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ABSTRACT 

Hierarchical Access Control in group communication is an active area of research which is difficult to 
achieve it. Its primary objective is to allow users of a higher authority group to access information or 
resource held by lower group users and preventing the lower group users to access information held by 
higher class users. Large collection of collaborative applications in organizations inherently has 
hierarchical structures for functioning, where providing security by efficient group key management is 
a big challenging issue. While preserving centralized methods for hierarchical access control, it is 
difficult to achieve efficiency as a single membership change will result in lot of changes which are 
difficult to maintain. So, using distributed key agreement techniques is more appropriate for this 
scenario. This study explore on novel group key agreement approach, which combines both the 
symmetric polynomial scheme and Tree Based Group elliptic Curve key exchange. Also, it yields a 
secure protocol suite that is good in fault-tolerant and simple. The efficiency of SP-TGECDH is better 
than many other schemes. Using TGECDH makes the scheme suitable small Low powered devices.  
 
Keywords: Collaborative, Dynamic Peer Groups, Hierarchical Access Control, Symmetric Polynomial, 

Tree Based Group Elliptic Curve Key Exchange  

1. INTRODUCTION 

Fault-tolerant, scalable and reliable communication 
services have become critical in modern computing. An 
important and popular trend is to convert traditional 
centralized services (e.g., file sharing, authentication, 
web and mail) into distributed services spread across 
multiple systems and networks (Kim et al., 2004). Many 
of these newly distributed and other inherently 
collaborative applications (e.g., conferencing, white-
boards and shared instruments) need secure 
communication. However, experience shows that 
security mechanisms for collaborative and dynamic peer 
groups tend to be both expensive and unexpectedly 
complex. In that regard, dynamic peer groups are very 

different from non-collaborative, centrally managed, 
one-to-many (or few-to-many) broadcast groups such as 
those encountered in Internet multicast. 

Dynamic Peer Groups (DPGs) are common in many 
layers of the network protocol stack and many 
application areas of recent computing. Examples of 
DPGs include replicated servers, audio conferencing, 
video conferencing and other applications supporting 
collaborative work. Comparing large multicast groups, 
DPGs seem to be relatively small in size, in the order of 
hundred larger groups are harder to control on a peer 
basis and are often organized in a hierarchy. DPGs 
typically assume a many-to-many (or, equivalently, any-
to-any) communication pattern rather than one-to-many 
pattern common of larger hierarchical groups. Despite 
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their relatively small number, group members in a DPG 
could be spread throughout the Internet and should be 
able to deal with arbitrary partitions due to network 
failures, congestion and hostile attacks. In essence, a 
group can be split into a number of disconnected 
partitions each of which must persist and function as an 
independent peer group (Kim et al., 2004). 

Security requirements in collaborative DPGs 
present several interesting research challenges. In this 
study, we focus on secure and efficient group key 
management. The goal of group key management is to 
set up and maintain a shared secret key among the 
group members (Zhong, 2002). It serves as a foundation 
for other DPG security services. 

There are many applications in organizations that 
share data in a carefully managed fashion by using 
access control mechanisms. The common method used 
for enforcing access control is by encrypting the data and 
managing the encryption keys. Access control can be 
Discretionary Access Control, Role-Based Access 
Control, Mandatory Access Control and Hierarchical 
Access Control. Discretionary Access Control restricts 
access to objects based solely on the identity of users 
who are trying to access them.  

Mandatory Access Control mechanisms assign a 
security level to all information, assign a security 
clearance to each user and ensure that all users only have 
access to that data for which they have a clearance. It has 
better security than Discretionary Access Control. In 
Role Based Access Control a user has access to an object 
based on the assigned role. Roles are defined based on 
job functions. Permissions are defined based on job 
authority and responsibilities within a job function. 
Based on the permissions, operations on an object are 
invocated. The object is concerned with the user’s role 
and not the user. Users can change roles frequently and 
hence once roles are fixed, access can be given to roles 
and objects of the respective roles get permission.  

The realistic assumption is that the structure of any 
organization (Fig. 1) is a hierarchy of security classes 
lead to Hierarchical Access Control. Hierarchical 
Access Control is very difficult to achieve in secure 
group communication due to highly dynamic nature of 
members (Kuang et al., 2011; Aparna and Amberker, 
2009). In a hierarchical access control system, users 
are partitioned into a number of classes called security 
classes which are organized in a hierarchy. 
Hierarchies arise in systems where some users have 
higher privileges than others and a security class 
inherits the privileges of its descendant classes. 

 
 
Fig. 1. A sample hierarchy in organizations 
 

As shown in Fig. 1, there are seven classes C1, C2, 
C3, C4, C5, C6 and C7. Each class has any number of 
users. There are two hierarchies in the above example 
and they are C1>C2>C4>C6 and C1>C3>C5>C7. Users of 
an increasing class should be able to access the resources 
held by the users of the descendant class. Hierarchical 
Access Control Problem is defined as the procedure by 
which members in a group can communicate with each 
other in a secure manner so that the information or 
resource that is being shared is known to the members of 
that group and all members who are destined as 
ancestors to the group. In such circumstances, a group 
key is set up among all the participating members and 
this key is used to encrypt all the messages destined to 
the group. This key has to be relayed to all the members 
who are ancestors so that the communication or resource 
is accessed by the ancestors. 

An exceptional protocol should proficiently manage 
the group key when members join and leave in a 
descendant group. Hence user dynamics has to be taken 
care with at most attention to issues of forward and 
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backward secrecy. In rare cases new classes may need to 
created and added to the hierarchy and classes may also 
be deleted. Hence, class dynamics has to be addressed. 
The desirable properties of an ideal Hierarchical Access 
Control are Key Establishment for a shared group key 
(Hwang and Satchell, 1999), Enforcement of Forward 
and Backward Secrecy, Busty operation with 
simultaneous multiple user join or leave, Efficiency with 
a minimum amount of computation and communication, 
Key Establishment for Hierarchical Access Control, User 
Dynamics and Class Dynamics (Lin et al., 2003). 

