
Journal of Computer Science 10 (9): 1650-1665, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1650.1665 Published Online 10 (9) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Nafeesa Begum Jeddy, Department of Computer Science, Government College of Engineering, Bargur,
Tamilnadu, India

1650

Science Publications

JCS

HIERARCHICAL ACCESS CONTROL IN DYNAMIC PEER
GROUPS USING SYMMETRIC POLYNOMIAL AND TREE

BASED GROUP ELLIPTIC CURVE DIFFIE HELLMAN SCHEME

1Nafeesa Begum Jeddy, 2Kumar Krishnan and 3Sumathy Vembu

1Department of Computer Science, Government College of Engineering, Bargur, Tamilnadu, India
2Department of Computer Science and Engineering, Government College of Technology, Coimbatore, India

3Department of Electronics and Communication Engineering, Govt. College of Tech., Coimbatore, India

Received 2014-02-21; Revised 2014-03-18; Accepted 2014-04-15

ABSTRACT

Hierarchical Access Control in group communication is an active area of research which is difficult to
achieve it. Its primary objective is to allow users of a higher authority group to access information or
resource held by lower group users and preventing the lower group users to access information held by
higher class users. Large collection of collaborative applications in organizations inherently has
hierarchical structures for functioning, where providing security by efficient group key management is
a big challenging issue. While preserving centralized methods for hierarchical access control, it is
difficult to achieve efficiency as a single membership change will result in lot of changes which are
difficult to maintain. So, using distributed key agreement techniques is more appropriate for this
scenario. This study explore on novel group key agreement approach, which combines both the
symmetric polynomial scheme and Tree Based Group elliptic Curve key exchange. Also, it yields a
secure protocol suite that is good in fault-tolerant and simple. The efficiency of SP-TGECDH is better
than many other schemes. Using TGECDH makes the scheme suitable small Low powered devices.

Keywords: Collaborative, Dynamic Peer Groups, Hierarchical Access Control, Symmetric Polynomial,

Tree Based Group Elliptic Curve Key Exchange

1. INTRODUCTION

Fault-tolerant, scalable and reliable communication
services have become critical in modern computing. An
important and popular trend is to convert traditional
centralized services (e.g., file sharing, authentication,
web and mail) into distributed services spread across
multiple systems and networks (Kim et al., 2004). Many
of these newly distributed and other inherently
collaborative applications (e.g., conferencing, white-
boards and shared instruments) need secure
communication. However, experience shows that
security mechanisms for collaborative and dynamic peer
groups tend to be both expensive and unexpectedly
complex. In that regard, dynamic peer groups are very

different from non-collaborative, centrally managed,
one-to-many (or few-to-many) broadcast groups such as
those encountered in Internet multicast.

Dynamic Peer Groups (DPGs) are common in many
layers of the network protocol stack and many
application areas of recent computing. Examples of
DPGs include replicated servers, audio conferencing,
video conferencing and other applications supporting
collaborative work. Comparing large multicast groups,
DPGs seem to be relatively small in size, in the order of
hundred larger groups are harder to control on a peer
basis and are often organized in a hierarchy. DPGs
typically assume a many-to-many (or, equivalently, any-
to-any) communication pattern rather than one-to-many
pattern common of larger hierarchical groups. Despite

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1651 Science Publications

JCS

their relatively small number, group members in a DPG
could be spread throughout the Internet and should be
able to deal with arbitrary partitions due to network
failures, congestion and hostile attacks. In essence, a
group can be split into a number of disconnected
partitions each of which must persist and function as an
independent peer group (Kim et al., 2004).

Security requirements in collaborative DPGs
present several interesting research challenges. In this
study, we focus on secure and efficient group key
management. The goal of group key management is to
set up and maintain a shared secret key among the
group members (Zhong, 2002). It serves as a foundation
for other DPG security services.

There are many applications in organizations that
share data in a carefully managed fashion by using
access control mechanisms. The common method used
for enforcing access control is by encrypting the data and
managing the encryption keys. Access control can be
Discretionary Access Control, Role-Based Access
Control, Mandatory Access Control and Hierarchical
Access Control. Discretionary Access Control restricts
access to objects based solely on the identity of users
who are trying to access them.

Mandatory Access Control mechanisms assign a
security level to all information, assign a security
clearance to each user and ensure that all users only have
access to that data for which they have a clearance. It has
better security than Discretionary Access Control. In
Role Based Access Control a user has access to an object
based on the assigned role. Roles are defined based on
job functions. Permissions are defined based on job
authority and responsibilities within a job function.
Based on the permissions, operations on an object are
invocated. The object is concerned with the user’s role
and not the user. Users can change roles frequently and
hence once roles are fixed, access can be given to roles
and objects of the respective roles get permission.

The realistic assumption is that the structure of any
organization (Fig. 1) is a hierarchy of security classes
lead to Hierarchical Access Control. Hierarchical
Access Control is very difficult to achieve in secure
group communication due to highly dynamic nature of
members (Kuang et al., 2011; Aparna and Amberker,
2009). In a hierarchical access control system, users
are partitioned into a number of classes called security
classes which are organized in a hierarchy.
Hierarchies arise in systems where some users have
higher privileges than others and a security class
inherits the privileges of its descendant classes.

Fig. 1. A sample hierarchy in organizations

As shown in Fig. 1, there are seven classes C1, C2,
C3, C4, C5, C6 and C7. Each class has any number of
users. There are two hierarchies in the above example
and they are C1>C2>C4>C6 and C1>C3>C5>C7. Users of
an increasing class should be able to access the resources
held by the users of the descendant class. Hierarchical
Access Control Problem is defined as the procedure by
which members in a group can communicate with each
other in a secure manner so that the information or
resource that is being shared is known to the members of
that group and all members who are destined as
ancestors to the group. In such circumstances, a group
key is set up among all the participating members and
this key is used to encrypt all the messages destined to
the group. This key has to be relayed to all the members
who are ancestors so that the communication or resource
is accessed by the ancestors.

An exceptional protocol should proficiently manage
the group key when members join and leave in a
descendant group. Hence user dynamics has to be taken
care with at most attention to issues of forward and

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1652 Science Publications

JCS

backward secrecy. In rare cases new classes may need to
created and added to the hierarchy and classes may also
be deleted. Hence, class dynamics has to be addressed.
The desirable properties of an ideal Hierarchical Access
Control are Key Establishment for a shared group key
(Hwang and Satchell, 1999), Enforcement of Forward
and Backward Secrecy, Busty operation with
simultaneous multiple user join or leave, Efficiency with
a minimum amount of computation and communication,
Key Establishment for Hierarchical Access Control, User
Dynamics and Class Dynamics (Lin et al., 2003).

