Jour nal of Computer Science 10 (2): 190-197, 2014

ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.190.197 Published Onlin€2) @014 (http://www.thescipub.com/jcs.toc)

A NOVEL PRIORITIZATION ALGORITHM MODEL BASED
TEST-SUITE GENERATION USING REGRESSION TESTING

'Prabhu Jayagopal and ?Dr. Malmurugan Nagarajan

'Research Scholar, Department of Computer Scienc&mgideering, Sathyabama University, Chennai, India
%Director, Sri Ranganathar Institute of Engineerind @echnology, Coimbatore Tamil Nadu, India

Received 2013-09-01; Revised 2013-10-14; Accepte8-20113
ABSTRACT

The fully automatic Graphical User Interface toot iny application using novel model based tegesui
generation techniques for a GUI. They are unableotdrol response time and time intervals are based
relationship between GUI events handlers and taseé< with their responsibilities. We present a hove
prioritization algorithm that enhances event hargdior the automated GUI tool. The proposed tool
generates GUI events, it Captures and Playbackt eesponses to automatic verification point of the
results for the test cases which are written togafile and corresponding report will be generafEhis
novel algorithm was able to detect new test suitt@dering of test cases to reduce a GUI faudigration
defects. The number of faults detected for a simglent are found after generating test cases #®r th
application. The Average Percentage of Fault DetecfAPFD) and charts has been used to show the
effectiveness of proposed algorithm to find fadtettion rate.

Keywords. Regression Testing, GUI Testing, Test Suite, N&raritization Algorithm, Capture/Playback

1. INTRODUCTION get numerous operations such as cursor pointirgg dr
and dropping the menu and resizing the windows Ishou

The Graphical User Interface application are be continual for each display object. For the past
progressively more in real-world market. GUI arevno years, many software system had been developedeon t
seen in mobile Phones, micro oven, cars, iPod. Hhey basis of event driven software platforms. GUI hasrb
popular because of the portability, flexibility thtney developed from the event-driven software, whichl wil
offer for the users. The Software systems have badgh used to start-up the user to either mouse releasase
on event-driven software platforms. This enablesuber drag, mouse click and also key in data as inpehange
either use (1) Mouse click (2) Mouse drag (3) Mouse the event statélhe generic prioritization criteria that are
release (4) Mouse select or short cut key to chdnge applicable to both GUI and Web application. It ¢ t
event state, this may include a change the softatate, evolve the model and use it to develop unified tihdor
which may impact the execution of subsequent eventsall Event Driven Software should be detected (Bustcat.,
Hence, the context established by the sequenceeot® 2011). At present circumstance criteria, the GUI
executes may have an impact on how it executes.GUbkoftware application in our daily life routine. Sloese
has been converted into a crucial component of anyGUI are now available in mobile phones, micro ovens
electronics devices with the wuser interact. The music system, iPod so they permit a programmer to
fundamental nature of GUI is of sensitive operation develop the GUI by coding the software event hasdle
the other hand, as the functional complication of The fully automatic model based GUI testing
application increased. The repeated usage of cursoresulted, aggravated by work on prioritization aithon
operations by the user to give suitable commenthi¢o for test data generation, The Test Case Prioritinais
system. For making comparing with the GUI in orttler ~ proposed in recent years, it can improve the fault
Corresponding Author: Prabhu Jayagopal, Department of Computer Sciemt&ngineering, Sathyabama University, Chennaialnd

////A Science Publications 190 JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