2. SYSTEM OVERVIEW 

The goal of this research is to propose a 
communication and computation efficient Hierarchical 
Access control protocol for Dynamic Peer Groups using 
Symmetric Polynomial Scheme (Das et al., 2005; 
Begum et al., 2010a) and Tree Based Group Elliptic 
Curve Diffie Hellman Scheme (Wang et al., 2006). In 
huge and highly dynamic networks, it is very difficult 
to have hierarchical access control. It is commendable 
to use a dual layer encryption protocol to protect the 
resources from adversaries and also to provide access to 
resources for the ancestor users. In the proposed scheme 
the dual encryption uses the key formed by TGECDH for 

communication within the dynamic peer groups and for 
communication among the dynamic peer groups which 
involves ancestor classes the symmetric polynomial 
scheme (Zou and Bai, 2008) is used. Use of TGECDH 
scheme within the classes involves its suitability for use 
in low power small devices which are abundantly used 
nowadays. The use of two levels of keys reduces the 
large enormous cost of computation and communication 
in re-keying. Hence, in Hierarchical Access control 
protocol for Dynamic Peer Groups all the member nodes 
joins their respective classes. 

As shown in Fig. 2 the Hierarchical Access Control 
Problem in an Organization can be logically represented as 
a set of classes (Hwang and Yang, 2003). Assume that in 
every class, every user can receive a message broadcasted 
from other members. The key formation is based on 
efficient Tree Based Group Elliptic Curve Diffie Hellman 
protocol. Here, it is not required to create a common key for 
the global group but for every class keys must be created 
independently and outer keys using the symmetric 
polynomial scheme are formed with the help of Central 
Authority. If a user in a class transmits a message, the 
message is encrypted by TGECDH key and all the members 
including the class controller decrypt it. The key is 
transmitted to the Gateway Node.  

 

 
 

Fig. 2. A sample hierarchy in organizations 



Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014 

 
1653 Science Publications

 
JCS 

Also, the Gateway Node encrypts the message again 
using its respective symmetric polynomial key and 
broadcasts it. All the Gateway Nodes receive this. The 
Gateway Nodes of the ancestor classes derive the key 
using polynomial approach.  

They decrypt the message and encrypt it again with the 
class key obtained using TGECDH and transmits to all 
users of its class. Thus all users of the ancestor class are able 
to access the resource of their descendant classes. 

This Hierarchical Access control protocol for Dynamic 
Peer Groups using Symmetric Polynomial Scheme and Tree 
Based Group Elliptic Curve Diffie Hellman Scheme is 
suitable for the inherent characteristics of networks which 
have independent, mobile and unreliable links. The main 
reasons can be summarized as follows: 
 
• The protocol is based on contributory group key 

agreement in the lower layer, so it does not require pre-
existing infrastructure except a special node called the 
Gateway Node for performing a TGECDH Group key 
agreement. It is a hybrid scheme where a central 
authority needs to have communication with the 
gateway Nodes and once the polynomial is sent to 
them. There is no more interference except in very rare 
cases during a hierarchy change 

• The Gateway Nodes of each class receive two sets 
of keys. One from the class controllers of their 
respective classes and another from the Central 
Authority which may be powerful nodes in the 
infrastructure with the capability of encrypting and 
decrypting and multicasting to their group members 

• The protocol is efficient especially for large, 
dynamic group. Because re-keying of one class does 
not influence other groups which avoids the problem 
of “1-affects-n” (i.e., a single membership change in 
the group affects all the other group members) and it 
can provide better performance 

• Networks are always composed of unreliable links 
 

This Scheme provides reliable communication for 
networks. 

The proposed Hierarchical Access control protocol for 
Dynamic Peer Groups using Symmetric Polynomial 
Scheme and Tree Based Group Elliptic Curve Diffie 
Hellman Scheme mainly targets at security, scalability and 
efficiency (Wang et al., 2006). 

A Class key CK is used for communication between 
members in the same class. The Class key is re-keyed 
whenever there is a membership change, joins or leaves 
and member failure. The Outer keys are rarely changed 
only during the change in the hierarchical Structure. 

3. KEY ESTABLISHMENT AMONG THE 
DYNAMIC PEER GROUPS USING 

SYMMETRIC POLYNOMIALS 

In mathematics, specifically in commutative algebra, 
the elementary symmetric polynomials are one type of 
basic building block for symmetric polynomials, in the 
sense that any symmetric polynomial P can be expressed 
as a polynomial in elementary symmetric polynomials: P 
can be given by an expression involving only additions 
and multiplication of constants and elementary 
symmetric polynomials. The symmetric polynomials 
have an excellent property that when the order of the 
parameters is changed also, the value of the polynomial 
does not change. This property is used in hierarchical 
access control by the ancestor classes to derive the keys 
of the descendant classes.  

The underlying principle of the upper Tier scheme 
is secret sharing. Unlike other schemes which are 
computationally secure. The proposed scheme is 
unconditionally secure. A central authority chooses a 
large positive integer P as the system modulus, P need 
not be a prime and a threshold t. CA randomly 
generates a symmetric polynomial in m variables with 
co-efficient from Zp in which the degree of any 
variables is at most t as Equation 1: 
 

t t t
i i im1 2

1 2 m i ,i ,...,i 1 2 mm1 2
i i i m1 2

p(x ,x ,..., x ) = ... a x i ...x (mod p)∑∑ ∑  (1) 

 
where, ai is randomly generated coefficients by the 
Central Authority. Every class in the hierarchy has a 
polynomial function which is derived from P(x1, x2,… , 
xm) and the polynomial function is transmitted to each 
class securely by the Central Authority. 

To derive proper keys in the hierarchy, the CA 
generates some publicly known numbers: 
 
• N random numbers si associated with Ci for i = 1, 2,... n 
• (m-1) additional random numbers sj

’ for j = 1, 2, ... , 
m-1. (si and sj

’ belong to Zp) 
 

For each security class Ci with an ancestor set Si = 
{C i1, Ci2, …,Cim} where ij is an ordinal number such that 
1≤ ij ≠ i ≤ n, security class Ci is given a polynomial 
function, gi derived by the CA as Equation 2: 
 

i mi+2 mi+3 m

i i1 i2 im mi+2 mi+3 m

g (x ,x ,...,X )

= p(s ,s ,+s ,...,s ,x ,x ,...,s )
 (2) 
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3.1. Working of the Symmetric Polynomial 
Scheme 

The following case study is taken into consideration to 
demonstrate the working of the Symmetric Polynomial.  