2. SYSTEM OVERVIEW

The goal of this research is to propose a
communication and computation efficient Hierarchical
Access control protocol for Dynamic Peer Groups using
Symmetric Polynomial Scheme (Das et al., 2005;
Begum et al., 2010a) and Tree Based Group Elliptic
Curve Diffie Hellman Scheme (Wang et al., 2006). In
huge and highly dynamic networks, it is very difficult
to have hierarchical access control. It is commendable
to use a dual layer encryption protocol to protect the
resources from adversaries and also to provide access to
resources for the ancestor users. In the proposed scheme
the dual encryption uses the key formed by TGECDH for

communication within the dynamic peer groups and for
communication among the dynamic peer groups which
involves ancestor classes the symmetric polynomial
scheme (Zou and Bai, 2008) is used. Use of TGECDH
scheme within the classes involves its suitability for use
in low power small devices which are abundantly used
nowadays. The use of two levels of keys reduces the
large enormous cost of computation and communication
in re-keying. Hence, in Hierarchical Access control
protocol for Dynamic Peer Groups all the member nodes
joins their respective classes.

As shown in Fig. 2 the Hierarchical Access Control
Problem in an Organization can be logically represented as
a set of classes (Hwang and Yang, 2003). Assume that in
every class, every user can receive a message broadcasted
from other members. The key formation is based on
efficient Tree Based Group Elliptic Curve Diffie Hellman
protocol. Here, it is not required to create a common key for
the global group but for every class keys must be created
independently and outer keys using the symmetric
polynomial scheme are formed with the help of Central
Authority. If a user in a class transmits a message, the
message is encrypted by TGECDH key and all the members
including the class controller decrypt it. The key is
transmitted to the Gateway Node.

Fig. 2. A sample hierarchy in organizations

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1653 Science Publications

JCS

Also, the Gateway Node encrypts the message again
using its respective symmetric polynomial key and
broadcasts it. All the Gateway Nodes receive this. The
Gateway Nodes of the ancestor classes derive the key
using polynomial approach.

They decrypt the message and encrypt it again with the
class key obtained using TGECDH and transmits to all
users of its class. Thus all users of the ancestor class are able
to access the resource of their descendant classes.

This Hierarchical Access control protocol for Dynamic
Peer Groups using Symmetric Polynomial Scheme and Tree
Based Group Elliptic Curve Diffie Hellman Scheme is
suitable for the inherent characteristics of networks which
have independent, mobile and unreliable links. The main
reasons can be summarized as follows:

• The protocol is based on contributory group key

agreement in the lower layer, so it does not require pre-
existing infrastructure except a special node called the
Gateway Node for performing a TGECDH Group key
agreement. It is a hybrid scheme where a central
authority needs to have communication with the
gateway Nodes and once the polynomial is sent to
them. There is no more interference except in very rare
cases during a hierarchy change

• The Gateway Nodes of each class receive two sets
of keys. One from the class controllers of their
respective classes and another from the Central
Authority which may be powerful nodes in the
infrastructure with the capability of encrypting and
decrypting and multicasting to their group members

• The protocol is efficient especially for large,
dynamic group. Because re-keying of one class does
not influence other groups which avoids the problem
of “1-affects-n” (i.e., a single membership change in
the group affects all the other group members) and it
can provide better performance

• Networks are always composed of unreliable links

This Scheme provides reliable communication for
networks.

The proposed Hierarchical Access control protocol for
Dynamic Peer Groups using Symmetric Polynomial
Scheme and Tree Based Group Elliptic Curve Diffie
Hellman Scheme mainly targets at security, scalability and
efficiency (Wang et al., 2006).

A Class key CK is used for communication between
members in the same class. The Class key is re-keyed
whenever there is a membership change, joins or leaves
and member failure. The Outer keys are rarely changed
only during the change in the hierarchical Structure.

3. KEY ESTABLISHMENT AMONG THE
DYNAMIC PEER GROUPS USING

SYMMETRIC POLYNOMIALS

In mathematics, specifically in commutative algebra,
the elementary symmetric polynomials are one type of
basic building block for symmetric polynomials, in the
sense that any symmetric polynomial P can be expressed
as a polynomial in elementary symmetric polynomials: P
can be given by an expression involving only additions
and multiplication of constants and elementary
symmetric polynomials. The symmetric polynomials
have an excellent property that when the order of the
parameters is changed also, the value of the polynomial
does not change. This property is used in hierarchical
access control by the ancestor classes to derive the keys
of the descendant classes.

The underlying principle of the upper Tier scheme
is secret sharing. Unlike other schemes which are
computationally secure. The proposed scheme is
unconditionally secure. A central authority chooses a
large positive integer P as the system modulus, P need
not be a prime and a threshold t. CA randomly
generates a symmetric polynomial in m variables with
co-efficient from Zp in which the degree of any
variables is at most t as Equation 1:

t t t
i i im1 2

1 2 m i ,i ,...,i 1 2 mm1 2
i i i m1 2

p(x ,x ,..., x) = ... a x i ...x (mod p)∑∑ ∑ (1)

where, ai is randomly generated coefficients by the
Central Authority. Every class in the hierarchy has a
polynomial function which is derived from P(x1, x2,… ,
xm) and the polynomial function is transmitted to each
class securely by the Central Authority.

To derive proper keys in the hierarchy, the CA
generates some publicly known numbers:

• N random numbers si associated with Ci for i = 1, 2,... n
• (m-1) additional random numbers sj

’ for j = 1, 2, ... ,
m-1. (si and sj

’ belong to Zp)

For each security class Ci with an ancestor set Si =
{C i1, Ci2, …,Cim} where ij is an ordinal number such that
1≤ ij ≠ i ≤ n, security class Ci is given a polynomial
function, gi derived by the CA as Equation 2:

i mi+2 mi+3 m

i i1 i2 im mi+2 mi+3 m

g (x ,x ,...,X)

= p(s ,s ,+s ,...,s ,x ,x ,...,s)
 (2)

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1654 Science Publications

JCS

3.1. Working of the Symmetric Polynomial
Scheme

The following case study is taken into consideration to
demonstrate the working of the Symmetric Polynomial.