detection during the testing phase. The weightedl an previous work, compared various testing tools Ukait,
non-weighted GUI test cases based on weight scoresAbbot, Marathon, Pounder, Robot, QTP.
The weighted scores can be ranked in ascending or In the automated testing process, testers havastore
descending order. The result shows that dynamicthe validation of software using testing techniqugsfore
adjusted-weight method can obtain a better fault-capture a testing process, we must decide to iarifer
detection rate. The efficiency of detected fauftsnot expressive the capability of testing software (datnd
always the same (Huarg al., 2010). The tester must Sharma, 2013).
specify the test data coverage criterion to be ,usitider A graphical user interface for a.net may be
branch coverage or mutation analysis. It is integta implemented using newomponents, GUI events, which
into javascript compiler and test generation by a must be handled by the program. Thus, GUI eveetaar
command line option (Alshraideh, 2008). The notadn important class of inputs to.net Codes, which capand
utilizing a fault-based approach to test case pization replay correctly and efficiently, should be done tie
is novel and n concrete terms how the approach maynteractive applications. Capture of GUI events is
apply to test suites generated to detect faultstadlto significantly different from the capture of otheindts of
logical expressions in specifications (Yu and L2040 1). inputs, playing back of events in the applicatiow dhe
The search effort is then distributed amongst ththg corresponding test case will be generated.It iseBasn
with several ‘species’ working in parallel, eacldidated data captured and the data which is stored in the
to finding test data for an individual path (McMiatal., database, A report showing the type of event, wiqu
2006).The interaction with it primarily using a mouse, for the event, the time of the event and the saieenof
launches programs by clicking on icons and mantpala the application when the event took place is gdadra
various windows on the screen using graphical otsitr Based on the type of event, the correspondingctests
(Reimer, 2005). The code modifications made toteraa are generated.
new version may alter test execution patterns;sanei The existing methods used for modeling and tesiing
impacting the efficiency of test case prioritizatio GUI also affect its reliability. Consequently, theaality
techniques is whether these alterations will sigaiftly of the reliability assessment process and ultipatibtle
impact the predictive value of past execution datareliability of the GUI depend on the approachesiuse
(Rothermekt al., 2001). modeling and testing (Belkt al., 2012).
In this study, we propose: The present actual data on the experiences and to
) L) discuss if advantages can be gained using modebbas
* GUI testing can test any application provided the yegiing when compared with traditional graphicagrus
appropriate packages and interfaces are written f0fiyierface testing. Another contribution of this pagis a
that language _ ~ description of a keyword-based test automation toal
* The state based logging type, the start and enel tim 55 jmplemented for the Android emulator. All the
of each event that uniquely define a state aredtor ygdels and the tools created are available as space
in the log file. This file type contains a set of (Takalaet al., 2011). TheFig. 4 shows an important
interval records each one of them is characteri=ed |imjtation is that contain state based relationship

‘begin interval’, ‘end interval’, ‘continuation Relationship between E1 and E5. The desirable egeer
interval’ and ‘complete interval. Since each requires large number of test suites.
occurrence of event is time stamped, we can | earlier work, we found a feedback-based
measure the responsiveness of the GUI technigues to enhance a two ways of covering &<

* We can use GUI capture and playback event at thegre as follows (1) is able to significantly improve
background, unlike in the automated testing. The existing techniques and he|ps |dent|fy serious mb

application has to designed what to test in the software and (2) the ESI relationships cagatwia
* We focused on an novel prioritization algorithm to GUI state yield test suites that most often detaote
generate test suite for above the same faults than their code, event and event-interaetion

. coverage equivalent counterparts (Yuan and Memon,
1.1. GUI Testing 2010). The GUI events interact in difficult ways GiI

The GUI existing testing techniques have been focusreply to an event wary depending on the preceduegte
on implementing the automated GUI testing tools andand their running orders. The capture and replay
adopted by practioners (Marchetibal., 2008; Memon, event have been developed as a techniques fargeht
2008). The most popular GUI testing approach usgd m verification of interactive GUI applications. Using

////A Science Publications 191 JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

capture the entire event occurred in the applioatian Log file. If a verification point fails you can it
be recorded. The replay event is used to repeat théhe verification point in the log. The Reports wilke
application process, An quality-assurance grouproan generated after correcting the bugs in the apjbicat

an application and record the entire interactivesiem.
The tool records all the user’s events, such maolisks, 12. Average Percentage of Faults Detected

mouse release, mouse drag and the keys press Hieom t (APFD)

keyboard. All these events will be recorded to faet To measure the target of rising a separation otake
detected during implementation and it is storelbgnfile case of fault detection. APFD founded (Ashefal
using JASON object. This tool can then automaticall 2012) ' b

replay the exact same interactive session any nuntbe

times without requiring a user. The capture andasep . o
events are usually not used for recording entireC@Pure/playback, —opening the application, Report

interactive sessions. their main aim is to recahglex ~ 9eneration, Reset database, set verification paitd
interaction sequences, such as the user clickinghen ~@ssignining the values periodic table holds thetipial
screen like mouse click on the file and then open t colors of tables with their description.

The Fig. 1 shows an Novel GUI tool with

verify that this click will response by the softwar The Fig. 2 shows an report generation of each and
system or not We studied whether existing GUI captu every event occurred in the application with theiique
and replay tools can be used to record entiredotire Id, action type and view. Theig. 3 shows the interface

sessions with complex real-world applications and between the events occurred and their responsieeto t
whether the tools allow or preclude the accurateother events. In earlier study of a test case firation
measurement of perceptible performance given theconsists of input and output value and expecteditres
overhead ~ they impose on the application. pefore testing. Although test-case execution shdued
A verification point enables during capturing thaJIG successful, if some errors occur during executibe,

application, the object information stores it ifog file. out - :
M put value cannot be obtained or compared wiéh th
This file becomes the base of the expected statheof expected result (Huareg al., 2010).

object during subsequent builds. When you play ek An Event Flow Graph (EFG) consists of all events

GUI Interactive events it retrieves from the log fi) . . :
Our automation tools retrieve the information from @nd all possible interactions. Interactions areet of
the log file for each verification point and compdt to directed edges between events and events are tiex ve

the state of the object in the new build. Afteryblack, ~ in the graph. This graph also records which eveuills
the results of each verification point appear ia thster ~ be invoked continuously (Huarggal., 2010).