The following steps are followed to show Hierarchical 
Access Control using Symmetric Polynomials: 
 
• Diagrammatic Representation of the Hierarchy is 

given above 
• Key Calculation by the respective Classes. The keys 

are named as K1, K2 to mean that Class C1 
calculates is key K1, Class C2 calculates is key K2 

• Key Derivation of a Descendant Class by the 
Ancestor Classes. The keys are named as AK1,2, 
AK1,3 to mean that Ancestor Class C1 derives the key 
of its descendant Class C2 (AK1,2), Ancestor Class C1 
derives the key of its descendant Class C3 (AK1,3) 

• Key Derivation by a Class who is not an ancestor of 
classes. The key is called as NK2,1, NK3,1, NK3,6 to 
mean that a non-ancestor class C2 derives the key of 
C1 (NK1,2), non-ancestor class C3 derives the key of 
C1 (NK1,3) non-ancestor class C3 derives the key of 
C6 (NK3,6) 

• It is shown that K2 = AK1,2, K2 = AK3,2, i.e., the 
symmetric polynomials are evaluated with the same 
parameters but with different permutations 

• It is shown that K1 ≠ NK21, K1 ≠ NK31, K6 ≠ NK36 
i.e., the symmetric polynomials are evaluated with 
different parameters which results in the wrong 
value for the key 

• There is no restriction on the number of users in 
each class. The Key Calculation, Key Derivation is 
taken care by one user of each class designated as 
the class controller 

• In all the case studies the following symmetric 
Polynomial is used Equation 3 

 

1 2

1 2 m

1 2 m

t t t
i i im

1 2 m i ,i ,...,i 1 2 m
i =0 i =0 i =0

p(x ,x ,..., x ) = ... a x i ...x mod p∑∑ ∑  (3) 

 
• The value of m is chosen as m ≥ max {m1, m2, m3, 

..., mi}+1, A greater value of m allows to add more 
classes. Here m value is chosen as 6  

• To calculate its key each class applies uses the 
symmetric polynomial with m parameters. The m 
parameters are chosen as follows. Ki = si, si1, si2, ... , 
simi, s

’
1, s

’
2, ... , s

’
m-mi-1) 

• Key Derivation: In key derivation, a term Sj/i that is 
used to identify the hierarchy is used: 

j/ I j i i (j/ i)1 (j/ i)2 (j/ i)rjS = S / (S U{C }) = {C ,C ,...,C } (4) 

 
• 12) Consider a security class Ci which is ancestor to 

security class Cj and key Kj can be calculated by Ci as: 
 

' ' '
j i j (j/ i)1 (j/ i)2 (j/ i)rj 1 2 m-mi-2-rj

i j i i1 i2 imi (j/ i)1

' ' '
(j/ i)2 (j/ i)rj 1 2 m-mi-2-rj

K = g (S ,s ,s ,...,s ,s ,s ,...,s )

= p(s ,s ,s ,s ,s ,...,s ,s ,

s ,...,s ,s ,s ,...,s )  

  (5) 

 
As shown in Table 1 Set of Classes = {C1, C2, C3, C4, 

C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16), Set of 
Ancestor Classes = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, 
S11, S12, S13, S14, S15 ,S16}. There are five ancestors in 
the Hierarchy. C1 is the ancestor of C2, C3, C4 and C5. 
C2 is the ancestor of C6, C7, C8 and C9. C3 is the 
ancestor of C10, C11 and C12. C4 is the ancestor of C13 
and C14. C5 is the ancestor of C15 and C16. Equation 4 
and 5 are used for deriving the keys. 
 
Table 1. Set of classes and its ancestor classes 
Set S and C m Value Set K 
S1 = Ancestor of  m1 = 0 m-mi -1= 5 
C1 = {Φ}  K 1 = (s1, s1

’, s2
’, s3

’, s4
’, s5

’) 
S2 = Ancestor of m2 = 1 m-mi -1 = 4 
C2 = {S1}  K 2 = (s2, s1, s1

’, s2
’, s3

’, s4
’) 

S3 = Ancestor of m3 = 1 m-mi -1 =4 
C3 = {S1}  K 3 = (s3, s1, s1

’, s2
’, s3

’, s4
’) 

S4 = Ancestor of m4 = 1 m-mi -1 = 4 
C4 = {S1}  K 4 = (s4, s1, s1

’, s2
’, s3

’, s4
’) 

S5= Ancestor of m5 = 1 m-mi -1 = 4 
C5 = {S1}  K 5 = (s5, s1, s1

’, s2
’, s3

’, s4
’ ) 

S6 = Ancestor of m6 = 2 m-mi -1 = 3 
C6 = {S1,S2}  K 6 = (s6,s1,s2, s1

’, s2
’, s3

’ ) 
S7 = Ancestor of m7 = 2 m- mi -1 = 3 
C7 = {S1,S2}  K 7 = (s7,s1,s2, s1

’, s2
’, s3

’) 
S8 = Ancestor of m8 = 2 m-mi -1 =3 
C8 = {S1,S2}  K 8= (s8, s1, s2, s1

’, s2
’, s3

’) 
S9 = Ancestor of m9 = 2 m-mi -1 = 3 
C9 = {S1,S2}  K 9 = (s9, s1, s2, s1

’, s2
’, s3

’) 
S10 = Ancestor of m10 = 2 m- mi -1 = 3 
C10 = {S1.S3}  K 10 = (s10, s1, s3, s1

’, s2
’, s3

’) 
S11 = Ancestor of m11 = 2 m- mi -1 = 3 
C11 = {S1, S3}  K 11 = (s11, s1, s3, s1

’, s2
’, s3

’) 
S12 = Ancestor of m12 = 2 m-mi -1 = 3 
C12 = {S1, S3}  K 12 = (s12, s1, s3, s1

’, s2
’, s3

’) 
S13 = Ancestor of m13 = 2 m-mi -1 = 3 
C13 = {S1, S4}  K 13 = (s13, s1, s4, s1

’, s2
’, s3

’) 
S14 = Ancestor of  m14 = 2 m-mi -1 = 3 
C14 = {S1, S4}  K 14 = (s14, s1, s4 , s1

’, s2
’, s3

’ ) 
S15 = Ancestor of  m15 = 2 m- mi -1= 3 
C15 = {S1, S5}  K 15 = (s15, s1, s5, s1

’, s2
’, s3

’) 
S16 = Ancestor of m16 = 2 m-mi -1 = 3 
C16 = {S1, S5}  K 16 = (s16,s1,s5, s1

’, s2
’, s3

’, s4
’ , s5

’ ) 
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 Ancestor: 1 = C1 
Key derivation of C2 by C1: 

 
j = 2, i = 1 
Sj /i  = Sj/Si U Ci 
 =  {C1}/ { Φ U C1} 
 =  0 
rj = 0 
m- mi-2-rj = 6 - 0- 2-0 = 4 
AK 1,2 = P(s1, s2,s1

’, s2
’, s3

’, s4
’) 

K2  = (s2, s1, s1’, s2
’, s3

’, s4
’)  

AK1,2  = K2 (same parameters in different permutation) 
 