The following steps are followed to show Hierarchical
Access Control using Symmetric Polynomials:

• Diagrammatic Representation of the Hierarchy is

given above
• Key Calculation by the respective Classes. The keys

are named as K1, K2 to mean that Class C1
calculates is key K1, Class C2 calculates is key K2

• Key Derivation of a Descendant Class by the
Ancestor Classes. The keys are named as AK1,2,
AK1,3 to mean that Ancestor Class C1 derives the key
of its descendant Class C2 (AK1,2), Ancestor Class C1
derives the key of its descendant Class C3 (AK1,3)

• Key Derivation by a Class who is not an ancestor of
classes. The key is called as NK2,1, NK3,1, NK3,6 to
mean that a non-ancestor class C2 derives the key of
C1 (NK1,2), non-ancestor class C3 derives the key of
C1 (NK1,3) non-ancestor class C3 derives the key of
C6 (NK3,6)

• It is shown that K2 = AK1,2, K2 = AK3,2, i.e., the
symmetric polynomials are evaluated with the same
parameters but with different permutations

• It is shown that K1 ≠ NK21, K1 ≠ NK31, K6 ≠ NK36
i.e., the symmetric polynomials are evaluated with
different parameters which results in the wrong
value for the key

• There is no restriction on the number of users in
each class. The Key Calculation, Key Derivation is
taken care by one user of each class designated as
the class controller

• In all the case studies the following symmetric
Polynomial is used Equation 3

1 2

1 2 m

1 2 m

t t t
i i im

1 2 m i ,i ,...,i 1 2 m
i =0 i =0 i =0

p(x ,x ,..., x) = ... a x i ...x mod p∑∑ ∑ (3)

• The value of m is chosen as m ≥ max {m1, m2, m3,

..., mi}+1, A greater value of m allows to add more
classes. Here m value is chosen as 6

• To calculate its key each class applies uses the
symmetric polynomial with m parameters. The m
parameters are chosen as follows. Ki = si, si1, si2, ... ,
simi, s

’
1, s

’
2, ... , s

’
m-mi-1)

• Key Derivation: In key derivation, a term Sj/i that is
used to identify the hierarchy is used:

j/ I j i i (j/ i)1 (j/ i)2 (j/ i)rjS = S / (S U{C }) = {C ,C ,...,C } (4)

• 12) Consider a security class Ci which is ancestor to

security class Cj and key Kj can be calculated by Ci as:

' ' '
j i j (j/ i)1 (j/ i)2 (j/ i)rj 1 2 m-mi-2-rj

i j i i1 i2 imi (j/ i)1

' ' '
(j/ i)2 (j/ i)rj 1 2 m-mi-2-rj

K = g (S ,s ,s ,...,s ,s ,s ,...,s)

= p(s ,s ,s ,s ,s ,...,s ,s ,

s ,...,s ,s ,s ,...,s)

 (5)

As shown in Table 1 Set of Classes = {C1, C2, C3, C4,

C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16), Set of
Ancestor Classes = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
S11, S12, S13, S14, S15 ,S16}. There are five ancestors in
the Hierarchy. C1 is the ancestor of C2, C3, C4 and C5.
C2 is the ancestor of C6, C7, C8 and C9. C3 is the
ancestor of C10, C11 and C12. C4 is the ancestor of C13
and C14. C5 is the ancestor of C15 and C16. Equation 4
and 5 are used for deriving the keys.

Table 1. Set of classes and its ancestor classes
Set S and C m Value Set K
S1 = Ancestor of m1 = 0 m-mi -1= 5
C1 = {Φ} K 1 = (s1, s1

’, s2
’, s3

’, s4
’, s5

’)
S2 = Ancestor of m2 = 1 m-mi -1 = 4
C2 = {S1} K 2 = (s2, s1, s1

’, s2
’, s3

’, s4
’)

S3 = Ancestor of m3 = 1 m-mi -1 =4
C3 = {S1} K 3 = (s3, s1, s1

’, s2
’, s3

’, s4
’)

S4 = Ancestor of m4 = 1 m-mi -1 = 4
C4 = {S1} K 4 = (s4, s1, s1

’, s2
’, s3

’, s4
’)

S5= Ancestor of m5 = 1 m-mi -1 = 4
C5 = {S1} K 5 = (s5, s1, s1

’, s2
’, s3

’, s4
’)

S6 = Ancestor of m6 = 2 m-mi -1 = 3
C6 = {S1,S2} K 6 = (s6,s1,s2, s1

’, s2
’, s3

’)
S7 = Ancestor of m7 = 2 m- mi -1 = 3
C7 = {S1,S2} K 7 = (s7,s1,s2, s1

’, s2
’, s3

’)
S8 = Ancestor of m8 = 2 m-mi -1 =3
C8 = {S1,S2} K 8= (s8, s1, s2, s1

’, s2
’, s3

’)
S9 = Ancestor of m9 = 2 m-mi -1 = 3
C9 = {S1,S2} K 9 = (s9, s1, s2, s1

’, s2
’, s3

’)
S10 = Ancestor of m10 = 2 m- mi -1 = 3
C10 = {S1.S3} K 10 = (s10, s1, s3, s1

’, s2
’, s3

’)
S11 = Ancestor of m11 = 2 m- mi -1 = 3
C11 = {S1, S3} K 11 = (s11, s1, s3, s1

’, s2
’, s3

’)
S12 = Ancestor of m12 = 2 m-mi -1 = 3
C12 = {S1, S3} K 12 = (s12, s1, s3, s1

’, s2
’, s3

’)
S13 = Ancestor of m13 = 2 m-mi -1 = 3
C13 = {S1, S4} K 13 = (s13, s1, s4, s1

’, s2
’, s3

’)
S14 = Ancestor of m14 = 2 m-mi -1 = 3
C14 = {S1, S4} K 14 = (s14, s1, s4 , s1

’, s2
’, s3

’)
S15 = Ancestor of m15 = 2 m- mi -1= 3
C15 = {S1, S5} K 15 = (s15, s1, s5, s1

’, s2
’, s3

’)
S16 = Ancestor of m16 = 2 m-mi -1 = 3
C16 = {S1, S5} K 16 = (s16,s1,s5, s1

’, s2
’, s3

’, s4
’ , s5

’)

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1655 Science Publications

JCS

 Ancestor: 1 = C1
Key derivation of C2 by C1:

j = 2, i = 1
Sj /i = Sj/Si U Ci
 = {C1}/ { Φ U C1}
 = 0
rj = 0
m- mi-2-rj = 6 - 0- 2-0 = 4
AK 1,2 = P(s1, s2,s1

’, s2
’, s3

’, s4
’)

K2 = (s2, s1, s1’, s2
’, s3

’, s4
’)

AK1,2 = K2 (same parameters in different permutation)

Key derivation of C3 by C1:

j = 3, i = 1
Sj /I = Sj/Si UCi
 = {C1}/{ ΦUC1}
 = 0
rj = 0
m- mi-2-rj = 6-0-2-0 = 4
AK 1,3 = P(s1, s3,s1

’, s2
’, s3

’, s4
’)

K3 = (s3, s1, s1
’, s2

’, s3
’, s4

’)
AK1,3 = K3 (same parameters in different permutation)