=t += Environsent.fiet La | ce | Pr |INd | Pm | Sm | Eu |'cai| T | Dy | He'|'Er |Tn |l¥e | al
th = rdr[3].Testringl}s
tton(pth)s 1 3

Ac Th Fa u Np Pu Am Cm Bk cf Es Fm Md | No

| | Ao St | v ot ctts it Ackwien roeanin s _Foce Vs Vit et Hotoom s

Fig. 1. A Simple GUI tool with an application

///// Science Publications 192 JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

= -
TS e T e . S
Unique ID Action Type Time LV
1488729626 mouse click 11165 [e |
14233612723 mouse click 22260 [s]
368702957 mouse click 36259 l Wiy]
812641317 mouse click 48328 [e]
1095525016 mouse click 63198 [T, |
63395959093 mouse click 78516 [T
I _SEaslTaTs SO T S 1nTroe

Fig. 2. Report generation for the events

Fig. 3. Events for GUI application

Automated GUI Testing is a solution to all theuss extra cost, all resulting in increased levels dffeence
raised with Manual GUI Testing. An Automated GUI in the software (Prabhu and Malmurugan, 2010).
Testing tool can playback all the recorded setasks, The Table 1 shows the events with the
compare the results of execution with the expectedcorresponding action occurred in the GUI applicatio
behavior and report success or failure to the test It measures the average rate of fault detecticesif
engineers. Once the GUI tests are created thegasily suite execution. The APFD is calculated by taking
be repeated for multiple number of times with diéffet weighted average of the number of faults detectethg
data sets and can be extended to cover additieatlres he run of the test suites. APFD is defined as:
at a later time. Most of the software organizations
consider GUI Testing as critical to their functibna
testing process and there are many things whichlgho
be considered before selecting an Automated GUI))
Testing tool. A company can make great stridesgusin T - test suite under evaluation
functional test automation. The important benefits M- number of faults
include, higher test coverage levels, greater lvaiig, n- total no. of test cases
shorted test cycles, ability to do multi user tegtat no TF;,— position of test

APFD = (1-TR + TF, +.... + TRy/nm) + (1/2n)

///// Science Publications 193 JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

Test Application

Testing tool

Periodic table

Open
+

Capture mouse and
kevboard events
k2
< ‘ Store in DB ‘

¥

Get unique Id for event
from report

v

Set verification point by
entering the property to test

+

| Playback events ‘

¥

| Verification test ‘

| Report of test cases
Fig. 4. Software architecture experimental procedure

Information on

chemical
elements

Access DB

APFD

Table 1. Events and actions in the GUI application run. On the other hand through the use of an effect

Events Actions prioritization technique. Software testers can be i
El Changes in color random order test cases to attain an increasedofate
E2 Display the description box fault detection. Novel technique presented in this
E3 It glows on the button study implemented a new regression test suite using
E4 Disables the button =~~~ yyjgritization algorithm that prioritized the tesased

E5 Drag and copy the description

with the target of faults can be found during the

execution of test suite. The below pseudo code for
ordering test cases from lowest PFD value to highes
PFD value. the variable means the current minimal

Table2. The number of faults detected for an event E1 to
generate test suite

TEST SUITE PFD value in all test cases. Initially the value Fid

will make null, Uot the test cases will be in unered

El TG TC, TG, TC, TC; TCs TC, TGy TG ")
FD, X X X list. All test cases are sorted in order to make a
FD, x X effective test suite.

FD3 X X .