Key derivation of C3 by C1: 
 
j = 3, i = 1 
Sj /I = Sj/Si UCi 
 =  {C1}/{ ΦUC1} 
 =  0 
rj = 0 
m- mi-2-rj = 6-0-2-0 = 4 
AK 1,3 =  P(s1, s3,s1

’, s2
’, s3

’, s4
’) 

K3 =  (s3, s1, s1
’, s2

’, s3
’, s4

’) 
AK1,3  =  K3 (same parameters in different permutation) 
 

Key derivation of C4 by C1: 
 
j = 4, i = 1 
Sj /I = Sj/Si UCi 
 = {C1}/ΦUC1} 
 = 0 
rj = 0 
m- mi-2-rj = 6-0-2-0 = 4 
AK 1,4 =  P(s1, s4,s1

’, s2
’, s3

’, s4
’) 

K4  =  (s4, s1, s1
’, s2

’, s3
’, s4

’) 
AK1,4  =  K4 (same parameters in different permutation) 
 

Key derivation of C5 by C1: 
 
j = 5, i = 1 
Sj /I = Sj/Si UCi 
 = {C1}/{ ΦUC1} 
 =  0 
rj = 0 
m- mi-2-rj = 6-0-2-0 = 4 
AK 1,5 = P(s1, s5,s1

’, s2
’, s3

’, s4
’) 

K5  = (s5, s1, s1
’, s2

’, s3
’, s4

’) 
AK 1,5 = K5 (same parameters in different permutation) 
 
Ancestor: 2 = C2 

Key derivation of C6 by C2: 
 
j = 6, i = 2 

Sj /i  = Sj/Si UCi 
 =  {C1, C2}/{C 1UC2} 
 =  0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 2,6 =  P(s6, s2, s1,s1

’, s2
’, s3

’) 
K6  =  (s6, s1, s2, s1

’, s2
’, s3

’) 
AK 2,6  =  K6 (same parameters in different permutation) 
 

Key derivation of C7 by C2: 
 
j = 7, i = 2 
Sj /I = Sj/ Si UCi 
 = {C1, C2}/{C 1UC2} 
 = 0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 2,7 =  P(s7, s2, s1, s1

’, s2
’, s3

’) 
K7  =  (s7, s1, s2, s1

’, s2
’, s3

’) 
AK 2,7  =  K7 (same parameters in different permutation) 
 

Key derivation of C8 by C2: 
 
j = 8, i = 2 
Sj /I = Sj/Si UCi 
 =  {C1, C2}/{C 1UC2} 
 =  0 
rj= 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 2,8 =  P(s8, s2, s1, s1

’, s2
’, s3

’) 
K8 =  (s8, s1, s2, s1

’, s2
’, s3

’) 
AK 2,8  =  K8 (same parameters in different permutation) 
 

Key derivation of C9 by C2: 
 
j = 9, i = 2 
Sj /I =  Sj/Si U Ci 
 =  {C1, C2}/{C 1UC2} 
 = 0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 2,9 =  P(s9, s2, s1, s1

’, s2
’, s3

’) 
K9  =  (s9, s1, s2, s1

’, s2
’, s3

’) 
AK 2,9  =  K9 (same parameters in different permutation) 
 
Ancestor: 3 = C3 

Key derivation of C10 by C3: 
 
j = 10, i = 3 
Sj /I = Sj/Si UCi 
 = {C1, C3}/{C1UC3} 
 = 0 
 rj = 0 
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m- mi-2-rj = 6-1-2-0 = 3 
AK 3,10 =  P(s10, s3, s1,s1

’, s2
’, s3

’) 
K10  =  (s10, s1, s3, s1’, s2

’, s3
’) 

AK 3,10  =  K10 (same parameters in different permutation) 
 

Key derivation of C11 by C3: 
 
j = 11, i = 3 
Sj /I = Sj/Si UCi 
 = {C1, C3}/{C1UC3} 
 = 0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 3,11 =  P(s11, s3, s1, s1

’, s2
’, s3

’ ) 
K11  =  (s11, s1, s3, s1

’, s2
’, s3

’) 
AK 3,11  =  K11 (same parameters in different permutation) 
 

Key derivation of C12 by C3: 
 
j = 12, i = 3 
Sj /I = Sj/Si UCi 
 = {C1, C3}/{C 1UC3} 
 = 0 
rj= 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 3,12 =  P(s12, s3, s1, s1

’, s2
’, s3

’ ) 
K12  =  (s12, s1, s3, s1

’, s2
’, s3

’) 
AK 3,12  =  K12 (same parameters in different permutation) 
 
Ancestor: 4 = C4 

Key derivation of C13 by C4: 
 
j = 13, i = 4 
Sj /i  = Sj/Si UCi 
 = {C1, C4}/{C 1UC4} 
 = 0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 4,13 = P(s13, s4, s1, s1

’, s2
’, s3

’) 
K13  =  (s13, s1, s4, s1

’, s2
’, s3

’) 
AK 4,13  =  K13 (same parameters in different permutation) 
Key derivation of C14 by C4: 
 
j = 14, i = 4 
Sj /I = Sj/Si UCi 
 = {C1, C4}/{C 1UC4} 
 = 0 
 rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 4,14 =  P(s14, s4, s1, s1

’, s2
’, s3

’) 
K14  =  (s14, s1, s4, s1

’, s2
’, s3

’) 
AK 4,14  =  K14 (same parameters in different permutation) 

Ancestor: 5 = C5 
Key derivation of C15 by C5: 

 
j = 15, i = 5 
Sj /I = Sj/Si UCi 

= {C1, C5}/{C1 UC5} 
= 0 

 rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 5,15 =  P(s15, s5, s1, s1

’, s2
’, s3

’) 
K15 =  (s15, s1, s5, s1

’, s2
’, s3

’) 
AK 5,15  =  K15 (same parameters in different permutation) 
 

Key derivation of C16 by C5: 
 
j = 15, i = 6 
Sj /I = Sj/Si UCi 
 = {C1, C5}/{C 1UC5} 
 = 0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
AK 5,16 =  P(s16, s5, s1, s1

’, s2
’, s3

’) 
K16  =  (s16, s1, s5, s1

’, s2
’, s3

’) 
AK 5,16  =  K16(same parameters in different permutation) 
 

A few Examples for the key derivation by the Non 
Ancestral Class is shown below 

Case: 1  
Key derivation of C1 by C2: 

 
j = 1, i = 2 
Sj /i  =  Sj/Si UCi 
 = {Φ}/{C 1UC2} 
 = 0 
rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
NK2,1 =  P(s2, s1, s1, s1

