOI: 10.1109/DSNW.2011.5958798

Shucheng, Y., C. Wang, K. Ren and W. Lou, 2010.
Achieving secure, scalable and fine-grained data
access control in cloud computing. Proceedings of
the 30th International Conference on Computer
Communications, Mar. 14-19, IEEE Xplore Press,
USA., pp: 1-9. DOI:
10.1109/INFCOM.2010.5462174

Venkatesh, M., M.R. Sumalatha and C. SelvaKumar,
2012. Improving public auditability, data possession
in data storage security for cloud computing.
Proceedings of the International Conference on
Recent Trends in Information Technology, Apr. 19-
21, IEEE Xplore Press, India, pp: 463-467. DOI:
10.1109/ICRTIT.2012.6206835

Wang, C., Q. Wang, K. Ren and W. Lou, 2010. Privacy-
preserving public auditing for data storage security
in cloud computing. Proceedings of the 30th
International Conference on Computer
Communications, Mar. 14-19, IEEE Xplore Press,
USA., pp: 1-9. DOI:
10.1109/INFCOM.2010.5462173

Yashpalsinh, J. and K. Modi, 2012. Cloud computing
concepts, architecture and challenges. Proceedings
of the International Conference on Computing,
Electronics and Electrical Technologies, Mar. 21-22,
IEEE Xplore Press, India, pp: 877-880. DOI:
10.1109/ICCEET.2012.6203873