Key derivation of C4 by C1:

j = 4, i = 1
Sj /I = Sj/Si UCi
 = {C1}/ΦUC1}
 = 0
rj = 0
m- mi-2-rj = 6-0-2-0 = 4
AK 1,4 = P(s1, s4,s1

’, s2
’, s3

’, s4
’)

K4 = (s4, s1, s1
’, s2

’, s3
’, s4

’)
AK1,4 = K4 (same parameters in different permutation)

Key derivation of C5 by C1:

j = 5, i = 1
Sj /I = Sj/Si UCi
 = {C1}/{ ΦUC1}
 = 0
rj = 0
m- mi-2-rj = 6-0-2-0 = 4
AK 1,5 = P(s1, s5,s1

’, s2
’, s3

’, s4
’)

K5 = (s5, s1, s1
’, s2

’, s3
’, s4

’)
AK 1,5 = K5 (same parameters in different permutation)

Ancestor: 2 = C2

Key derivation of C6 by C2:

j = 6, i = 2

Sj /i = Sj/Si UCi
 = {C1, C2}/{C 1UC2}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 2,6 = P(s6, s2, s1,s1

’, s2
’, s3

’)
K6 = (s6, s1, s2, s1

’, s2
’, s3

’)
AK 2,6 = K6 (same parameters in different permutation)

Key derivation of C7 by C2:

j = 7, i = 2
Sj /I = Sj/ Si UCi
 = {C1, C2}/{C 1UC2}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 2,7 = P(s7, s2, s1, s1

’, s2
’, s3

’)
K7 = (s7, s1, s2, s1

’, s2
’, s3

’)
AK 2,7 = K7 (same parameters in different permutation)

Key derivation of C8 by C2:

j = 8, i = 2
Sj /I = Sj/Si UCi
 = {C1, C2}/{C 1UC2}
 = 0
rj= 0
m- mi-2-rj = 6-1-2-0 = 3
AK 2,8 = P(s8, s2, s1, s1

’, s2
’, s3

’)
K8 = (s8, s1, s2, s1

’, s2
’, s3

’)
AK 2,8 = K8 (same parameters in different permutation)

Key derivation of C9 by C2:

j = 9, i = 2
Sj /I = Sj/Si U Ci
 = {C1, C2}/{C 1UC2}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 2,9 = P(s9, s2, s1, s1

’, s2
’, s3

’)
K9 = (s9, s1, s2, s1

’, s2
’, s3

’)
AK 2,9 = K9 (same parameters in different permutation)

Ancestor: 3 = C3

Key derivation of C10 by C3:

j = 10, i = 3
Sj /I = Sj/Si UCi
 = {C1, C3}/{C1UC3}
 = 0
 rj = 0

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1656 Science Publications

JCS

m- mi-2-rj = 6-1-2-0 = 3
AK 3,10 = P(s10, s3, s1,s1

’, s2
’, s3

’)
K10 = (s10, s1, s3, s1’, s2

’, s3
’)

AK 3,10 = K10 (same parameters in different permutation)

Key derivation of C11 by C3:

j = 11, i = 3
Sj /I = Sj/Si UCi
 = {C1, C3}/{C1UC3}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 3,11 = P(s11, s3, s1, s1

’, s2
’, s3

’)
K11 = (s11, s1, s3, s1

’, s2
’, s3

’)
AK 3,11 = K11 (same parameters in different permutation)

Key derivation of C12 by C3:

j = 12, i = 3
Sj /I = Sj/Si UCi
 = {C1, C3}/{C 1UC3}
 = 0
rj= 0
m- mi-2-rj = 6-1-2-0 = 3
AK 3,12 = P(s12, s3, s1, s1

’, s2
’, s3

’)
K12 = (s12, s1, s3, s1

’, s2
’, s3

’)
AK 3,12 = K12 (same parameters in different permutation)

Ancestor: 4 = C4

Key derivation of C13 by C4:

j = 13, i = 4
Sj /i = Sj/Si UCi
 = {C1, C4}/{C 1UC4}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 4,13 = P(s13, s4, s1, s1

’, s2
’, s3

’)
K13 = (s13, s1, s4, s1

’, s2
’, s3

’)
AK 4,13 = K13 (same parameters in different permutation)
Key derivation of C14 by C4:

j = 14, i = 4
Sj /I = Sj/Si UCi
 = {C1, C4}/{C 1UC4}
 = 0
 rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 4,14 = P(s14, s4, s1, s1

’, s2
’, s3

’)
K14 = (s14, s1, s4, s1

’, s2
’, s3

’)
AK 4,14 = K14 (same parameters in different permutation)

Ancestor: 5 = C5
Key derivation of C15 by C5:

j = 15, i = 5
Sj /I = Sj/Si UCi

= {C1, C5}/{C1 UC5}
= 0

 rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 5,15 = P(s15, s5, s1, s1

’, s2
’, s3

’)
K15 = (s15, s1, s5, s1

’, s2
’, s3

’)
AK 5,15 = K15 (same parameters in different permutation)

Key derivation of C16 by C5:

j = 15, i = 6
Sj /I = Sj/Si UCi
 = {C1, C5}/{C 1UC5}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
AK 5,16 = P(s16, s5, s1, s1

’, s2
’, s3

’)
K16 = (s16, s1, s5, s1

’, s2
’, s3

’)
AK 5,16 = K16(same parameters in different permutation)

A few Examples for the key derivation by the Non
Ancestral Class is shown below

Case: 1
Key derivation of C1 by C2:

j = 1, i = 2
Sj /i = Sj/Si UCi
 = {Φ}/{C 1UC2}
 = 0
rj = 0
m- mi-2-rj = 6-1-2-0 = 3
NK2,1 = P(s2, s1, s1, s1

’, s2
’, s3

’)
K1 = (s1, s1

’, s2
’, s3

’, s4
’, s5

’)
NK2,1 ≠ K1 (parameters are not correct hence Class C2

does not get the correct key of Class C1)
Case: 2
Key derivation of C1 by C3:

j = 1, i = 3
Sj /i = Sj/Si UCi
 = {Φ}/{C 1UC3}
 = 0
 rj = 0
m- mi-2-rj = 6-1-2-0 = 3
NK3,1 = P(s3, s1, s1, s1

’, s2
’, s3

’)
K1 = (s1, s1

’, s2
’, s3

’, s4
 , s5

’)

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1657 Science Publications

JCS

NK3,1 ≠ K1 (parameters are not correct hence Class C3
does not get the correct key of Class C1)

Case: 2
Key derivation of C9 by C4:

j = 9, i = 4
Sj /i = Sj/Si UCi
 = {C1, C2}/ C1UC4}
 = {C2}
rj =1
m- mi-2-rj = 6-1-2-1
 = 2
NK4,9 = P(s4, s9, s1, s2, s1

’, s2
’)

K9 = (s9, s1, s2, s1
’, s2

’, s3
’)

NK4,9 ≠ K9 (parameters are not correct hence Class C4
does not get the correct key of Class C9)

3.2. Support of Network Dynamics

In a large group the user dynamics is very frequent
which is taken care by the lower layer protocols
explained in subsequent sections. There may be
occasions where there is a necessity for having
changes in the Security Classes during a change in the
hierarchy once the system starts functioning. This is
managed by the Symmetric Polynomial Scheme in the
Upper Layer as explained below.