’, s2
’, s3

’) 
K1 =  (s1, s1

’, s2
’, s3

’, s4
’, s5

’) 
NK2,1  ≠  K1 (parameters are not correct hence Class C2 

does not get the correct key of Class C1) 
Case: 2 
Key derivation of C1 by C3: 
 
j = 1, i = 3 
Sj /i  = Sj/Si UCi 
 =  {Φ}/{C 1UC3} 
 =  0 
 rj = 0 
m- mi-2-rj = 6-1-2-0 = 3 
NK3,1 =  P(s3, s1, s1, s1

’, s2
’, s3

’) 
K1  =  (s1, s1

’, s2
’, s3

’, s4
 , s5

’) 
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NK3,1  ≠  K1 ( parameters are not correct hence Class C3 
does not get the correct key of Class C1) 

 
Case: 2 
Key derivation of C9 by C4: 
 
j = 9, i = 4 
Sj /i  = Sj/Si UCi 
 = {C1, C2}/ C1UC4} 
 =  {C2} 
rj =1 
m- mi-2-rj = 6-1-2-1 
 = 2 
NK4,9 = P(s4, s9, s1, s2, s1

’, s2
’) 

K9  = (s9, s1, s2, s1
’, s2

’, s3
’) 

NK4,9  ≠  K9 (parameters are not correct hence Class C4 
does not get the correct key of Class C9) 

 
3.2. Support of Network Dynamics 

In a large group the user dynamics is very frequent 
which is taken care by the lower layer protocols 
explained in subsequent sections. There may be 
occasions where there is a necessity for having 
changes in the Security Classes during a change in the 
hierarchy once the system starts functioning. This is 
managed by the Symmetric Polynomial Scheme in the 
Upper Layer as explained below.  

3.3. Adding a Security Class  

When a new security class Cr is added, we need to verify 
whether m value satisfies the new node restrictions: 
 
• If m < max {m1, m2... mn,..mr}+1, a new m value 

will be generated so that m ≥ max {m1, m2, ..., 
mn,..mr}+1. Also, the CA will stimulate a new 
polynomial functions P(x1, x2,…xm) accordingly. 
In addition, all polynomial functions of security 
classes are recomputed and retransmitted securely 
to individual security class controllers 

• If m ≥ max{m1, m2,..., mn,… mr} +1, the CA selects 
a random number sr for the new security class Cr so 
that a new polynomial function gr can be computed 
and transmitted to security class Cr securely. 
However, if security class Cr is added as a parent 
security class of any existing security classes, we 
need to modify keys of Cr’s descendant security 
classes to prevent security class Cr from obtaining 
old keys of its descendant 

3.4. Deleting a Security Class 

When a security class Cr is removed from the 
hierarchy, we need to resolve whether the security class 

Cr is a leaf node or a parent node. Here, a leaf node a 
node without any descendant:  
 
• Security class Cr is a leaf node: The CA can plainly 

discard the public parameter sr without changing any 
other keys  

• Security class Cr is a parent node: Once security 
class Cr is deleted from the hierarchy, we cannot 
allow it to calculate keys of Cr’s descendant security 
classes using polynomial function gr. We need to 
thwart security class Cr from accessing its 
descendants’ resources 

 
3.5. Moving a Security Class 

A security class Cr can be moved from one node to 
another node in the hierarchy. There are four cases: 
  
• Leaf node to another leaf node: The CA simply re-

computes new polynomial function gr according the 
new hierarchy and securely transmits gr to Cr 

• Leaf node to parent node: The CA re-computes 
polynomial functions of security class Cr and Cr’s new 
descendant security classes according to the new 
hierarchy. The CA securely transmits polynomial 
functions to the affected security classes  

• Parent node to leaf node: The CA re-computes 
polynomial functions of previous descendant security 
classes of Cr and security class Cr according to the new 
hierarchy and then, securely transmits these polynomial 
functions to the affected security classes 

• Parent node to parent node: The CA re-computes 
polynomial functions of previous and present 
descendant security classes of Cr and security 
class Cr according to the new hierarchy and then, 
securely transmits these polynomial functions to 
the affected security classes 

 
3.6. Merging a Security Class 

Two or more security classes can merge together and 
become one security class Cr. Similarly, the CA needs to 
find previous and present descendant security classes of 
the merging security classes. The CA randomly chooses 
a new number Sr and then, generates polynomial 
functions for all corresponding security classes. 

3.7. Splitting a Security Class 

A security class Cr splits into two security classes Cr1 
and Cr2. Depending on whether Cr is a parent node or 
leaf node, the CA has to determine what previous and 
present descendant security classes are associated with 
these security classes (Cr, Cr1 and Cr2). The CA then 
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selects two new numbers sj1 and sj2 and generates 
polynomial functions for these affected security classes.  

3.8. Adding a Link 

If two security classes Cr and Ck are linked together, 
we establish a new direct parent-child relationship 
between two security classes; say security class Cr is the 
parent of security class Ck. There are two different cases: 
(1) Security class Cr was an ancestor of security class Ck 
through other security classes. The CA does not need to 
perform anything; and (2) security class Cr is the only 
parent for security class Ck in the new hierarchy. The CA 
selects a new number Sk and generates new polynomial 
functions for security class Ck and its descendants 
security classes. The CA securely transmits new 
polynomial functions to these affected security classes. 

3.9. Deleting a Link 

If two linked security classes Cr and Ck are 
disconnected, we destroy a direct parent-child 
relationship between two security classes; say security 
class Cr will not be the parent of security class Ck in the 
new hierarchy. Again, there are two different cases: (1) 
Security class Cr is still an ancestor of security class Ck 
through other security classes in the new hierarchy. The 
CA does not need to perform anything; and (2) security 
class Cr is not an ancestor for security class Ck in the 
new hierarchy. The CA selects a new number Sk and 
generates new polynomial functions for security class 
Ck and its descendants security classes. The CA 
securely transmits new polynomial functions to these 
affected security classes. 

4. KEY ESTABLISHMENT WITHIN THE 
DYNAMIC PEER GROUPS 

Tree based Group Elliptic Curve Diffie-Hellman 
(TGECDH) protocol is used for maintaining the Classes 
(C1, C2, C3, C4, C5, C6 and C7) individually. The key 
establishment in the class C6 is shown. The same 
procedure is used in all the Classes. Each Member 
contributes the partial key to compute the class key. In 
this section, an example of the TGECDH key 
establishment scheme has been discussed. This example 
shows how the shared key is obtained by the members 
and the class key is computed in the group consisting of 
four SixM1, SixM2, SixM3 and SixM4.  