FD, N N Algorithm

EB5 X « X Input:

FDG X X Uot: Unordered test cases

FD; X X X X FD: Summation of fault detections

FDo X E: Event handling

No. 2 2 2 3 1 2 3 2 2 Output:

of Faults TS: New prioritized Test Suite

Timed4 8 3 2 11 6 7 8 9 1. Begin

2. Set TS empty
3. Set E empty

1.3. Novel Prioritization Technique

In earlier work, it makes take long time depending
the size of test cases. How long each test cass tak

///// Science Publications

194

4. For each eventETS do
5. Calculate average faults found in a minute BFD
FDx2/time

JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

6. End for

7. Sort TS in ascending order based on the vdlue o
each test suite

8. APFD value generated

9. End
PFD, = fault * 2 / time
PFD, =1
PFD, = 0.75
PFD; = 1.33
PFD, =3
PFD; =0.18
PFD; = 0.66
PFD, = 0.85
PFD;=0.5
PFD, = 0.33

Prioritization order as follows:

PFD; + PFD, + PFD, + PFD, + PFD, + PFD, + PFD, +
PFD; + PFD,

APFD=(1-1+0.75+1.33
+3+0.18+0.66+0.85+0.5+0.33/9%9) +(¥2*9)
=(1-8.6/81)+(1/2*9)

=(1-0.1061)+(1/2*9)

=(0.8939)+(1/2*9)

=0.8939+0.055

=1.4494

The Average percentage of fault detection metras h
been used to measure the efficiency of proposed and
random prioritization and it shows that the propbse
value based algorithm is more efficient than random
prioritization to generate sequence of test casesdrly
rate of fault detection (Ashraf al., 2012).

Definition: A test case consists of input valuetput
value and expected output before starting tesfirte
function takes as input a set of test cases torthered
and returns a sequence that is ordered by the
prioritization criterion. Because we have developed
unified model of GUI and Web applications, we néwesl
function to be extremely general so that it may be
instantiated for either application class and ik ab use
any of our criteria as a paramet&he function (called
OrderSuite) selects a test case that covers thémmax
number of criteria elements (e.g., windows and
parameters) not yet covered by already-selectetl tes
cases. The function iterates until all test case tbeen
ordered (Sampatt al., 2013).

1.4. Sour ce Codefor Creating Test Casses

Test cases

ob5[i] = new Button();

this.ob5 [i].Text = "Test Case";
testypos += 50;

this.ob5 [i].Location = new

System.Drawing.Point (testxpos, testypos);

this.ob5 [i].Size = new

System.Drawing.Size(100, 25);

this.Controls.Add(ob5][i]);
this.ob5][i].Click += delegate(object sender1,

EventArgs ee)

{

createtestcases(senderl, ee, val);

k

i++;

public void createtestcases(object sender,

EventArgs e, string val)

{

if (val == "mouse")

{

Mousetestcases ob = new mousetestcases();
ob.Show();

else if (Val == "key")

{
Keytestcases obl = new keytestcases ();
ob1.Show ();
}
3.5 Execution of test cases before fault detection
3
< —Seriesl
2
1.5
1
0.5
0
1 2 3 4 5 6 7 8 9

Fig. 5. The cummulative of test cases before the faultatiete

public void createtestcasebutton(string Val)

///// Science Publications 195

rate

JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

These techniques are typically not usable by other
researchers because they are not widely applicétble.
provides guidance about possible future development
and research directions.

73]
th

Execution of test cases after fault detection

(3]
L (%)

Tesl cases
8

4. CONCLUSION

In this study we presented a new automated tool for
any GUI applications. The proposed Prioritizatation
algorithm is used to Ordered of test cases usigiggssion

0 testing, implemented proof-of-concept tool supporthe
1 2 3 4 5 6 7 8 9 approach and combined the implemented GUI tool with
an model-based approach aims to reduce the améunt o
Fig. 6. The cummulative of test cases after the fault dietec fault detection rate in the test suite generatitnis
rate required to model based GUI applications to enghlek
))) response time and time interval in GUI events in

It is used for playing back the events which were 5,1omated testing. In our previous work, the stiengf
recorded during the capture phase. Based on eacbfti oyr approach in comparison to the automated testinig
system clock and the data stored in the structalle, include automatically generating human readable
mouse and keyboard events get replicated and if graphical models while requiring none or only dllit
verification point is set, then during playback, the manual effort. In future, we plan to improve the IGdol
corresponding event, The data gets tested whehier t so that the generated Feedback would inform adwaut t

test passed or failed. detected usability issues and include informatiooua the
changes that happened in the GUI after a specific
2.RESULTS interaction. The GUI Tool should indicate more digthe

states that should be manually elaborated in theefrand
From Table 2 which is also represented Fig. 5 support iterative modeling containing manual and
and 6, shows the fault detection is very effective after automated phases. Also, we plan to extend the apiprio
ordering the test cases compared to unordered tedbe also usable on other kinds of GUI applications.
cases. It is identified that the fault detectionerds However, in this study we didn’t consider that some
sequence and computational cost and transmissiorevents might give failed test cases events arestrivied

cost of the proposed method are improved than thelo the action take place in the application. We hmig
existing model. need to further investigate whether the fault-detec

ability of the other tool is the same as the latter
3. DISCUSSION Furthermore, we still have to know how to generate
report generation for other application. We plarstiady
The novel Prioritization algorithm for model based and present above mentioned issues in the future.