3.3. Adding a Security Class

When a new security class Cr is added, we need to verify
whether m value satisfies the new node restrictions:

• If m < max {m1, m2... mn,..mr}+1, a new m value

will be generated so that m ≥ max {m1, m2, ...,
mn,..mr}+1. Also, the CA will stimulate a new
polynomial functions P(x1, x2,…xm) accordingly.
In addition, all polynomial functions of security
classes are recomputed and retransmitted securely
to individual security class controllers

• If m ≥ max{m1, m2,..., mn,… mr} +1, the CA selects
a random number sr for the new security class Cr so
that a new polynomial function gr can be computed
and transmitted to security class Cr securely.
However, if security class Cr is added as a parent
security class of any existing security classes, we
need to modify keys of Cr’s descendant security
classes to prevent security class Cr from obtaining
old keys of its descendant

3.4. Deleting a Security Class

When a security class Cr is removed from the
hierarchy, we need to resolve whether the security class

Cr is a leaf node or a parent node. Here, a leaf node a
node without any descendant:

• Security class Cr is a leaf node: The CA can plainly

discard the public parameter sr without changing any
other keys

• Security class Cr is a parent node: Once security
class Cr is deleted from the hierarchy, we cannot
allow it to calculate keys of Cr’s descendant security
classes using polynomial function gr. We need to
thwart security class Cr from accessing its
descendants’ resources

3.5. Moving a Security Class

A security class Cr can be moved from one node to
another node in the hierarchy. There are four cases:

• Leaf node to another leaf node: The CA simply re-

computes new polynomial function gr according the
new hierarchy and securely transmits gr to Cr

• Leaf node to parent node: The CA re-computes
polynomial functions of security class Cr and Cr’s new
descendant security classes according to the new
hierarchy. The CA securely transmits polynomial
functions to the affected security classes

• Parent node to leaf node: The CA re-computes
polynomial functions of previous descendant security
classes of Cr and security class Cr according to the new
hierarchy and then, securely transmits these polynomial
functions to the affected security classes

• Parent node to parent node: The CA re-computes
polynomial functions of previous and present
descendant security classes of Cr and security
class Cr according to the new hierarchy and then,
securely transmits these polynomial functions to
the affected security classes

3.6. Merging a Security Class

Two or more security classes can merge together and
become one security class Cr. Similarly, the CA needs to
find previous and present descendant security classes of
the merging security classes. The CA randomly chooses
a new number Sr and then, generates polynomial
functions for all corresponding security classes.

3.7. Splitting a Security Class

A security class Cr splits into two security classes Cr1
and Cr2. Depending on whether Cr is a parent node or
leaf node, the CA has to determine what previous and
present descendant security classes are associated with
these security classes (Cr, Cr1 and Cr2). The CA then

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1658 Science Publications

JCS

selects two new numbers sj1 and sj2 and generates
polynomial functions for these affected security classes.

3.8. Adding a Link

If two security classes Cr and Ck are linked together,
we establish a new direct parent-child relationship
between two security classes; say security class Cr is the
parent of security class Ck. There are two different cases:
(1) Security class Cr was an ancestor of security class Ck
through other security classes. The CA does not need to
perform anything; and (2) security class Cr is the only
parent for security class Ck in the new hierarchy. The CA
selects a new number Sk and generates new polynomial
functions for security class Ck and its descendants
security classes. The CA securely transmits new
polynomial functions to these affected security classes.

3.9. Deleting a Link

If two linked security classes Cr and Ck are
disconnected, we destroy a direct parent-child
relationship between two security classes; say security
class Cr will not be the parent of security class Ck in the
new hierarchy. Again, there are two different cases: (1)
Security class Cr is still an ancestor of security class Ck
through other security classes in the new hierarchy. The
CA does not need to perform anything; and (2) security
class Cr is not an ancestor for security class Ck in the
new hierarchy. The CA selects a new number Sk and
generates new polynomial functions for security class
Ck and its descendants security classes. The CA
securely transmits new polynomial functions to these
affected security classes.

4. KEY ESTABLISHMENT WITHIN THE
DYNAMIC PEER GROUPS

Tree based Group Elliptic Curve Diffie-Hellman
(TGECDH) protocol is used for maintaining the Classes
(C1, C2, C3, C4, C5, C6 and C7) individually. The key
establishment in the class C6 is shown. The same
procedure is used in all the Classes. Each Member
contributes the partial key to compute the class key. In
this section, an example of the TGECDH key
establishment scheme has been discussed. This example
shows how the shared key is obtained by the members
and the class key is computed in the group consisting of
four SixM1, SixM2, SixM3 and SixM4.

In the class (e.g., C6), initially two members
SixM1& SixM 2 are available (Fig. 3). If a new
member SixM3 wants to join the class (Fig. 4), it
broadcasts a join request message to class controller.

Fig. 3. Member SixM1 and SixM2 join the class

Fig. 4. Member SixM3 join the class

The class controller receives this message and determines
the insertion point in the tree. If a member joins in the
shallowest rightmost node there, it does not increase the
height of the key tree.

If the key tree is fully balanced, the new member
joins the root node. The class controller is the rightmost
leaf in the sub tree rooted at the insertion node. When a
member joins in the class, it creates a new
intermediate node and promotes the new intermediate
node to be the parent of both the insertion node and
the new member node. After updating tree, the class
controller proceeds to update its share and passes all
public keys tree structure to new member.

The new member acts as the new class controller and
computes the new class key. Next, the class controller
broadcasts the new tree that contains all public keys. All
other members update their trees accordingly and
compute the new class key.