In the class (e.g., C6), initially two members 
SixM1& SixM 2 are available (Fig. 3). If a new 
member SixM3 wants to join the class (Fig. 4), it 
broadcasts a join request message to class controller.  

 
 
Fig. 3. Member SixM1 and SixM2 join the class 
 

 
 
Fig. 4. Member SixM3 join the class 
 
The class controller receives this message and determines 
the insertion point in the tree. If a member joins in the 
shallowest rightmost node there, it does not increase the 
height of the key tree. 

If the key tree is fully balanced, the new member 
joins the root node. The class controller is the rightmost 
leaf in the sub tree rooted at the insertion node. When a 
member joins in the class, it creates a new 
intermediate node and promotes the new intermediate 
node to be the parent of both the insertion node and 
the new member node. After updating tree, the class 
controller proceeds to update its share and passes all 
public keys tree structure to new member. 

The new member acts as the new class controller and 
computes the new class key. Next, the class controller 
broadcasts the new tree that contains all public keys. All 
other members update their trees accordingly and 
compute the new class key. 

If a member wants to leave the class, first it should 
send the leave request to the class controller to generate 
the new class key. When the leave request message is 
received by class controller, it updates its key tree by 
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deleting the leaf node corresponding to leave member. 
The former sibling of leave member is promoted to 
parent node. The class controller generates a new private 
key share, computes all public key pairs on the key-path 
up to the root and broadcasts the new key tree that 
contains all public keys. The entire member in the class 
computes the new class key as: 
 

l,v  l,v l,v vBK  K *G K  r *G< > < > < >= =  
 
Where: 
K<l,v> = The private key 
BK<l,v> = The public key 
rv = A random number and  
G = The Generator 

The intermediate node with two children does not 
represent any class member but it represents a sub-class. 
The intermediate node’s private key is treated as the sub-
class key. It can be calculated by the following rule 
where node <l, v>’s two children are <l+1, 2v> and < 
l+1, 2v+1>. Where, l is the level, v is the vertices index, 
K<l,v> can be calculated as Xco(K<l+1,2v>*BK <l+1,2v+1>). This 
can be solved as:  
 

( ) ( )
( )

co <l+1,2v> <l+1,2v+1> co <l+1,2v+1> <l+1,2v>

co <l+1,2v> <l+1,2v+1>

X K * BK = X K * BK

= X K * K *G
 

 
where, Xcois the x-coordinate of the point represented 
within the parentheses. L is the height (level) of the node 
and v is the index of the node at level l. 

4.1. Initializing the Outer Group 

Initially two Gateway Member SixM1 and SixM2 are 
available in the class. SixM1 and SixM2 are the members 
of class that is going to exchange their keys. Consider p 
= 751, Ep (1,188), which is equivalent to the curve y2 = 
x3+x+188 and G = (0,376). Member SixM1’s private key 
is 1772 and its public key is (290, 638). Member SixM2’s 
private key is 1949 and its public key is (504, 163), 
K<1,0> is 1772, BK<1,0>  is K<1,0>*G and 
K<1,0>*G can be calculated as: 

K<1,0>*G = (1772 mod 769) G  
 = 234*(0,376)  
 =  (290, 638) 

Similarly, 
K<1,1> = 1949 
BK<1,1> = K<1,1>*G 
 = (1949 mod 769) G 
 =  411*(0,376)  
 =  (504, 163) 

The Class Key is computed as Member SixM1 sends 
its public key (290,638) to Member SixM2; the Member 
SixM2 computes its Class key as: 
 
K<0,0> =  Xco(K<1,1>*BK <1,0>)  
 = Xco(1772*(504,163))  
 = Xco(1772*411mod 769)G 
 = Xco(210,591) = 210 
BK<0,0> =  K<0,0>*G  
 =  210G  
 =  210*(0,376)  
 = (540,111) 
<1,1> = 14755 
BK<1,1> = K<1,1>*G 
 = (14755 mod 769) *G  
 = 144G = 144*(0,376)  
  = (623, 52) 
 

Compute the class key: 
 
K<0,0> = Xco(K<1,1>*BK <1,0>)  
 =  Xco(144*(333,131)) 
  = Xco(144*149G)  
 = Xco(337,192) 
 = 337. 
BK<0,0> = K<0,0>*G 
 = 337G = 337 * (0,376)  
 =  (664,736) 
 

SixM3 sends the public key tree values to all users. 
Now member SixM1 and SixM2 compute their class key: 
 
Member node <2, 0> and <2, 1> 
K<0,0> = Xco(K<2,0> * BK <1,1>) 
 = Xco(149*(623,52)) 
 = Xco(149*144G) = Xco(337,192) = 337. 
BK<0,0> = K<0,0>*G 
 = 337G = 337 * (0,376)  
 = (664,736) 
 
4.2. Member SixM4 Joins the Outer Group 

When a new Member SixM4 joins the Class, the 
previous Class controller SixM3 changes its private 
key value from 14755 to 8751 and passes the public 
key tree to Member SixM4. New private key is K’<2,2> 

can be calculated as: 
 
K’ <2,2> = 8751 
BK<2,2> = K’ <2,2>*G 
 =  (8751 mod 769) *G  
 =  292G 
 =  292 * (0,376)  
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 =  (7,177) 
K<1,1> =   Xco(K<2,2>*BK <2,3>)  
 =  Xco(9751*(725,224)) 
 =  Xco(9751*122G) 
 =  Xco(675,243)  
 =  675. 
BK<1,1> =  K<1,1> * G 
 = 675G= 675 * (0,376)  
 =  (127,150) 
 

Now, SixM4 becomes new Class controller. Then, 
SixM4 generates the public key (725, 224) from its 
private key as 48569 and computes the Outer group key 
as (641,685) shown in Fig. 5:  
 
K<2,3> = 48569 
BK<2,3> = K<2,3>*G 
 = (48569 mod 769) G 
 =  122G 
 = 122 * (0,376) 
 =  (725, 224) 
K<1,1> = Xco(K<2,3>*BK <2,2>) 
 =  Xco(9751*(725,224)) 
 =  Xco(9751*122G)  
 = Xco(675,243) 
 =  675. 
BK<1,1> = K<1,1> * G 
 = 675G 
 =  675* (0,376) 
 = (127,150) 
 

The class key is computed as follows: 
 
K<0,0> = Xco(K<1,1>*BK <1,0>) 
 = Xco(675* (333,131)) 
 = Xco(149*675G) 
 =  Xco(355,103) 
 =  355 
BK<0,0> = K<0,0> * G 
 = 355G 
 =  355* (0,376) 
 =  (641,685) 
 

SixM4 sends public key tree to all members. Now, 
Member SixM1, SixM2 and SixM3 compute their class 
key. Member node <2,0> and <2,1>: 
 
K<0,0> = Xco(K<1,0> * BK <1,1>) 
 =  Xco(149*675G) 
 = Xco(605G) 
 =  Xco(355,103) 
 =  355 
BK<0,0> =  K<0,0> * G 
 = 355G 

 =  355* (0,376) 
 =  (641,685). 
Member node <2,2 > 
K<0,0> = Xco(K<1,1>*BK <1,0>) 
 = Xco(675* (333,131)) 
 = Xco(149*675G)  
 =  Xco(355,103) 
 =  355 
BK<0,0> = K<0,0> * G 
 = 355G 
 =  355* (0,376) 
 =  (641,685) 
 
4.3. Leave Operation  

In the individual classes either the member or the 
class controller may leave.  