test suite generation presented in this study decdsn

certain aspects of GUI testing. In this section we 5. REFERENCES

present an objective summary of trends in GUI testi

From the data collected, it can be seen that mbdséd Alshraideh, M., 2008. A complete automation of unit

GUI testing techniques have attracted the most testing for JavaScript programs. J. Comput. Sci., 4
attention in the Research community. However, 1012-1019. DOI10.3844/jcssp.2008.1012.1019

industrial tools such as Pounder, Marathon, Jasaret Ashraf, E., A. Rauf and K. Mahmood, 2012. Valuedtas
JFC Unit, QTP are model based on improving the regression test case prioritization. Proceedinghef
response time, capture/Replay, ordering of tesesas World Congress on Engineering and Computer
with prioritization with comparing the GUI testing Science, Oct. 24-26, S&mancisco, USA.

techniques, methods and practices in the researcBelli, F., M. Beyazit and N. Guler, 2012. Event-
community. There has also been a general lack of oriented, model-based GUI testing and reliability
collaboration between practitioners and researchers assessment-approach and case study. Adv. Comput.,
(Fig. 4), although with exceptions in recent years. 85: 277-326.

////A Science Publications 196 JCS

Prabhu Jayagopal and Malmurugan Nagarajan / Joofi@dmputer Science 10 (2): 190-197, 2014

Bryce, R.C., S. Sampath and A.M. Memon, 2011. Reimer, J., 2005. A History of the GUI. Arc Techalic

Developing a single model and test prioritization LLC.
strategies for event-driven software. IEEE Trans. Rothermel, G., R. Huntch, C. Cu and M.J. Harold)220
Soft. Eng., 37: 48-64. DOI: 10.1109/TSE.2010.12 Prioritizing test cases for regression testing. EEE

Huang, C.Y., J.R. Chang and Y.H. Chang, 2010. Desig Trans. Software Eng., 27: 929-948. DOI:
and analysis of GUI test-case prioritization using 10.1109/32.962562
weight-based methods. J. Syst. Software, 83: 646-Sampath, S., R. Bryce and A.M. Memon, 2013. A
659. DOI: 10.1016/j.jss.2009.11.703 uniform representation of hybrid criteria for
Jatain, A. and G. Sharma, 2013. A systematic reiéw regression testing. IEEE Trans. Soft. Eng., 1326-
techniques for test case prioritization. Int. J. 1344. DOI: 10.1109/TSE.2013.16
Comput. Applic., 68: 38-42. DOI10.5120/11554- Takala, T., M. Katara and J. Harty, 2011. Experésnaf
6833 system-level model-based GUI testing of an android
Marchetto, A.,P. Tonella and F. Ricca, 2008. State- application. Proceedings of the IEEE 4th
based testing of ajax web applications. Proceedings International Conference on Software Testing,
of the 1st International Conference Software Verification and Validation, Mar. 21-25, |IEEE
Testing, Verification and Validation, Apr. 9-11, Xplore Press, Berlin, pp: 377-386. DOI:
IEEE Xplore Press, Lillehammer, pp: 121-130. DOI: 10.1109/ICST.2011.11
10.1109/ICST.2008.22 Yu, Y.T. and M.F. Lau, 2011. Fault-based test suite
McMinn, P., M. Harman, D. Binkley and P. Tonella, Prioritization for specification-based testing.dmh.
2006. The species per path approach to SearchBased Software, 54: 179-202. DOI:
test data generation. Proceedings of International 10.1016/j.infsof.2011.09.005
Symposium on Software Testing and Analysis, Jul. Yuan, X. and A.M. Memon, 2007. Using GUI run-time
17-20, ACM Press, Portland, ME, USA., pp: 13-24. state as feedback to generate test cases. Progeedin
DOI: 10.1145/1146238.1146241 of the 29th International Conferences on Software
Memon, A.M., 2008. Automatically repairing event Engineering, May 20-26, IEEE Xplore Press,
sequence-based GUI test suites for regression Minneapolis, MN., pp: 396-405. DOl:
testing. ACM Trans. Software Eng. Methodol., 18: 10.1109/ICSE.2007.94
pp: 1-36. DOI:10.1145/1416563.1416564
Prabhu, J. and N. Malmurugan, 2010. A survey on
automated GUI testing procedures. Eur. J. Sci.,Res.
64: 456-462.

////A Science Publications 197 JCS