If a member wants to leave the class, first it should
send the leave request to the class controller to generate
the new class key. When the leave request message is
received by class controller, it updates its key tree by

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1659 Science Publications

JCS

deleting the leaf node corresponding to leave member.
The former sibling of leave member is promoted to
parent node. The class controller generates a new private
key share, computes all public key pairs on the key-path
up to the root and broadcasts the new key tree that
contains all public keys. The entire member in the class
computes the new class key as:

l,v l,v l,v vBK K *G K r *G< > < > < >= =

Where:
K<l,v> = The private key
BK<l,v> = The public key
rv = A random number and
G = The Generator

The intermediate node with two children does not
represent any class member but it represents a sub-class.
The intermediate node’s private key is treated as the sub-
class key. It can be calculated by the following rule
where node <l, v>’s two children are <l+1, 2v> and <
l+1, 2v+1>. Where, l is the level, v is the vertices index,
K<l,v> can be calculated as Xco(K<l+1,2v>*BK <l+1,2v+1>). This
can be solved as:

() ()
()

co <l+1,2v> <l+1,2v+1> co <l+1,2v+1> <l+1,2v>

co <l+1,2v> <l+1,2v+1>

X K * BK = X K * BK

= X K * K *G

where, Xcois the x-coordinate of the point represented
within the parentheses. L is the height (level) of the node
and v is the index of the node at level l.

4.1. Initializing the Outer Group

Initially two Gateway Member SixM1 and SixM2 are
available in the class. SixM1 and SixM2 are the members
of class that is going to exchange their keys. Consider p
= 751, Ep (1,188), which is equivalent to the curve y2 =
x3+x+188 and G = (0,376). Member SixM1’s private key
is 1772 and its public key is (290, 638). Member SixM2’s
private key is 1949 and its public key is (504, 163),
K<1,0> is 1772, BK<1,0> is K<1,0>*G and
K<1,0>*G can be calculated as:

K<1,0>*G = (1772 mod 769) G
 = 234*(0,376)
 = (290, 638)

Similarly,
K<1,1> = 1949
BK<1,1> = K<1,1>*G
 = (1949 mod 769) G
 = 411*(0,376)
 = (504, 163)

The Class Key is computed as Member SixM1 sends
its public key (290,638) to Member SixM2; the Member
SixM2 computes its Class key as:

K<0,0> = Xco(K<1,1>*BK <1,0>)
 = Xco(1772*(504,163))
 = Xco(1772*411mod 769)G
 = Xco(210,591) = 210
BK<0,0> = K<0,0>*G
 = 210G
 = 210*(0,376)
 = (540,111)
<1,1> = 14755
BK<1,1> = K<1,1>*G
 = (14755 mod 769) *G
 = 144G = 144*(0,376)
 = (623, 52)

Compute the class key:

K<0,0> = Xco(K<1,1>*BK <1,0>)
 = Xco(144*(333,131))
 = Xco(144*149G)
 = Xco(337,192)
 = 337.
BK<0,0> = K<0,0>*G
 = 337G = 337 * (0,376)
 = (664,736)

SixM3 sends the public key tree values to all users.
Now member SixM1 and SixM2 compute their class key:

Member node <2, 0> and <2, 1>
K<0,0> = Xco(K<2,0> * BK <1,1>)
 = Xco(149*(623,52))
 = Xco(149*144G) = Xco(337,192) = 337.
BK<0,0> = K<0,0>*G
 = 337G = 337 * (0,376)
 = (664,736)

4.2. Member SixM4 Joins the Outer Group

When a new Member SixM4 joins the Class, the
previous Class controller SixM3 changes its private
key value from 14755 to 8751 and passes the public
key tree to Member SixM4. New private key is K’<2,2>

can be calculated as:

K’ <2,2> = 8751
BK<2,2> = K’ <2,2>*G
 = (8751 mod 769) *G
 = 292G
 = 292 * (0,376)

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1660 Science Publications

JCS

 = (7,177)
K<1,1> = Xco(K<2,2>*BK <2,3>)
 = Xco(9751*(725,224))
 = Xco(9751*122G)
 = Xco(675,243)
 = 675.
BK<1,1> = K<1,1> * G
 = 675G= 675 * (0,376)
 = (127,150)

Now, SixM4 becomes new Class controller. Then,
SixM4 generates the public key (725, 224) from its
private key as 48569 and computes the Outer group key
as (641,685) shown in Fig. 5:

K<2,3> = 48569
BK<2,3> = K<2,3>*G
 = (48569 mod 769) G
 = 122G
 = 122 * (0,376)
 = (725, 224)
K<1,1> = Xco(K<2,3>*BK <2,2>)
 = Xco(9751*(725,224))
 = Xco(9751*122G)
 = Xco(675,243)
 = 675.
BK<1,1> = K<1,1> * G
 = 675G
 = 675* (0,376)
 = (127,150)

The class key is computed as follows:

K<0,0> = Xco(K<1,1>*BK <1,0>)
 = Xco(675* (333,131))
 = Xco(149*675G)
 = Xco(355,103)
 = 355
BK<0,0> = K<0,0> * G
 = 355G
 = 355* (0,376)
 = (641,685)

SixM4 sends public key tree to all members. Now,
Member SixM1, SixM2 and SixM3 compute their class
key. Member node <2,0> and <2,1>:

K<0,0> = Xco(K<1,0> * BK <1,1>)
 = Xco(149*675G)
 = Xco(605G)
 = Xco(355,103)
 = 355
BK<0,0> = K<0,0> * G
 = 355G

 = 355* (0,376)
 = (641,685).
Member node <2,2 >
K<0,0> = Xco(K<1,1>*BK <1,0>)
 = Xco(675* (333,131))
 = Xco(149*675G)
 = Xco(355,103)
 = 355
BK<0,0> = K<0,0> * G
 = 355G
 = 355* (0,376)
 = (641,685)

4.3. Leave Operation

In the individual classes either the member or the
class controller may leave.

4.4. Member Leave

When Member SixM3 leaves (Fig. 6) the class, then
the Class Controller SixM4 changes its private key 48569
to 98418 and class key is recalculated as (28,686):

K<1,1> = 98418
BK<1,1> = K<1,1> * G
 = (98418 mod 769) G
 = 755G =755* (0,376)
 = (383,702)

Now member SixM4 will move to level <1,1>. After
that, it broadcasts its public key tree to all Members in
the Class. Then, the new Class key will be generated by
the remaining Members:

Member node <1,1>
K<0,0> = Xco(K<1,1>*BK <1,0>)
 = Xco(755*(333,131))
 = Xco(755 * 149G)
 = Xco(579,363)
 = 579
BK<0,0> = K<0,0>*G
 = 579G =579* (0,376)
 = (428,686)
Member node <2,0> and <2,1>
K<0,0> = Xco(K<1,0>*BK <1,1>)
 = Xco(149*(383,702))
 = Xco(149*755G)
 = Xco(579,363)
 = 579
BK<0,0> = K<0,0>*G
 = 579G
 = 579* (0,376)
 = (428,686)