4.4. Member Leave 

When Member SixM3 leaves (Fig. 6) the class, then 
the Class Controller SixM4 changes its private key 48569 
to 98418 and class key is recalculated as (28,686): 
 
K<1,1> = 98418 
BK<1,1> = K<1,1> * G 
 = (98418 mod 769) G 
 =  755G =755* (0,376)  
 =  (383,702) 
 

Now member SixM4 will move to level <1,1>. After 
that, it broadcasts its public key tree to all Members in 
the Class. Then, the new Class key will be generated by 
the remaining Members: 
 
Member node <1,1> 
K<0,0> = Xco(K<1,1>*BK <1,0>) 
 = Xco(755*(333,131)) 
  = Xco(755 * 149G) 
 =  Xco(579,363) 
 =  579 
BK<0,0> = K<0,0>*G 
  = 579G =579* (0,376)  
 =  (428,686) 
Member node <2,0> and <2,1> 
K<0,0> = Xco(K<1,0>*BK <1,1>) 
  =  Xco(149*(383,702)) 
 = Xco(149*755G)  
 =  Xco(579,363) 
 =  579 
BK<0,0> = K<0,0>*G 
 = 579G 
 =  579* (0,376)  
 = (428,686) 
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Fig. 5. Member SixM4 joins the class 
 

 
 

Fig. 6. Member sixM3 leaves the Outer group 
 
4.5. Class Controller Leaves 

When Class Controller SixM4 leaves (Fig. 7) the 
Class, then its sibling act as a Class Controller (SixM3) 
and changes its private key value 8751 to 19478 and 
recalculates the class key as (681,475): 
 
K<1,1> =  19478 
BK<1,1> = K<1,1>*G 
 = (19478 mod 769) G 
 = 253G  
 = 253* (0,376)  

 =  (303,673) 
 

Compute the Class Key: 
 
K<0,0> = Xco(K<1,1>*BK <1,0>) 
 =  Xco(253* (333, 131)) 
 =  Xco(253 * 149G)  
 =  Xco(16 G) 
 =  Xco(614,236)  
 =  614 
BK<0,0> = K<0,0> * G 
 = 614G= 614* (0,376)  
 =  (681,457) 
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Fig. 7. Class controller leaves the Class 
 

After that, it broadcasts its public key value of the 
tree to all members in the Class. Then, the new Class key 
will be generated by the remaining members: 
 
Member <2,0> and <2,1> 
K<0,0> =  Xco(K<1,0> * BK <1,1>) 
 =  Xco(149*(303,673)) 
 = Xco(149*253G)  
 =  Xco(16 G) 
 =  Xco (614,236) 
 =  614. 
BK<0,0> =  K<0,0>* G 
 =  614 G = 614* (0,376)  
 =  (681,475) 
 

The above scheme is used for each and every class 
and they may use any elliptic curve for the local 
communication. 

5. PERFORMANCE ANALYSIS OF DEP 
(SP-TGECDH) PROTOCOL 

The following Evaluation Criteria is used for 
analyzing the performance of the proposed scheme: 
 
• Size of the information stored 
• Amount of public information  
• Efficiency of key derivation by the ancestor classes 
• Communication complexity of key updates 
• Computational Complexity  
• Security against attacks 

5.1. Size of Information (Public and Private) 

Storage overhead can be considered as the memory 
capacity required for maintaining the keys, which is 
directly proportional to the number of members. The 
total storage required can be calculated as sum of cost 
incurred for the TGECDH protocol and the Symmetric 
Polynomial. Suppose there are C classes. Total Storage 
cost = ∑TGECDHi+Cost for Symmetric Polynomial. 
Storage Cost (Private Keys +Public Keys) of TGECDH 
for a single class = (2×ni) + ni+1. Where, ni is the number 
of members in the class i and TGECDH Cost for c 
classes is Σ ((2×ni )+ ni+1) for i = 1 to c: 
 

( )( )i 1,c i iTotal Storage Cost   2 x n   n 1   1 2 m== Σ + + + + ×  

 
where, m is the number of public parameters. In our case 
it is 6. The Class Controllers forming a part of 
Symmetric Polynomial Scheme need to store only one 
key. The Table 2 shows the key size for an equivalent 
security using normal schemes and ECC. 

where, Ki is Private Key size in bits PKu is Public key 
size in bits. Always public key size is twice that of private 
key in ECC. The ECC offers a very high security with very 
less key size and hence is more suitable for implementing 
the hierarchical access control on devices with low power. 

5.2. Efficiency of Key Derivation By The 
Ancestor Classes 

One common operation for HAC is key derivation, 
which is a node develops the key of its descendant 
from its own key.  
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Table 2. Key size for equivalent security 
ECC key length public key 
----------------------------------------------------------------- RSA key length for approximate Private key length for approximate 
Prime field Binary field Ki Public key Pku equivalent security equivalent security 
112 113 224 512 56 
128 131 256 704 64 
160 163 320 1024 80 
192 193 384 1536 96 
224 233 448 2048 112 
256 283 512 3072 128 
384 409 768 7680 192 
521 571 1042 15360 256 
 
This origin will follow the pathway from the node to the 
descendant and use the one-way function iteratively. The 
longer path increases the complexity of the key 
derivation. The worst case is by O(n). In the case of the 
proposed scheme the class controllers of the ancestor 
classes are able to derive the key of the descendant class 
and use of asymmetric keys that is separate key for the 
two layers make the scheme adapt to dynamic 
membership changes very efficiently. 

5.3. Communication Cost 

Communication Cost depends on Number of Rounds, 
Number of Messages and Size of a message. 
Communication costs needed for the group key 
agreement protocol in terms of number of messages. In 
each class a join operation requires 2 rounds of message 
and 3 messages are exchanged to form a key. The leave 
operation needs only a single message. As the 
membership changes are local to the respective classes 
the key for that class alone is changed and the remaining 
keys of all other classes do not get affected. Dynamic 
Peer Groups are efficiently managed by this method. 

5.4. Computation Cost  

The computation cost is the cost involved in the case of 
calculating the key. In the proposed scheme, only during the 
changes in hierarchy the key is recalculated by the Central 
Authority and distributed to the class controllers. In the 
proposed scheme, asymmetric keys are used between 
communicating nodes. The class dynamically establishes 
keys using TGECDH. This offers distinct advantages for 
key establishment including scalability. ECC is an ideal 
public key algorithm because it offers the most security per 
bit than any other public key scheme.  

The Total Cost for the proposed scheme is the sum 
of the cost for Tree Based Group Elliptic Curve Diffie 
Hellman Scheme and Symmetric Polynomial Scheme. 
The TGECDH can be calculated as total number of 
point operations. 

Table 3. Execution Time (µs) of field operations in Fp192, 
Fp224, Fp256, Fp384, Fp521 

 Fp192 Fp224 Fp256 Fp384 Fp521 
Addition 0.071 0.160 0.083 0.142 0.145 
Subtraction 0.088 0.162 0.099 0.137 0.146 
Reduction 0.216 0.200 0.200 0.270 0.216 
Multiplication 1.500 3.100 3.100 7.800 10.900 
Squaring 2.350 2.350 3.150 6.250 8.600 
Inversion 150.000 160.000 160.000 310.000 620.000 

 
The following operations take place point Addition 

P+Q (ADD), point Doubling (DBL), number of field 
operations: Addition/subtraction (A), Multiplication (M), 
Squaring (S), Inversion (I). The Common assumptions 
(from Table 3) for high-level estimation is A = 0, S = 
0.8 M, I = 60 M, total operations are approximately 62 
M (Aparna and Amberker, 2009). The operations are 
done parallel in the respective classes without affecting 
other classes. If there are t classes, the symmetric 
polynomial scheme requires: 
 

k t 2
k * t exponentiation, t *

t 2

+ − 
 − 

 

 
k t 2

Multiplication
t 2

+ − 
 − 

 

 
where, k is the threshold. For a Pentium 4 processor at 3 
GHz., the number of clock cycles for Addition = 3 clock 
cycles = (3/3)/1000 = 0.001 µs. Multiplication: 10 clock 
cycles = (10/3)/1000 = 0.003333333 µs. The Time for bit 
operations for symmetric polynomial scheme is 0.003 µs. 
The bit operations have been calculated taking into 
consideration the key sizes for equivalent security as that 
for ECC. The timings of prime field operations which are 
addition, subtraction, modular reduction, multiplication, 
squaring and inversion are given. These values have been 
used in calculating the computation time for TGECDH. 
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Optimum storage cost, communication cost and 
computation cost makes Hierarchical Access Control 
in Dynamic Peer Groups using Symmetric Polynomial 
and Tree Based Group Elliptic Curve Diffie Hellman 
Scheme ideal for use. 

5.5. Hierarchical Access Control Cost 

The HAC cost is the number of keys to be transmitted 
to make the higher class users to see the resources or 
messages of the lower class users. For a class assume that 
there are m ancestor classes. The number of users in the 
Ancestor class are denoted by H1, H2, … , Hm. Irrespective 
of the number of users in each class, the proposed scheme 
uses only one decryption and encryption. 

5.6. Security Analysis 

The Security of SP-TGECDH is good because of the 
following properties. 1. The use of symmetric 
polynomial scheme makes key derivation easier. 2. The 
Two layer approach allows the secret key to be confined 
to the respective classes alone and the actual key is never 
moved on to any other class. The system is developed 
using java net beans and found to be secure and fast. The 
system takes care of User level and Class level dynamics 
(Begum et al., 2010b). The large number of parameters 
prevents a possible guessing e.g., For a sixteen parameter 
general polynomial 16! (i.e., 10922789888000) 
combinations are possible. Surges in leave and join 
operations also can be taken care and the system can be 
used for any hierarchy. The Security of ECC is due to the 
discrete logarithms problem over the points on the 
elliptic curve. Cryptanalysis involves determining x 
given Q and P where P is a point on the elliptic curve 
and Q = x P that is P added to itself x times. The best 
known algorithm to break the elliptic curve points is the 
pollard-rho algorithm which is a fully exponential 
algorithm and difficult to solve.  

5.7. Performance against Attacks  

Attack 1: Contrary Attacks 

Assuming that E1 (lower privileged user) needs to 
crack the secret key of B1 (Higher Privileged User). It 
is not feasible to decrypt messages as the derivation 
gives a wrong value. 

Attack 2: Interior Collecting Attacks 

There is no relation bound between any of the 
ancestor nodes and so a lower level User cannot decrypt 
messages by negotiating any one parent. 

Attack 3: Exterior Collecting Attack 

If an attacker is outside the system, it means no idea 
about what elliptic curve or generator point is being used 
is known and hence more difficult to attack. 

Attack 4: Collaborative Attacks 

We assume that if there is a higher privileged user 
belonging to class B and there are two descendant 
classes D and E. Users of D and E cannot perform a 
collaborative attack as the secret key cannot be derived. 

Attack 5: Sibling Attacks 

Classes who have same parent also cannot crack the 
key of a sibling class due to the absence of any related 
parameters among them. 

6. CONCLUSION 

In this study the Hierarchical Access Control in 
Dynamic Peer Groups using Symmetric Polynomial and 
Tree Based Group Elliptic Curve Diffie Hellman Scheme 
is proposed and implemented. This can enhance the 
access control performance by using multiple class keys 
and in contrast to other existing schemes using only 
single key, the new proposed scheme exploits 
asymmetric key, i.e., multiple outer keys and multiple 
class keys. Compared with other schemes, the new 
proposed scheme can significantly reduce the key 
computation cost. Therefore, the number of re-keying 
messages and the load on computation, communication 
and memory can be dramatically reduced and 
communication overheads in the re-keying process can 
be performed, with acceptable computational overhead. 

6.1. Future Work 

The future work involves use of this approach for real 
time applications and to provide wide-ranging analysis on 
network performance constraints such as latency, 
bandwidth, utilization and throughput. Different channel 
properties and different topologies need to be investigated 
to discover further useful interactions. Also, more studies 
have to be carryout to identify the best topology 
combinations to achieve high security at the least expense. 
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