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1661 Science Publications

JCS

Fig. 5. Member SixM4 joins the class

Fig. 6. Member sixM3 leaves the Outer group

4.5. Class Controller Leaves

When Class Controller SixM4 leaves (Fig. 7) the
Class, then its sibling act as a Class Controller (SixM3)
and changes its private key value 8751 to 19478 and
recalculates the class key as (681,475):

K<1,1> = 19478
BK<1,1> = K<1,1>*G
 = (19478 mod 769) G
 = 253G
 = 253* (0,376)

 = (303,673)

Compute the Class Key:

K<0,0> = Xco(K<1,1>*BK <1,0>)
 = Xco(253* (333, 131))
 = Xco(253 * 149G)
 = Xco(16 G)
 = Xco(614,236)
 = 614
BK<0,0> = K<0,0> * G
 = 614G= 614* (0,376)
 = (681,457)

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1662 Science Publications

JCS

Fig. 7. Class controller leaves the Class

After that, it broadcasts its public key value of the
tree to all members in the Class. Then, the new Class key
will be generated by the remaining members:

Member <2,0> and <2,1>
K<0,0> = Xco(K<1,0> * BK <1,1>)
 = Xco(149*(303,673))
 = Xco(149*253G)
 = Xco(16 G)
 = Xco (614,236)
 = 614.
BK<0,0> = K<0,0>* G
 = 614 G = 614* (0,376)
 = (681,475)

The above scheme is used for each and every class
and they may use any elliptic curve for the local
communication.

5. PERFORMANCE ANALYSIS OF DEP
(SP-TGECDH) PROTOCOL

The following Evaluation Criteria is used for
analyzing the performance of the proposed scheme:

• Size of the information stored
• Amount of public information
• Efficiency of key derivation by the ancestor classes
• Communication complexity of key updates
• Computational Complexity
• Security against attacks

5.1. Size of Information (Public and Private)

Storage overhead can be considered as the memory
capacity required for maintaining the keys, which is
directly proportional to the number of members. The
total storage required can be calculated as sum of cost
incurred for the TGECDH protocol and the Symmetric
Polynomial. Suppose there are C classes. Total Storage
cost = ∑TGECDHi+Cost for Symmetric Polynomial.
Storage Cost (Private Keys +Public Keys) of TGECDH
for a single class = (2×ni) + ni+1. Where, ni is the number
of members in the class i and TGECDH Cost for c
classes is Σ ((2×ni)+ ni+1) for i = 1 to c:

()()i 1,c i iTotal Storage Cost 2 x n n 1 1 2 m== Σ + + + + ×

where, m is the number of public parameters. In our case
it is 6. The Class Controllers forming a part of
Symmetric Polynomial Scheme need to store only one
key. The Table 2 shows the key size for an equivalent
security using normal schemes and ECC.

where, Ki is Private Key size in bits PKu is Public key
size in bits. Always public key size is twice that of private
key in ECC. The ECC offers a very high security with very
less key size and hence is more suitable for implementing
the hierarchical access control on devices with low power.

5.2. Efficiency of Key Derivation By The
Ancestor Classes

One common operation for HAC is key derivation,
which is a node develops the key of its descendant
from its own key.

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1663 Science Publications

JCS

Table 2. Key size for equivalent security
ECC key length public key
--- RSA key length for approximate Private key length for approximate
Prime field Binary field Ki Public key Pku equivalent security equivalent security
112 113 224 512 56
128 131 256 704 64
160 163 320 1024 80
192 193 384 1536 96
224 233 448 2048 112
256 283 512 3072 128
384 409 768 7680 192
521 571 1042 15360 256

This origin will follow the pathway from the node to the
descendant and use the one-way function iteratively. The
longer path increases the complexity of the key
derivation. The worst case is by O(n). In the case of the
proposed scheme the class controllers of the ancestor
classes are able to derive the key of the descendant class
and use of asymmetric keys that is separate key for the
two layers make the scheme adapt to dynamic
membership changes very efficiently.

5.3. Communication Cost

Communication Cost depends on Number of Rounds,
Number of Messages and Size of a message.
Communication costs needed for the group key
agreement protocol in terms of number of messages. In
each class a join operation requires 2 rounds of message
and 3 messages are exchanged to form a key. The leave
operation needs only a single message. As the
membership changes are local to the respective classes
the key for that class alone is changed and the remaining
keys of all other classes do not get affected. Dynamic
Peer Groups are efficiently managed by this method.

5.4. Computation Cost

The computation cost is the cost involved in the case of
calculating the key. In the proposed scheme, only during the
changes in hierarchy the key is recalculated by the Central
Authority and distributed to the class controllers. In the
proposed scheme, asymmetric keys are used between
communicating nodes. The class dynamically establishes
keys using TGECDH. This offers distinct advantages for
key establishment including scalability. ECC is an ideal
public key algorithm because it offers the most security per
bit than any other public key scheme.

The Total Cost for the proposed scheme is the sum
of the cost for Tree Based Group Elliptic Curve Diffie
Hellman Scheme and Symmetric Polynomial Scheme.
The TGECDH can be calculated as total number of
point operations.

Table 3. Execution Time (µs) of field operations in Fp192,
Fp224, Fp256, Fp384, Fp521

 Fp192 Fp224 Fp256 Fp384 Fp521
Addition 0.071 0.160 0.083 0.142 0.145
Subtraction 0.088 0.162 0.099 0.137 0.146
Reduction 0.216 0.200 0.200 0.270 0.216
Multiplication 1.500 3.100 3.100 7.800 10.900
Squaring 2.350 2.350 3.150 6.250 8.600
Inversion 150.000 160.000 160.000 310.000 620.000

The following operations take place point Addition

P+Q (ADD), point Doubling (DBL), number of field
operations: Addition/subtraction (A), Multiplication (M),
Squaring (S), Inversion (I). The Common assumptions
(from Table 3) for high-level estimation is A = 0, S =
0.8 M, I = 60 M, total operations are approximately 62
M (Aparna and Amberker, 2009). The operations are
done parallel in the respective classes without affecting
other classes. If there are t classes, the symmetric
polynomial scheme requires:

k t 2
k * t exponentiation, t *

t 2

+ − 
 − 

k t 2

Multiplication
t 2

+ − 
 − 

where, k is the threshold. For a Pentium 4 processor at 3
GHz., the number of clock cycles for Addition = 3 clock
cycles = (3/3)/1000 = 0.001 µs. Multiplication: 10 clock
cycles = (10/3)/1000 = 0.003333333 µs. The Time for bit
operations for symmetric polynomial scheme is 0.003 µs.
The bit operations have been calculated taking into
consideration the key sizes for equivalent security as that
for ECC. The timings of prime field operations which are
addition, subtraction, modular reduction, multiplication,
squaring and inversion are given. These values have been
used in calculating the computation time for TGECDH.

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1664 Science Publications

JCS

Optimum storage cost, communication cost and
computation cost makes Hierarchical Access Control
in Dynamic Peer Groups using Symmetric Polynomial
and Tree Based Group Elliptic Curve Diffie Hellman
Scheme ideal for use.

5.5. Hierarchical Access Control Cost

The HAC cost is the number of keys to be transmitted
to make the higher class users to see the resources or
messages of the lower class users. For a class assume that
there are m ancestor classes. The number of users in the
Ancestor class are denoted by H1, H2, … , Hm. Irrespective
of the number of users in each class, the proposed scheme
uses only one decryption and encryption.

5.6. Security Analysis

The Security of SP-TGECDH is good because of the
following properties. 1. The use of symmetric
polynomial scheme makes key derivation easier. 2. The
Two layer approach allows the secret key to be confined
to the respective classes alone and the actual key is never
moved on to any other class. The system is developed
using java net beans and found to be secure and fast. The
system takes care of User level and Class level dynamics
(Begum et al., 2010b). The large number of parameters
prevents a possible guessing e.g., For a sixteen parameter
general polynomial 16! (i.e., 10922789888000)
combinations are possible. Surges in leave and join
operations also can be taken care and the system can be
used for any hierarchy. The Security of ECC is due to the
discrete logarithms problem over the points on the
elliptic curve. Cryptanalysis involves determining x
given Q and P where P is a point on the elliptic curve
and Q = x P that is P added to itself x times. The best
known algorithm to break the elliptic curve points is the
pollard-rho algorithm which is a fully exponential
algorithm and difficult to solve.

5.7. Performance against Attacks

Attack 1: Contrary Attacks

Assuming that E1 (lower privileged user) needs to
crack the secret key of B1 (Higher Privileged User). It
is not feasible to decrypt messages as the derivation
gives a wrong value.

Attack 2: Interior Collecting Attacks

There is no relation bound between any of the
ancestor nodes and so a lower level User cannot decrypt
messages by negotiating any one parent.

Attack 3: Exterior Collecting Attack

If an attacker is outside the system, it means no idea
about what elliptic curve or generator point is being used
is known and hence more difficult to attack.

Attack 4: Collaborative Attacks

We assume that if there is a higher privileged user
belonging to class B and there are two descendant
classes D and E. Users of D and E cannot perform a
collaborative attack as the secret key cannot be derived.

Attack 5: Sibling Attacks

Classes who have same parent also cannot crack the
key of a sibling class due to the absence of any related
parameters among them.

6. CONCLUSION

In this study the Hierarchical Access Control in
Dynamic Peer Groups using Symmetric Polynomial and
Tree Based Group Elliptic Curve Diffie Hellman Scheme
is proposed and implemented. This can enhance the
access control performance by using multiple class keys
and in contrast to other existing schemes using only
single key, the new proposed scheme exploits
asymmetric key, i.e., multiple outer keys and multiple
class keys. Compared with other schemes, the new
proposed scheme can significantly reduce the key
computation cost. Therefore, the number of re-keying
messages and the load on computation, communication
and memory can be dramatically reduced and
communication overheads in the re-keying process can
be performed, with acceptable computational overhead.

6.1. Future Work

The future work involves use of this approach for real
time applications and to provide wide-ranging analysis on
network performance constraints such as latency,
bandwidth, utilization and throughput. Different channel
properties and different topologies need to be investigated
to discover further useful interactions. Also, more studies
have to be carryout to identify the best topology
combinations to achieve high security at the least expense.

7. REFERENCES

Aparna, R. and B.B. Amberker, 2009. Analysis of key
management schemes for secure group
communication and their classification. J. Comput.
Inf. Technol., 17: 203-214.

Nafeesa Begum Jeddy et al. / Journal of Computer Science 10 (9): 1650-1665, 2014

1665 Science Publications

JCS

Begum, N.J., K. Kumar and V. Sumathy, 2010b. Design
and implementation of multilevel access control in
synchronized audio to audio steganography using
symmetric polynomial scheme. J. Inf. Security., 1:
29-40. DOI: 10.4236/jis.2010.11004

Begum, N.J., K. Kumar and V. Sumathy, 2010a. A novel
approach towards multilevel access control for
secure group communication using symmetric
polynomial based elliptic curve cryptography.
Proceedings of the International Conference on
Computational Intelligence and Communication
Networks, Nov. 26-28, IEEE Xplore Press, Bhopal,
pp: 454-59. DOI: 10.1109/CICN.2010.92

Das, M.L., A. Saxena, V.P. Gulati and D.B. Phatak,
2005. Hierarchical key management scheme using
polynomial interpolation. SIGOPS Operat. Syst.
Rev., 39: 40-47. DOI: 10.1145/1044552.1044556

Kim, Y., A. Perrig and G. Tsudik, 2004. Tree based
group key agreement. ACM Trans. Inf. Syst. Secu.,
7: 60-96. DOI: 10.1145/984334.984337

Kuang, T.P., H. Ibrahim, N.I. Udzir and F. Sidi, 2011.
Security extensible access control markup language
policy integration based on role-based access control
model in healthcare collaborative environments.
Am. J. Econ. Bus. Admin., 3: 101-111.
DOI: 10.3844/ajebasp.2011.101.111

Lin, I.C., M.S. Hwang and C.C. Chang, 2003. A new key
assignment scheme for enforcing complicated access
control policies in hierarchy. Future Generat.
Comput. Syst., 19: 457-462. DOI: 10.1016/S0167-
739X(02)00200-5

Hwang, M.S. and W.P. Yang, 2003. Controlling access
in large partially ordered hierarchies using
cryptographic keys. J. Syst. Softw., 67: 99-107.
DOI: 10.1016/S0164-1212(02)00091-2

Hwang, S. and S.E. Satchell, 1999. Modelling emerging
market risk premia using higher moments. Int. J.
Finance Econom., 4: 271-296. DOI:
10.1002/(SICI)1099-1158(199910)4:4<271::AID-
IJFE110>3.0.CO;2-M

Wang, Y., B. Ramamurthy and X. Zou, 2006. The
performance of elliptic curve based diffie-hellman
protocols for secure group communication over
adhoc networks. Proceedings of the IEEE
International Conference on Communications, Jun.
11-15, IEEE Xplore Press, Istanbul, pp: 2243-2248.
DOI: 10.1109/ICC.2006.255104

Zhong, S., 2002. A practical key management scheme
for access control in a user hierarchy. Comput.
Secu., 21: 750-759. DOI: 10.1016/S0167-
4048(02)00815-5.

Zou, X. and L. Bai, 2008. A new class of key
management scheme for access control in dynamic
hierarchies. Int. J. Comput. Appli., 30: 331-337.

